
295

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 295-308, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Replicators: Transformations to Address Model
Scalability

Jeff Gray1, Yuehua Lin1, Jing Zhang1, Steve Nordstrom2,
Aniruddha Gokhale2, Sandeep Neema2, and Swapna Gokhale3

1 Dept. of Computer and Information Sciences, University of Alabama at Birmingham
Birmingham AL 35294-1170

{gray, liny, zhangj}@cis.uab.edu

2 Institute for Software Integrated Systems, Vanderbilt University
Nashville TN 37235

{steve-o, gokhale, sandeep}@isis.vanderbilt.edu

3 Dept. of Computer Science and Engineering, University of Connecticut
Storrs, CT 06269

ssg@engr.uconn.edu

Abstract. In Model Integrated Computing, it is desirable to evaluate different
design alternatives as they relate to issues of scalability. A typical approach to
address scalability is to create a base model that captures the key interactions of
various components (i.e., the essential properties and connections among
modeling entities). A collection of base models can be adorned with necessary
information to characterize their replication. In current practice, replication is
accomplished by scaling the base model manually. This is a time-consuming
process that represents a source of error, especially when there are deep
interactions between model components. As an alternative to the manual
process, this paper presents the idea of a replicator, which is a model
transformation that expands the number of elements from the base model and
makes the correct connections among the generated modeling elements. The
paper motivates the need for replicators through case studies taken from models
supporting different domains.

1. Introduction

A powerful justification for the use of models concerns the flexibility and analysis
that can be performed to explore various design alternatives. This is particularly true
for distributed real-time and embedded (DRE) systems, which have many properties
that are often conflicting (e.g., battery consumption versus memory size), where the
analysis of system properties is often best provided at higher levels of abstraction
[10]. A general metric for determining the effectiveness of a modeling toolsuite
comprises the degree of effort required to make a change to a set of models. In
previous work, we have shown how crosscutting concerns that are distributed across a
model hierarchy can negatively affect the ability to explore design alternatives [9]. A

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [1200 1200] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [1200 1200]>> setpagedevice

296 Jeff Gray et al.

form of alternative exploration involves experimenting with model structures by
scaling up different portions of models and analyzing the result on scalability. This
paper makes a contribution to model scalability and describes an approach that can be
used to enable automated replication1 to assist in rapidly scaling a model.

Scalability of modeling tools is of utmost concern to designers of large-scale DRE
systems. From our personal experience, models can have multiple thousands of coarse
grained components (others have reported similar experience, please see [11]).
Modeling these components using traditional model creation techniques and tools can
approach the limits of the effective capability of humans. The process of modeling a
large DRE system with a domain-specific modeling language (DSML), or a tool like
MatLab, is different than traditional UML modeling. In DRE systems modeling, the
models consist of instances of all objects in the system, which can number into
several thousand instances from a set of types defined in a meta-model (e.g.,
thousands of individual instantiations of a sensor type in a large sensor network
model). The traditional class-based modeling of UML, and supporting tools, are
typically not concerned with the same type of instance level focus.

The issue of scalability affects the performance of the modeling process, as well as
the correctness of the model representation. Consider a base model consisting of a
few modeling elements and their corresponding connections. To scale a base model to
hundreds, or even thousands, of duplicated elements would require a lot of clicking
and typing within the associated modeling tool. Furthermore, the tedious nature of
manually replicating a base model may also be the source of many errors (e.g.,
forgetting to make a connection between two replicated modeling elements). A
manual process to replication significantly hampers the ability to explore design
alternatives within a model (e.g., after scaling a model to 800 modeling elements, it
may be desired to scale back to only 500 elements, and then back up to 700 elements,
in order to understand the impact of system size).

Often, large-scale system models leverage architectures that are already well suited
toward scalability. Likewise, the modeling languages that specify such systems may
embody similar patterns of scalability, and may lend themselves favorably toward a
generative replication process. The contribution of this paper is automatic generation
of large-scale system models from smaller, baseline specification models by applying
basic transformation rules that govern the scaling [2] and replication behavior.

The rest of the paper is organized as follows: Section 2 provides an overview of the
tools used in the paper, followed by an outline of the technical challenges of model
replication in Section 3. Two case studies of model scalability using replicators are
provided in Section 4. The conclusion offers summary remarks and a brief description
of future work.

1 The term “replicator” has specific meaning in object replication of distributed
systems and in database replication. In the context of this paper, the term is used to
refer to the duplication and proper connection of modeling elements to address
scalability concerns.

Replicators: Transformations to Address Model Scalability 297

2. Background: Supporting Technologies and Related Work

The implementation of the scalability approach described in this paper is tied to a
specific set of tools, but we believe the general idea can be applied to many toolsuite
combinations. The modeling tool and model transformation engine used in the work
are overviewed in this section. The purpose of the paper is not to describe these tools
in detail, but an introduction may be needed to understand the subsequent sections of
the paper.

2.1 Model-Integrated Computing

A specific form of model-driven development, called Model-Integrated Computing
(MIC) [17], has been refined at Vanderbilt University over the past decade to assist
the creation and synthesis of computer-based systems. A key application area for MIC
is those domains (such as embedded systems areas typified by automotive and
avionics systems) that tightly integrate the computational structure of a system and its
physical configuration. In such systems, MIC has been shown to be a powerful tool
for providing adaptability in frequently changing environments. The Generic
Modeling Environment (GME2) [12] is a meta-modeling tool based on MIC that can
be configured and adapted from meta-level specifications (called the modeling
paradigm) that describe the domain. An effort to make the GME MOF-compliant is
detailed in [6]. Each meta-model describes a domain-specific modeling language
(DSML). When using the GME, a modeling paradigm is loaded into the tool to define
an environment containing all the modeling elements and valid relationships that can
be constructed in a specific domain. A model compiler can be written and invoked
from within the GME as a plug-in in order to synthesize a model into some other form
(e.g., translation to code or simulation scripts). All of the modeling languages
presented in the paper are developed and hosted within the GME.

2.2 C-SAW: A Model Transformation Engine

The paper advocates automated model transformation to address scalability concerns.
The Constraint-Specification Aspect Weaver (C-SAW3) is the model transformation
engine used in the case studies in Section 4. Originally, C-SAW was designed to
address crosscutting modeling concerns [9], but has evolved into a general model
transformation engine. C-SAW is a GME plug-in and is compatible with any meta-
model; thus, it is domain-independent and can be used with any modeling language
defined within the GME. The Embedded Constraint Language (ECL) is the language
that we developed for C-SAW to specify transformations. The ECL is featured and
briefly explained in Figures 3 and 5.

2 The GME is an open-source meta-programmable tool that is available from the
following website: http://escher.isis.vanderbilt.edu/tools/get_tool?GME
3 The C-SAW plug-in, publications, and video demonstrations are available at the
following website: http://www.cis.uab.edu/gray/Research/C-SAW/

298 Jeff Gray et al.

2.3 Related Work

We are not aware of any other research that has investigated the application of model
transformations to address scalability concerns like those illustrated in this paper.
However, a large number of approaches to model transformation have been proposed
by both academic and industrial researchers (example surveys can be found in [4,
15]). There is no specific reason that GME, ECL and C-SAW need to be used for the
general notion of model replication promoted in this paper; we used this set of tools
simply because they were most familiar to us and we had access to several DSMLs
based on the combination of these tools. Other combinations of toolsuites are likely to
offer similar capabilities.
 There are several approaches to model transformation, such as graphical languages
typified by graph grammars (e.g., GReAT [1] and Fujaba [7]), or a hybrid language
(e.g., the ATLAS Transformation Language [3] and Yet Another Transformation
Language [14]). Graphical transformation languages provide a visual notation to
specify graphical patterns of the source and target models (e.g., a subgraph of a
graph). However, it can be tedious to use purely graphical notations to describe
complicated computation algorithms. As a result, it may require generation to a
separate language to apply and execute the transformations. A hybrid language
transformation combines declarative and imperative constructs inside the
transformation language. Declarative constructs are used typically to specify source
and target patterns as transformation rules (e.g., filtering model elements), and
imperative constructs are used to implement sequences of instructions (e.g.,
assignment, looping and conditional constructs). However, embedding predefined
patterns renders complicated syntax and semantics for a hybrid language.
 With respect to model transformation standardization efforts, C-SAW was under
development two years prior to the initiation of OMG’s Query View Transformation
(QVT) request for proposal. It seems reasonable to expect that the final QVT standard
would be able to describe transformations similar in intent to those presented in this
paper. For the purpose of exploring our research efforts, we have decided to continue
our progress on developing C-SAW and later re-evaluate the merits of merging
toward a standard.

3. Alternative Approaches to Model Replication

This section provides a discussion of key characteristics of a model replication
technique. An overview of existing replication approaches is presented and a
comparison of each approach is made with respect to the desired characteristics. The
section offers an initial justification of the benefits of a model transformation engine
to support scalability of models through replicating transformations.

3.1 Key Characteristics for a Replication Approach

An approach that supports model scalability through replication should have the
following desirable characteristics: 1) retains the benefits of modeling, 2) general

Replicators: Transformations to Address Model Scalability 299

across multiple modeling languages, and 3) flexible to support user extensions. Each
of these characteristics (C1 through C3) is discussed further in this subsection.

C1. Retains the benefits of modeling: As stated in Section 1, the power of
modeling comes from the ability to perform analysis (e.g., model checking
and verification of system properties) in a way that would otherwise be
difficult at the implementation level. A second advantage is the opportunity
to explore various design alternatives. A model replication technique should
not remove these benefits. That is, the replication mechanism and tool
support should not perform scalability in such a way that analysis and design
exploration is not possible. This seems to be an obvious characteristic to
desire, but we have observed replication approaches that void these
fundamental benefits of modeling.

C2. General across multiple modeling languages: A replication technique
that is generally applicable across multiple modeling languages can leverage
the effort expended in creating the underlying transformation mechanism. A
side benefit of such generality is that a class of users can become familiar
with a common replicator technique that can be applied to many modeling
languages they use.

C3. Flexible to support user extensions: Further reuse can be realized if the
replicator supports multiple types of scalability concerns in a templatized
fashion (e.g., the name, type, and size of the elements to be scaled are
parameters to the replicator). The most flexible type of replication would
allow alteration of the semantics of the replication more directly using a
notation or language that can be manipulated by an end-user. In contrast,
replicator techniques that are hard-coded and unable to be extended restrict
the impact for reuse, thus limiting the value of the time spent on creating the
replicator.

The next subsection will compare existing replicator approaches to these
characteristics.

3.2 Existing Approaches to Support Model Replication

From our past experience in applying MIC to DRE modeling, the following categories
of techniques represent alternative approaches to support replicators: 1) an
intermediate phase of replication within a model compiler, 2) domain-specific model
compiler for a particular modeling language, and 3) specification of a replicator using
a model transformation engine. Each of these approaches is discussed in this
subsection and compared to the desiderata mentioned in Section 3.1.

A1. Intermediate stage of model compilation: As a model compiler
performs its translation, it typically traverses a parse tree (containing an
internal representation of the model) through data structures and APIs
provided by the host modeling tool. Several model compilers can be con-

300 Jeff Gray et al.

Fig. 1. Alternative Approaches for Scaling Models

constructed that generate different artifacts from the same model. One of our
earlier ideas for scaling large models considered performing the replication as
an intermediate stage of the model compiler. Prior to the generation phase of
the compilation, the parse tree can be converted to an intermediate
representation that can be expanded to address the desired scalability. This
idea is represented in the left-hand side of Figure 1.

This is the least satisfying solution to replication and violates all three of the
desired characteristics enumerated in Section 3.1. The most egregious
violation is that the approach destroys the benefits of modeling. Because the
replication is performed as a pre-processing phase in the model compiler, the
replicated structures are never rendered back into the modeling tool itself.
Thus, analysis and design alternatives are not made available to the end-user
for further consideration. Furthermore, the pre-processing rules are hard-
coded into the model compiler and offer little opportunity for reuse across
other modeling languages. In general, this is the least flexible of all
approaches that we considered.

A2. Domain-specific model compiler to support replication: A model
compiler is not only capable of synthesizing to an external artifact, but is also
able to alter the current model structure through API calls. Another approach
to model scalability is to construct a model compiler that is capable of
replicating the models as they appear in the host modeling tool. Such a model
compiler has detailed knowledge of the specific modeling language, as well
as the particular scalability concern. Unlike approach A1, this technique
preserves the benefits of modeling because the end result of the replication
provides visualization of the scaling, and the replicated models can be further
analyzed and refined.

This approach has a few drawbacks as well. Because the replication rules are
domain-specific and hard-coded into the model compiler, the developed
replicator has limited use outside of the intended modeling language.
Although generality across modeling languages is lost, some replicators

Replicators: Transformations to Address Model Scalability 301

based on this approach may have means to parameterize certain parts of the
replication process (e.g., the replicator may request the size to scale, or the
name of specific elements that are to be scaled).

A3. Replication with a model transformation specification: A special type
of model compiler within the GME is a plug-in that can be applied to any
meta-model (i.e., it is domain-independent). The C-SAW model
transformation engine (see Section 2.2) is an example of a plug-in that can be
applied to any modeling language. C-SAW executes as an interpreter and
renders all transformations (as specified in the ECL) back into the host
modeling tool. The ECL can be altered very rapidly to analyze the affect of
different degrees of scalability (e.g., the affect on performance when the
model is scaled from 256 to 512 nodes).

This third approach to replication advocates the use of a model transformation engine
like C-SAW to perform the replication (please see the right-hand side of Figure 1 for
an overview of the technique). This technique satisfies all of the desirable
characteristics of a replicator: by definition, the C-SAW tool is applicable across
many different modeling languages, and the replication strategy is specified in a way
that can be easily modified, as opposed to a hard-coded rule in the approaches
described in A1 and A2. With a model transformation engine, a code generator is still
required for each domain (see “Artifact Generator” in the right-hand side of Figure 1),
but the scalability issue is addressed independently of the modeling language. Our
most recent efforts have explored technique A3 on several existing modeling
languages as described in the next section.

4. Case Studies in Scalability with Model Replicators

In this section, the concept of model replicators is demonstrated on two separate
example modeling languages that were created in GME for different domains. In each
subsection, the DSML is briefly introduced, including a discussion of the scalability
issues and how ECL model transformations solve the scalability problem. The
DSMLs chosen are:

• System Integration Modeling Language, which has been used to model
hardware configurations consisting of up to 5,000 processing nodes for high-
energy physics applications at Fermi National Accelerator Lab.

• Event QoS Aspect Language, which has been used to configure a large
collection of federated event channels for mission computing avionics
applications.

In addition to the above cases studies, our initial exploration into scalability of models
was performed for a different modeling language representing unmanned air vehicles
to address various quality of service concerns related to transmitted video (e.g.,
bandwidth and frame size adjustment). Space limitations prohibit further discussion of
this third example.

302 Jeff Gray et al.

4.1 Scaling the System Integration Modeling Language

Fig. 2. Visual Example of SIML Scalability

The System Integration Modeling Language (SIML) is a language developed to
specify configurations of large-scale fault tolerant data processing systems [16].
Features of SIML include hierarchical component decomposition and dataflow
modeling with point-to-point and publish-subscribe communication between
components. There are several rules defined by the SIML meta-model:

• A system model may be composed of several independent regions
• Each region model may be composed of several independent local process

groups
• Each local process group model may include several primitive application

models
• Each system, region, and local process group must have a representative

manager that is responsible for mitigating failures in its area

The local process group is the set of processes that run the set of critical applications
to perform the system’s overall function. In a data processing network, the local
process group would include the algorithmic tasks to perform as well as the data
processing and transport tasks. A region is simply a collection of local process
groups, and a system is defined as a collection of regions and possibly other
supporting processes. As the SIML language itself is used to describe configurations
of highly scalable architectures, it embodies some patterns of scalability as a by-
product of the domain for which it was created. These patterns include the one-to-
many relationship between system and regional managers, and also a one-to-many

Replicators: Transformations to Address Model Scalability 303

relationship between regional and local process group managers. These relationships
are well defined. Because this relationship can be captured, it should be feasible to
perform automatic generation of additional local process groups and/or regions to
create larger and more elaborate system models.
 Scaling up a system configuration using SIML can involve: 1) an increase in the
number of regions, 2) an increase in the number of local process groups per region, or
3) both 1 and 2. The left-hand side of Figure 2 shows a simple SIML base model that
captures a system composed of one region and one local node in that region (shown as
an expansion of the parent region), utilizing a total of 15 physical modeling elements
(several elements are dedicated to supporting applications not included in any region).
Consider this example when the system is increased to 9 regions with 6 local process
groups per region. Such replication involves the following:

• Replication of the local process group models
• Replication of entire region models and their contents
• Generation of communication connections between regional managers and

newly created local managers
• Generation of additional communication connections between the system

manager and new regional manager processes

The scaled model is shown in the right-hand side of Figure 2. This example scales to
just 9 regions and 6 nodes per region simply because of the printed space to visualize
the figure. In practice, SIML models have been scaled to 32- and 64-node models.
However, the initial scaling in these cases was performed manually. The ultimate goal
of the manual process was to scale to 2500 nodes. After 64 nodes, it was determined
that scaling to further nodes would be too tedious to perform without proper
automation through improved tool support. Even with just a small expansion, the
manual application of the same process would require an extraordinary amount of
manual effort (much mouse-clicking and typing) to bring about the requisite changes,
and increase the potential for introducing error into the model (e.g., forgetting to add a
required connection). If the design needs to be scaled forward or backward, a manual
approach would require additional effort that would make the exploration of design
alternatives impractical.

ECL Transformation to Scale SIML: The scalability illustrated in Figure 2 can be
performed with a model transformation, as illustrated by the ECL specification shown
in Figure 3. As a point of support for the effectiveness of replicators as
transformations, this ECL specification was written in less than an hour by a user who
was very familiar with ECL, but had studied the SIML meta-model for less than a few
hours.

The ECL transformation specification is composed of an aspect and several
strategies. An aspect serves as the starting point of a transformation, and a strategy is
used to specify the computation entities to perform a particular transformations task.
In Figure 3, the aspect “Start” (Line 1) invokes two strategies, “scaleUpNode”
and “scaleUpRegion” in order to replicate the local process group node
(“L2L3Node”) within the region model, and the region itself. The strategy
“scaleUpNode” (Line 7) discovers the “Region” model, sets up the context for

304 Jeff Gray et al.

the transformation, and calls the strategy “addNode” (Line 12) that will recursively
increase the number of nodes based on the given name “L2L3Node.” The new node
instance is created on Line 18, which is followed by the construction of the
communication connections between ports, regional managers and the newly created
nodes (Line 21 to Line 23). Some other connections are omitted here for the sake of
brevity. Two other strategies “scaleUpRegion” (Line 29) and “addRegion”
(Line 34) follow the similar mechanism as above.

1 aspect Start()

2 {

3 scaleUpNode("L2L3Node", 5); //add 5 L2L3Nodes in the Region

4 scaleUpRegion("Region", 8); //add 8 Regions in the System

5 }

6

7 strategy scaleUpNode(node_name : string; max : integer)

8 {

9 rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);

10 }

11

12 strategy addNode(node_name, max, idx : integer) //recursively add nodes

13 {

14 declare node, new_node, input_port, node_input_port : object;

15

16 if (idx<=max) then

17 node := rootFolder().findFolder("System").findModel(node_name);

18 new_node := addInstance("Component", node_name, node);

19

20 //add connections to the new node; three similar connections are omitted here

21 input_port := findAtom("fromITCH");

22 node_input_port := new_node.findAtom("fromITCH");

23 addConnection("Interaction", input_port, node_input_port);

24

25 addNode(node_name, max, idx+1);

26 endif;

27 }

28

29 strategy scaleUpRegion(reg_name : string; max : integer)

30 {

31 rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

32 }

33

34 strategy addRegion(region_name, max, idx : integer) //recursively add regions

35 {

36 declare region, new_region, out_port, region_in_port, router, new_router : object;

37

38 if (idx<=max) then

39 region := rootFolder().findFolder("System").findModel(region_name);

40 new_region := addInstance("Component", region_name, region);

41

42 //add connections to the new region; four similar connections are omitted here

43 out_port := findModel("TheSource").findAtom("eventData");

44 region_in_port := new_region.findAtom("fromITCH");

45 addConnection("Interaction", out_port, region_in_port);

46

47 //add a new router and connect it to the new region

48 router := findAtom("Router");

49 new_router := copyAtom(router, "Router");

50 addConnection("Router2Component", new_router, new_region);

51

52 addRegion(region_name, max, idx+1);

53 endif;

54 }
Fig. 3. ECL Model Transformation to Perform Replication Shown in Figure 2

Replicators: Transformations to Address Model Scalability 305

Flexibility of the replicator can be achieved in several ways. Lines 3 and 4 specify
the magnitude of the scaling operation, as well as the names of the specific nodes and
regions that are to be replicated. In addition to these parametric changes that can be
made easily, the semantics of the replication can be changed because the
transformation specified can be modified directly. This is not the case in approaches
A1 and A2 from Section 3.2 because the replication semantics are hard-coded into the
model compiler.

4.2 Scaling the Event QoS Aspect Language

Fig. 4. Illustration of Replication in EQAL

The Event QoS Aspect Language (EQAL) [5] is a DSML for graphically specifying
publisher-subscriber service configurations for large-scale DRE systems. Publisher-
subscriber mechanisms, such as event-based communication models, are particularly
relevant for large-scale DRE systems (e.g., avionics mission computing, distributed
audio/video processing, and distributed interactive simulations) because they help
reduce software dependencies and enhance system composability and evolution. In
particular, the publisher-subscriber architecture of event-based communication allows
application components to communicate anonymously and asynchronously. The
publisher-subscriber communication model defines three software roles:

• Publishers generate events to be transmitted
• Subscribers receive events via hook operations
• Event channels accept events from publishers and deliver events to

subscribers

306 Jeff Gray et al.

The EQAL modeling environment consists of a GME meta-model that defines the
concepts of publisher-subscriber systems, in addition to several model compilers that
synthesize middleware configuration files from models. The EQAL model compilers
automatically generate publisher-subscriber service configuration files and component
property description files needed by the underlying middleware.

The EQAL meta-model defines a modeling paradigm for publisher-subscriber
service configuration models, which specify quality of service (QoS) configurations,
parameters, and constraints. For example, the EQAL meta-model contains a distinct
set of modeling constructs for building a federation of real-time event services
supported by the Component-Integrated ACE ORB (CIAO) [8], which is a component
middleware platform targeted by EQAL. A federated event service allows sharing of
filtering information to minimize or eliminate the transmission of unwanted events to
a remote entity. Moreover, a federated event service allows events that are being
communicated in one channel to be made available on another channel. The channels
typically communicate through CORBA Gateways, UDP, or IP Multicast. Figure 4
illustrates the modeling concepts provided by EQAL including CORBA Gateways
and other entities of the publish-subscribe paradigm (e.g., event consumers, event
suppliers, and event channels) to model a federation of event channels in different
sites.

1 //traverse the original sites to add CORBA_Gateways

2 //n is the number of the original sites

3 //m is the total number of sites after scaling

4 strategy traverseSites(n, i, m, j : integer)

5 {

6 declare id_str : string;

7 if (i <= n) then

8 id_str := intToString(i);

9 rootFolder().findModel("NewGateway_Federation").findModel("Site " + id_str)

10 .addGateWay_r(m, j);

11 traverseSites(n, i+1, m, j);

12 endif;

13 }

14

15 //recursively add CORBA_Gateways to each existing site

16 strategy addGateWay_r(m, j: integer)

17 {

18 if (j<=m) then

19 addGateWay(j);

20 addGateWay_r(m, j+1);

21 endif;

22 }

23

24 //add one CORBA_Gateway and connect it to Event_Channel

25 strategy addGateWay(j: integer)

26 {

27 declare id_str : string; declare ec, site_gw : object;

28 id_str := intToString(j);

29 addAtom("CORBA_Gateway", "CORBA_Gateway" + id_str); //create one CORBA_Gateway

30 ec := findModel("Event_Channel"); site_gw := findAtom("CORBA_Gateway" + id_str);

31 addConnection("LocalGateway_EC", site_gw, ec);

32 }
Fig. 5. ECL Fragment to Perform the First Step of Replication in EQAL

The scalability issues in EQAL arise when a small federation of event services must

be scaled to a very large system, which usually accommodates a large number of
publishers and subscribers. It is conceivable that EQAL modeling features, such as
the event channel, the associated QoS attributes, connections and event correlations

Replicators: Transformations to Address Model Scalability 307

must be applied repeatedly to build a large scale federation of event services. Figure 4
shows a federated event service with 3 sites, which is then scaled up to federated
event services with 8 sites. This scaling process includes three steps:

• Add 5 CORBA_Gateways to each original site
• Repeatedly replicate one site instance to add 5 more extra sites, each with 5

CORBA_Gateways
• Create the connections between all of the 8 sites

The above process can be automated with an ECL transformation that is applied to
a base model with C-SAW. Figure 5 shows a fragment of the ECL specification for
the first step, which adds more Gateways to the original sites. The other steps would
follow similarly using ECL. The size of the replication in this example was kept to 5
sites so that the visualization could be rendered appropriately in Figure 4. The
approach could be extended to scale to hundreds or thousands of sites and gateways.

5. Conclusion

This paper has demonstrated the effectiveness of using a general model
transformation engine to specify replicators that assist in scaling models. Among the
approaches to model scalability, a model transformation engine offers several
benefits, such as domain-independence and improvements to productivity (when
compared to either the corresponding manual effort, or the effort required to write
plug-ins that are specific to a domain and scalability issue). The case studies
presented in this paper highlight the ease of specification and the general flexibility
provided across domains.
 Transformation specifications, such as those used to specify the replicators in this
paper, are written by humans and prone to error. To improve the robustness and
reliability of model transformation, there is a need for testing and debugging support
to assist in finding and correcting the errors in transformation specifications. Ongoing
and future work on ECL focuses on the construction of testing and debugging utilities
within C-SAW to ensure the correctness of the ECL transformation specifications
[13].

6. Acknowledgments

This project was supported by the DARPA Program Composition for Embedded
Systems (PCES) program and the National Science Foundation under CSR-SMA-
0509342.

308 Jeff Gray et al.

References

1. Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End Domain-Driven
Software Development Framework,” Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) – Domain-driven Track, Anaheim, CA, October 2003, pp. 8-
15.

2. Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer, “Scaling Step-Wise
Refinement,” IEEE Transactions on Software Engineering, June 2004, pp. 355-371.

3. Jean Bézivin, F. Jouault, and P. Valduriez, “On the Need for MegaModels,” OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver, BC,
October 2004.

4. Krzysztof Czarnecki, and Simon Helsen, “Classification of Model Transformation
Approaches,” OOPSLA Workshop on Generative Techniques in the Context of Model-
Driven Architecture, Anaheim, CA, October 2003.

5. George Edwards, Gan Deng, Douglas Schmidt, Aniruddha S. Gokhale, Bala Natarajan,
“Model-Driven Configuration and Deployment of Component Middleware
Publish/Subscribe Services,” Generative Programming and Component Engineering
(GPCE), Vancouver, BC, October 2004, pp. 337-360.

6. Matthew Emerson, Janos Sztipanovits, and Ted Bapty, “A MOF-Based Meta-modeling
Environment,” Journal of Universal Computer Science, October 2004, pp. 1357--1382.

7. The FUJABA Toolsuite, http://www.fujaba.com
8. Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor

Wang, “Model-Driven Middleware,” in Middleware for Communications, (Qusay
Mahmoud, editor), John Wiley and Sons, 2004.

9. Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling Crosscutting
Constraints in Domain-Specific Modeling,” Communications of the ACM, Oct. 2001, pp.
87-93.

10. John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, Venkatesh Prasad Ranganath,
“Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” International Conference on Software Engineering, Portland,
OR, May 2003, pp. 160-173.

11. Sven Johann and Alexander Egyed, “Instant and Incremental Transformation of Models,”
Automated Software Engineering, Linz, Austria, September 2004, pp. 362-365.

12. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

13. Yuehua Lin, Jing Zhang, and Jeff Gray, “A Framework for Testing Model
Transformations,” Model-Driven Software Development, Springer, 2005.

14. Octavian Patrascoiu, “Mapping EDOC to Web Services using YATL,” 8th International
IEEE EDOC Conference, Monterey, CA, September 2004, pp. 286-297.

15. Shane Sendall and Wojtek Kozaczynski, “Model Transformation – the Heart and Soul of
Model-Driven Software Development,” IEEE Software, Special Issue on Model Driven
Software Development, September/October 2003 (Vol. 20, No. 5). pp. 42-45.

16. Shweta Shetty, Steve Nordstrom, Shikha Ahuja, Di Yao, Ted Bapty, and Sandeep Neema,
“Systems Integration of Large Scale Autonomic Systems using Multiple Domain Specific
Modeling Languages,” Engineering of Autonomic Systems, Greenbelt, MD, April 2005.

17. Janos Sztipanovits and Gábor Karsai, “Model-Integrated Computing,” IEEE Computer,
April 1997, pp. 10-12.

http://www.fujaba.com/

