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1 INTRODUCTION 

In poorly modularized software, numerous concerns are 
often tangled within the boundary of a single module, 
which leads to cohesion problems. In other cases, a single 
concern may be scattered across several different modules, 
which introduces strong coupling among modules. The 
occurrence of tangling and scattering offers challenging 
maintenance problems when a software system needs to 
evolve to address changing requirements. Throughout 
programming language history, new language constructs 
have been offered to address the issues of scattering and 
tangling. For example, the hierarchical decomposition 
provided by object-orientation assists in localizing common 
behaviour in superclasses, such that the same behaviour is 
not repeated in multiple places in subclasses. 

Although scattering and tangling have been an important 
focus of software engineering and language design for 
decades, a new type of concern has emerged, which is 
crosscutting in nature. Crosscutting represents a 
relationship property between two concerns such that 
traditional hierarchical composition is not capable of 
modularizing each concern in a separate unit. Aspect-
Oriented Software Development (AOSD) (Filman et al., 
2004) offers a powerful technology for supporting the 
separation of such concerns, whereby the crosscutting is 
explicitly specified as an aspect. 

For legacy software to benefit from AOSD, it is necessary 
to analyze the existing implementation to discover the 
crosscutting concerns and refactor them into aspects. Aspect 
mining refers to the identification and analyses of non-
localized crosscutting concerns throughout an existing 
legacy software system (Bruntink et al., 2005). The ultimate 
goal of aspect mining is to support aspect-oriented 
refactoring to improve software comprehensibility, 
reusability and maintainability. 

1.1 Key challenges of aspect mining 

The challenges of aspect mining are focused along three 
separate phases: 
 

• Aspect Identification: This phase is concerned with 
an analysis task that leads to identification of a 
suggested set of candidate aspects. This phase may 
require user interaction to provide initial seed 
information, or to assist in sifting through false 
positive noise (i.e., suggested aspects that are not 
really representative of a crosscutting concern). 

• Aspect Extraction: After a set of candidate aspects 
has been identified, the crosscutting concern must be 
extracted from the existing representation (i.e., all of 
the locations in the legacy software where the aspect 
appears must be removed). 

• Aspect Refactoring: After extracting the crosscutting 
concerns from the base representation, an equivalent 
aspect must be codified in an aspect language in order 
to preserve the initial functionality. The result is 

improved modularization (as captured in the new 
aspect), with no change in functional behaviour. 

 
With respect to these three phases of aspect mining, there 

appear to be no reports in the research literature on 
individual tools that perform all three of the above 
challenges successfully. Most aspect mining research tools 
are focused on one phase of aspect mining, with the 
majority of work (as summarized in Section 6) focused on 
the aspect identification phase. Regarding extraction and 
refactoring, a technique that uses program slicing to 
perform these two phases has been presented by Ettinger 
and Verbaere ( Ettinger and Verbaere, 2004). 

1.2 Aspect mining earlier in the lifecycle 

Much of the current research on aspect mining focuses 
solely on the implementation as applied to source code. 
However, an aspect-oriented approach can be beneficial at 
various levels of abstraction and at different stages of the 
software lifecycle. For instance, aspect-oriented analysis 
and design (Clarke and Baniassad, 2005) is a new 
development approach that unites AOSD with requirements 
and design models. Likewise, the concepts of feature-
oriented programming are also being applied to design 
models (Batory, 2006). Research in Aspect-Oriented 
Modeling (AOM Workshop) has the potential to help define 
common characteristics (which are encapsulated within 
aspects) from a perspective that is at a more abstract level. 
For existing models to benefit from AOSD, it is 
indispensable to perform reengineering techniques, such as 
aspect mining, at many different stages throughout the 
development lifecycle. 

This paper presents our investigation into raising the 
benefits of aspect mining to a higher level of abstraction 
through application of aspect mining algorithms to domain-
specific models. Specifically, the paper describes our 
approach to the aspect identification problem as applied to 
models, rather than source code. A key contribution of the 
approach is a capability to identify crosscutting concerns 
early in development, which assists in modularizing a 
design through aspects before proceeding to 
implementation. Furthermore, our experience in performing 
both manual and automated aspect mining suggests that 
aspects are easier to identify at the modeling level because 
the accidental complexities of implementation concerns are 
absent in the corresponding modeling abstractions.  

The remainder of this paper is structured as follows. 
Section 2 introduces the basic idea of domain-specific 
modeling and describes how aspects emerge in such 
models. This section also initiates the motivation of 
applying an aspect identification technique at the modeling 
level. Sections 3 and 4 propose two different approaches for 
aspect identification, i.e., pattern matching and clone 
detection. Section 5 offers a case study using clone 
detection to identify crosscutting concerns in a modeling 
language for embedded systems. The last two sections 
discuss the related work, conclusions and future work. 
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2 ASPECTS IN DOMAIN-SPECIFIC MODELING 

Model-Driven Engineering (MDE) (Schmidt, 2006) is an 
emerging paradigm supporting the development of 
computer-based systems. The principles of MDE have been 
applied successfully in many domains, but have exhibited 
specific contributions in the domain of embedded control 
software, such as avionics and automotive control systems 
(Lédeczi et al., 2003). An important characteristic of MDE 
is the use of Domain-Specific Modeling (DSM) techniques 
by which software products are derived from models that 
directly relate to the problem domain (Gray et al., 2006b). 
Meta-configurable domain-specific modeling environments 
provide support for customization of modeling tools that 
enable domain experts to construct models in notations that 
are familiar to them. Such tools also offer the capability to 
generate, or synthesize various artifacts from models. The 
ability to describe properties of a system at a higher level of 
abstraction, and in a technology-independent notation, can 
protect intellectual assets from technology obsolescence. 

The Generic Modeling Environment (GME) (Karsai et al., 
2004) is a metamodeling environment that can be 
configured and adapted from meta-level specifications that 
describe a domain. The GME supports a set of generic 
modeling concepts to represent entities, relationships and 
attributes. An atom is the most basic type of entity that 
cannot have any internal structures. A model is another type 
of entity that can contain any other modeling types. A 
connection represents the relationship between two entities. 
Attributes are used to record state information and are 
bound to atoms, models, and connections. 

In our previous work (Gray et al., 2001), we made the 
observation that crosscutting concerns emerge in domain-
specific models, as shown in Figure 1. It is often the case 
that the metamodel forces a specific type of decomposition, 
such that the same concern is repeatedly applied in many 
places, usually with slight variations at different nodes in 
the model. Abstractly, Figure 1 shows four different 
concerns that are spread about a model hierarchy. Examples 
of crosscutting modeling aspects include constraints (Gray 
et al., 2001), concurrency and state management (Gray et 
al., 2004), and pre/post conditions (Gray et al., 2006a).  

The crosscutting concerns scattered across the models 
lead to several impediments to system comprehension and 
maintenance: 

 
• Discovering or understanding a specific concern 

representation that is spread over the model hierarchy 
is difficult, because the concern is not localized in one 
single module. This limits the ability to reason 
analytically about such a concern. 

• Changing a concern requirement is also difficult and 
time-consuming, because the model engineers must 
go into each relevant model and modify the specific 
elements one by one. This requires much typing and 
mouse clicking, which affects productivity and 
correctness (Gray et al., 2006a). 

 

Manual inspection of models to discover potential aspects 
is a laborious task. Performing automated aspect mining to 
existing non-aspectized models can offer insight into the 
identification of emergent aspects. Aspect mining from a 
modeling perspective allows the designer to locate the 
places in a model that must be changed when a particular 
concern needs to be modified. The identification of aspects 
earlier in the software lifecycle allows crosscutting 
concerns to be managed and understood before details of 
the implementation are planned. 

This paper describes the first investigation (with 
corresponding tool support) into aspect identification at the 
modeling level. The next two sections discuss different 
approaches that we have investigated to realize aspect 
identification on models. 

3   PATTERN MATCHING FOR ASPECT MODEL MINING 

The pattern matching process is conducted by a human 
designer who suspects the existence of aspects in a model. 
The designer has to comprehend the domain information 
contained in a model and provide a “seed” pattern to 
indicate properties of potential aspects. Such a seed serves 
as the starting point for discovering all matched concerns. 
There are two different representations of the seed for 
aspect mining of models through pattern matching. One 
representation is based on textual expressions, and another 
kind of seed is described by graphical models. 

3.1 Textual-based pattern matching 

In our past work (Sudarsan and Gray, 2006), we used XPath 
expressions as the pattern description to search for 
properties within domain-specific models. The underlying 
model search engine parses the XPath expression and 
traverses the internal representation of a model to compare 
the user-defined pattern with every model entity. This 
modeling search technique can be adapted to perform 
aspect mining. Although this technique is easily 
implemented and provides lightweight search power for 

Figure 1 Crosscutting concerns throughout 
a model hierarchy 
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simple textual pattern expressions, it lacks the capability to 
specify complex patterns intuitively and efficiently (e.g., a 
collection of sub-models that involve heterogeneous model 
elements and sinuous relationships among them). 

3.2 Graphical-based pattern matching 

Another approach to identify crosscutting modeling 
concerns is to represent a pattern in a graphical notation. As 
an example of this type of pattern matching, GReAT 
(Agrawal et al., 2003) defines a graph pattern specification 
language to express complicated patterns with a fixed and 
variable cardinality. This graph notation complements the 
shortcomings of textual pattern expression and supports 
complex and dynamic pattern matching. We did not explore 
graphical-based pattern matching in our investigation. 

4 CLONE DETECTION FOR ASPECT MODEL MINING 

Pattern matching techniques assist users in efficiently 
locating predefined crosscutting concerns. However, users 
of pattern matching are required to have a considerable 
amount of knowledge about the domain and overall model 
structure (e.g., users must input a particular format of the 
seed so that the aspect mining process can be automated 
partially). Moreover, pattern matching cannot explore 
unknown classes of crosscutting concerns (i.e., those for 
which no seed is known) and will often result in missing 
some desirable aspects. In order to overcome the 
deficiencies of pattern matching, we developed a clone 
detection technique for aspect mining applied to models. 

Various clone detection techniques (as summarized in 
Section 6) have been investigated to detect duplicated 
source code. The intention of applying clone detection for 
aspect mining is to reveal the unknown crosscutting 
concerns through full automation of the aspect mining 
process. In terms of modeling, clone detection identifies the 
similar (clone) model fragments throughout the model 
hierarchy. The similarity of elements of sub-models is 
determined based on one of the three levels of similarity 
among metamodeling concepts. 

In the context of metamodeling, an atomic modeling 
element (e.g., an atom in GME) is defined by a combination 
of its type, name, and set of attributes. Correspondingly, a 
model consists of a set of elements, including atoms, sub-
models or connections. Three levels of similarity are 
defined based on the type, name, and attribute of the model 
elements (see Table 1): 

 
• Level 1 indicates the most liberal policy (i.e., two 

atoms are considered clones as long as they have the 
same type; two models are clones if they own the 
same type and all of their elements are 
correspondingly Level 1 clones). 

• Level 2 represents a moderate clone detection 
philosophy, which is based on type and name 
similarity (e.g., two connections are considered 

clones if their source and targets are Level 2 clones, 
in addition to each connection having the same type 
and name). 

• Level 3 defines the most stringent rule (i.e., two 
models are considered clones only when they hold 
the same type, name, and attribute set; furthermore, 
all of their elements should be correspondingly 
recognized as Level 3 clones.) 

 
Table 1 Three levels of similarity 

 

 
Atom Model Connection 

Level 1 • Type • Type 
• Elements 

• Type 
• Source 
• Target 

Level 2 • Type  
• Name 

• Type 
• Name 
• Elements 

• Type 
• Name 
• Source 
• Target 

Level 3 
• Type 
• Name 
• Attributes 

• Type 
• Name 
• Attributes 
• Elements 

• Type 
• Name 
• Attributes 
• Source 
• Target 

 

Based on the above levels of similarity, the four steps of the 
clone detection algorithm for models are presented below. 
 
Step 1. Metamodel preprocessing 

We perform an initial step of evaluating the metamodel in 
an effort to reduce the number of model instance 
comparisons that will be needed in the latter steps. This 
involves the partitioning of the metamodel entities into 
different groups that need to be compared. Each group 
includes a set of the type pairs, such as: 
 

{Type-model} : {Type-element} 
 
where {Type-model} is a collection of types whose 
model instances comprise some common elements, and 
{Type-element} is the collection of model elements 
that {Type-model} share. Because {Type-element} 
is contained by more than one model, it has the potential to 
become one of the selected crosscutting concerns.  

In Figure 2, the type “ModelA” and “ModelB” share the 
element “AtomAB”. “ModelB” and “ModelC” both 
contain “AtomBC”. In this case, the partition of the 
illustrated fragment of the metamodel would be: 
 

{ModelA, ModelB} : {AtomAB} 
 {ModelB, ModelC} : {AtomBC} 

 
The preprocessing of the metamodel partition will 

facilitate the desired steps of the algorithm, because only 
those models that have the same type or fall into the same 
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group will be compared. Furthermore, only the shared 
elements of the two models should be compared. For 
example, imagine that there is one instance of “ModelA” 
and one instance of “ModelB”. In such a case, we only 
need to consider whether their shared atoms (instances of 
“AtomAB”) are clones. Any other irrelevant elements will 
not be considered 
 

Step 2. Model fragments comparison 

The second step of clone detection in models determines if 
the elements of a sub-model pair are clones by comparison. 
From the root of the model hierarchy, each sub-model is 
compared with the other sub-models that either have the 
same type or fall into the same group in step 1. As an 
example, suppose a comparison is to be made between sub-
model instance X and sub-model instance Y: 
 

• If X and Y are of the same type, every element inside 
should be compared correspondingly. The comparison 
is based on the choice of the level of similarity as 
defined in Table 1. Each time, the atoms are compared 
first, then the models, followed by the connections.  

• If X and Y are in the same group, only their shared 
elements need to be compared.  

• If X and Y do not have the same type, and do not fall 
into the same group, it means that they cannot have an 
intersection; thus, further comparison is not necessary. 

 
Step 3. Maximally similar model fragments grouping 

For all of the clone elements that sub-model instance X and 
Y share, we group them together as a common property 
named P. P is considered as the maximally similar model 
fragments of X and Y. If P is not null, the next task is to 
find out whether P is already stored in the list of maximally 
similar fragments. An efficient way to search for 
commonalities on a list is to construct a hash function 
h(P), which computes the number of a bucket (hash value) 

based on P (Baxter et al., 1998). The hash function will 
always return the same bucket number given the same P. If 
P is not in the bucket h(P), then X, Y, and P will be added 
to this bucket. If P is already in such a bucket, only X or Y 
will be added into the collection of the sub-models that 
share the same property P. 
 
Step 4. Aspect filtering 

The maximally similar model fragments generated from the 
above steps (i.e., the initial result of the clones) may contain 
too much noise and need to be refined further (i.e., many 
false positives could be suggested, which can be removed 
on further analysis). For instance, based on our 
experimentation we found that if one model entity in a 
maximally similar model fragment group has a connection 
(in or out) that does not fall into the same group, then this 
model entity is seldom considered as an aspect and can be 
filtered out. 

5 ASPECT MINING IN EMBEDDED SYSTEM MODELS 

This section presents a case study that applies clone 
detection for aspect mining on the Embedded Systems 
Modeling Language (ESML) (Neema et al., 2005), which is 
a domain-specific graphical language for modeling real-
time mission computing embedded avionics applications. 
The ESML has been defined within the GME and used on 
several DARPA funded research projects to provide the 
following modeling categories that allow representation of 
an embedded system: a) Components, b) Component 
Interactions, and c) Component Configurations. The 
primary use of the ESML is to model Boeing’s Bold Stroke, 
which is a product-line architecture for a variety of military 
aircraft written in several million lines of C++ (Sharp, 
2000). There are over 20 representative ESML models for 
all of the Bold Stroke usage scenarios that exist. For each 
specific scenario within Bold Stroke, the components and 
their interactions are specified as ESML models. 

In our previous work (Gray et al., 2004), we manually 
performed aspect mining on ESML models based on our 
own domain experience. The manual approach was a 
tedious process that identified crosscutting concerns such as 
concurrency and state management. We manually extracted 
these concerns from the ESML one by one in order to 
demonstrate aspect weaving at the modeling level, which 
led to the concept of model-driven program transformation. 
Much time was spent in understanding the ESML model 
ontology to support the manual process of searching the 
model for crosscutting concerns. In this section, we show 
how an automated approach to aspect identification assists 
in discovering some of the aspects that were previously 
identified manually. 

Figure 2 A metamodel fragment 
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In general, an ESML model has a tree-like hierarchical 
structure. Figure 3 partially illustrates the internal 
representation of an ESML model named 
“InteractionModel”. The model on the first layer is 
the root of “InteractionModel”, which specifies a 
particular scenario that involves certain configurations of 
various sub-models. These sub-models belong to the second 
layer. In this figure, only three component sub-models are 
depicted on the second layer (e.g., 
“BM_UserInputComponentImpl”, “BM_OpenED-
ComponentImpl”, and “BM_DeviceComponent-
Impl”. Several models and atoms representing the 
containment of the second layer models are depicted 
separately on the third layer (e.g., 
“BM_OpenFunctionalFacetInterface” represents 
an interface for the component “BM_UserInput-
ComponentImpl”). The fourth layer is the last layer 
shown in Figure 3 (e.g., the “SetData1” atom denotes a 
method object that is contained by the corresponding 

component interface model “BM_OpenFunctional-
FacetInterface” and “BM_OpenFunctional-
Facet”). A solid line between any two layers represents 
containment, and a dotted line with an arrow represents 
connections that may occur on the same layer or across 
layers. 

In the case where users have no knowledge of the system 
(or, they have some knowledge, but not enough to express 
textual or graphical patterns), the clone detection technique 
for aspect mining may be applied to suggest possible 
aspects within an ESML model. The level of similarity is 
set to Level 2 (i.e., only compare the type and the name, 
without considering the attributes) for this particular case 
study. After applying the algorithm, the maximal similar 
model fragments of “BM_OpenEDComponentImpl”, 
“BM_UserInputComponentImpl”, and 
“BM_DeviceComponentImpl” are: 

Figure 3 Sample crosscutting concerns in an ESML model 
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    {data2_, Data2Cond, AddCondition} 
    {data1_, LogOnRead, AddLog} 
    {InternalLock} 
    {ANY_sub, ANY_ref, EventTyping} 
    {ANY_pub, ANY_ref, EventTyping} 

 
These concerns are circled with different patterns of lines 

in Figure 3, representing 5 different concerns. The last two 
groups both contain model entities that carry connections 
out of the group (e.g., “ANY_sub” in 
“BM_UserInputComponentImpl” and “ANY_pub” in 
“BM_OpenEDComponentImpl”). Therefore, these two 
elements (as well as their relationships in the group) should 
be filtered out. Thus, the algorithm identifies the resulting 
aspect candidates for the three component models as: 

 
    {data2_, Data2Cond, AddCondition} 
    {data1_, LogOnRead, AddLog} 
    {InternalLock} 

 
These three concerns correspond to the same aspects (i.e., 

pre/post conditions, state management and concurrency) 
that were manually identified in our previous research on 
aspect weaving and model-driven program transformation 
(Gray et al., 2004). 

As the additional concerns that were identified 
automatically by our algorithm, consider the interface 
models “BM_OpenFunctionalFacetInterface” 
and “BM_OpenFunctionalFacet”, whose maximal 
similar model fragments are: 

 
    {SetData1} 
    {SetData2} 
    {operator new} 
    {operator delete} 
    {SetMemoryStore} 
    {GetMemoryStore} 
 

In this example, “SetData1” will be removed in the 
filtering process because it has connections coming into or 
going out from the group. Consequently, the rest of the five 
atoms indicate the clone methods in the interface models 
and can be regarded as the potential aspect candidates (as a 
matter of fact, these five atoms appear in 7 different 
interface models).  

6 RELATED WORK 

The topics of clone detection and aspect mining have 
received considerable attention in the research literature. In 
fact, there are workshops that are dedicated to discussing 
these research issues (TEAM, 2006; CLONES, 2003). 
However, the existing research literature has focused on 
clone detection and aspect mining at the source code level. 
To our knowledge, no other research has been presented 
that focuses on the implications of aspect mining from a 
modeling perspective. Our approach can be distinguished 

from all of the related work summarized below by the 
simple observation that we have applied clone detection to 
search for aspects at the model level. The primary benefit 
our approach offers over the existing techniques is that 
modularization of a design through aspects is done even 
before proceeding to the implementation level. 

6.1 Related work in clone detection 

Various clone detection techniques have been developed 
and implemented. Baker (Baker, 1995) applies a token-
based analysis to locate the duplication in large software 
systems. CCFinder (Kamiya et al., 2002) is a tool that also 
uses a token-based representation of source code to find 
clones. Mayrand et al. (Mayrand et al., 1996) use metrics 
that are calculated from the source fragment to find clones. 
Similarity analyses based on metrics and dynamic 
programming are used by Kontogiannis et al. (Kontogiannis 
et al., 1996) to search for clones. 

Baxter et al. (Baxter et al., 1998) use the abstract syntax 
tree (AST) representation of a source program to find 
clones through the discovery of similar sub-trees. Our 
approach is similar to Baxter’s technique for determining 
similarity by identifying shared and different elements. 
However, since these two approaches are working at 
different levels of abstraction, they differ on what are 
compared. Baxter’s approach determines the similarity of 
sub-trees based on the number of shared and different nodes 
of the sub-trees. Our approach determines the similarity of 
elements of sub-models based on one of the three levels of 
similarity described in Table 1. CloneDR™ is a 
commercially available tool based on this approach 
(CloneDR, 2006).  

As it relates to aspect mining, three clone detection tools 
are evaluated by Bruntink et al. (Bruntink et al., 2005) to 
determine how well suited they are in detecting 
predetermined crosscutting concerns in a program. 

6.2 Related work in aspect mining 

Several existing aspect mining tools have been described in 
the literature, including a comparison of three approaches 
(Ceccato et al., 2005). The current state of aspect mining is 
represented by the collection of tools described below. All 
of these tools are focused on source code analysis. 

The Aspect Browser (Griswold et al., 1999) enables users 
to enter regular expressions as patterns to identify aspects. 
An early contribution of Aspect Browser was an aspect 
visualizer that graphically conveyed a visual overview of 
the crosscutting effect of a specific aspect. The Aspect 
Mining Tool (AMT) (Hannemann and Kiczales, 2001) 
augments the Aspect Browser with type-based mining. 

In the Prism tool (Zhang and Jacobsen, 2004), users 
define a fingerprint that captures a certain property of a 
crosscutting concern in code. The Prism advisor 
autonomously computes the crosscutting property of the 
mining target and returns all of the matches, which are 
called footprints. 
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FEAT (Robillard and Murphy, 2002) introduces the 
concept of a concern graph that localizes an abstracted 
representation of program elements contributing to the 
implementation of the concern. FEAT enables users to 
perform maintenance tasks that involve non-localized 
changes. Users initiate the search process by providing a 
seed, which is expressed through a text file using a 
declarative language to describe a concern. FEAT generates 
the concern graph automatically according to the declared 
concern. Users can visit the source file corresponding to 
each class in the concern graph. 

Ophir (Shepherd et al., 2004) is a fully automatic mining 
and refactoring tool based on the combination of a program 
dependence graph (PDG) and abstract syntax tree (AST). 
Ophir’s aspect identification algorithm starts only at 
specific points of each method in order to speed up the 
processing time. However, this approach may overlook 
some potential aspects. 

ER-Miner (Sampaio et al., 2005) provides automated 
support for identifying crosscutting concerns within 
requirements documents by using natural language 
processing techniques. Although it is intended to be applied 
at the requirements level, our approach is performed on the 
design of domain-specific models. 

Breu and Zimmermann (Breu and Zimmermann, 2006) 
use version history to mine aspect candidates. Their 
approach yields a high precision for large projects with a 
long history but suffers from the much fewer available data 
for small projects. 

Aspect Browser, AMT, Prism, and FEAT all require user 
interaction. Users must understand the application domain 
and provide the pattern seed from their knowledge of the 
code. This limitation is in addition to the fact that these 
tools only look for source code level aspects. A further 
shortcoming is shared by our own work in that the first 
phase of aspect identification is the primary focus, with the 
challenges of extraction and refactoring given less attention. 

7 CONCLUSION AND FUTURE WORK  

From our experience, it is advantageous to perform 
reengineering techniques, such as aspect mining, at 
different stages throughout the software development 
lifecycle and on software artifacts other than source code. 
This article presented our initial investigation into aspect 
identification on domain-specific models. 

We investigated two approaches to aspect identification - 
pattern matching is useful for identifying the location of 
pre-known aspects, and clone detection assists in 
identifying unknown aspect candidates. The pattern 
matching technique is useful only when the users are able to 
offer a concern pattern (i.e., the “seed”), but the clone 
detection technique is more powerful because it can suggest 
multiple unknown aspects with little human interaction. 

There are several areas that need additional investigation 
to further the maturity of model-driven aspect mining: 

Noise Filtering: The result of the clone detection is 
usually adulterated with too much undesired noise. 
Currently, we only use one filter layer that is based on 
model connections. We are considering other metrics that 
will be integrated into the filtering analysis. 

Visualization of Modeling Aspects: An aspect mining 
tool enables identification of the potential aspects and often 
provides the capability to visualize the various locations 
affected by an aspect. Traditional aspect mining techniques 
work on the source code level, thus their corresponding 
visualization tools are based on a graphical notation that is 
particular for line-oriented software statistics (Griswold et 
al., 1999). Because a model is a containment hierarchy of 
entities, it is necessary to develop a specific means to 
visualize the crosscutting aspects over different levels of 
models. Our future visualization tool will use a tree 
structure to display the model hierarchy natively with 
potential aspects highlighted across the whole structure. 
Users will have the option to expand or collapse any level 
of a specific model. 

Aspect Extraction and Refactoring: With respect to 
general model refactoring, we have already implemented a 
model refactoring browser in GME by means of a model 
transformation engine (Zhang et al., 2005). The research on 
aspect-oriented refactoring is still under investigation, 
which aims to extract the mined crosscutting concerns into 
the separately described aspects. For instance, these aspects 
can be represented by aspect-oriented model transformation 
rules written in the Embedded Constraint Language (ECL) 
(Gray et al., 2006a).  
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