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Abstract. This paper describes a technique for improving separation of con-
cerns at the level of domain modeling. A contribution of this new approach is 
the construction of support tools that facilitate the elevation of crosscutting 
modeling concerns to first-class constructs in a type-system. The key idea is the 
application of a variant of the OMG Object Constraint Language to models that 
are stored persistently in XML. With this approach, weavers are generated from 
domain-specific descriptions to assist a modeler in exploring various alternative 
modeling scenarios. The paper examines several facets of Aspect-Oriented 
Domain Modeling (AODM), including: domain-specific model weavers, a lan-
guage to support the concern separation, an overview of code generation issues 
within a meta-weaver framework, and a comparison between AODM and AOP. 
An example of the approach is provided, as well as a description of several fu-
ture concepts for extending the flexibility within AODM. 

1 Introduction 

The benefits of performing refinements on non-code artifacts are well documented 
[3]. Our contribution to this area has been in Aspect-Oriented Domain Modeling 
(AODM), which represents the union of Aspect-Oriented Software Development 
(AOSD) [1] and Model-Integrated Computing (MIC) [34]. An AOSD approach can 
be beneficial at different stages of the software lifecycle and at various levels of ab-
straction. In particular, it can be advantageous to apply AOSD principles at levels 
closer to the problem space, e.g., architectural analysis [18], requirements engineering 
[30], and modeling [14], as well as the solution space, e.g, design [5, 10, 33], and 
implementation/coding [4, 19, 21, 36]. 

The advantages of applying AOSD to domain modeling are considerable. AODM 
assists a modeler in capturing concerns that were previously hard, if not impossible, to 
modularize (see the introductory example in Section 3). A key benefit is the ability to 
explore numerous scenarios by considering crosscutting modeling concerns, such as 
desired fault tolerance or latency levels, as aspects that can be inserted and removed 
from a model rapidly. 
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A growing area of research is concentrated on bringing aspect-oriented techniques 
into the purview of analysis and design (see [5, 10, 33] for examples of work in this 
area). A focal point of these efforts is the development of notational conventions that 
assist in the documentation of concerns that crosscut a design. These notational con-
ventions advance the efficiency of expression of these concerns in the design. More-
over, they also have the important trait of improving the traceability from design to 
implementation. Although these current efforts do well to improve the cognizance of 
AOSD at the design level, they generally tend to treat the concept of aspect-oriented 
design primarily as a specification convention. This is to say that the focus has been 
on the graphical representation, semantical underpinnings, and decorative attributes 
concerned with aspects and their representation within UML. A contribution of this 
paper is to consider AODM more as an operational task by constructing executable 
model weavers. That is, we view AOSD as a mechanism to improve the modeling 
task itself by providing the ability to quantify properties across a model during the 
system modeling process. This action is performed by utilizing a weaver that has been 
constructed with the concepts of domain modeling in mind. A research effort that also 
appears to have this goal in mind can be found in [17], although this work seems more 
aimed at providing a transformation tool that reifies patterns at the level of object-
oriented design. 

The successful application of AODM necessitates the availability of weavers that 
understand the underlying modeling domain. These weavers process models, not 
source code, so programming language compilers like AspectJ [19] are not applicable 
due to the semantic mismatch of the abstraction level. Because the syntax and seman-
tics of each modeling domain are unique, a different weaver is needed for each do-
main. To support this requirement, we have developed a meta-weaver framework to 
assist in the creation of new model weavers. We call this framework the Constraint-
Specification Aspect Weaver (C-SAW) – (Note: the name is borrowed from the reali-
zation that a crosscutting saw, or c-saw, cuts across the grain of wood). This frame-
work uses several code generators whose inputs are meta-level specifications, de-
scribed in a Domain-Specific Language (DSL), which hide accidental complexities of 
interacting with XML and COM. The generators produce code that is merged into the 
C-SAW framework to instantiate a domain-specific weaver. 

The remainder of this introduction provides the background information needed to 
understand the modeling context for the emergence of scattered constraints.  

1.1 Model-Integrated Computing 

Expressive power in software specification is often gained from using notations and 
abstractions that are aligned with the problem domain. This can be further enhanced 
when graphical representations are provided to model the domain abstractions. In our 
particular approach to domain-specific modeling, a design engineer describes a sys-
tem by constructing a visual model using the terminology and concepts from a spe-
cific domain. Analysis can then be performed on the model, or the model can be syn-
thesized into an implementation [20, 24, 34, 35]. 

Model-Integrated Computing (MIC) has been refined over many years to assist in 
the creation and synthesis of complex computer-based systems. A key application 
area for MIC is in those systems that have a tight integration between the computa-
tional structure of a system and its physical configuration (e.g., embedded systems) 
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[34]. In such systems, MIC has been shown to be a powerful tool for providing 
adaptability in changing environments [35]. 

The Generic Modeling Environment (GME) [20] is a meta-configurable modeling 
environment for realizing the principles of MIC. The GME provides meta-modeling 
capabilities that can be configured and adapted from meta-level specifications (repre-
senting the modeling paradigm) that describe the domain. There are several domains 
to which MIC and the GME have been successfully applied. The most notable evi-
dence for the advantages of applying model-driven techniques is found in [22], where 
the documented benefits are described from the initiation of MIC into an automotive 
factory process. 

1.2 Design Space Exploration in a Product-Line Architecture 

A beneficial approach toward domain modeling considers the creation of a base 
model for representing a family of related systems, often called product-line architec-
ture [6]. In such an approach, a design space corresponds to a set of implementation 
alternatives that are available within the product family. The selection of a fixed-
point, among the set of possible alternatives from the base model, must be explored 
prior to model synthesis [23]. Design space exploration is an iterative process that 
selectively evaluates a set of constraints that are chosen by a modeler using a tool. 

The exploration of a design space often requires the existence of constraints that 
are dispersed throughout a model [23]. Constraints codify properties of the model that 
must be satisfied during exploration. A modeler can specify constraints in the GME as 
model attributes that are then evaluated during design-space exploration. An example 
of a constraint is an assertion about the end-to-end latency within the flow of a sub-
model. Each iteration of the exploration prunes the design space further. Focusing the 
exploration on different sets of constraints can lead the exploration and pruning algo-
rithms along different elaborations of synthesis. 

Although constraints are a necessary modeling construct for supporting design 
space exploration, the next section explains why constraints emerge as a crosscutting 
modeling entity. 

2 Model Weavers for Separating Crosscutting Constraints 

The primary goal of AOSD is to assist in modularizing crosscutting behavior [4, 19, 
21, 36]. In the same manner that crosscutting code detracts from the cohesiveness of 
an implementation, the utility of specifying constraints within a model is often dimin-
ished due to their scattering throughout the model hierarchy [14]. It is often the case 
that the meta-model forces the emergence of a “dominant decomposition” (i.e., the 
primordial criteria for modular decomposition) [8, 36] that imposes the subjugation of 
other concerns, such as those captured by constraints. 

In conventional system modeling tools, any change to the intention of a global 
property requires visiting and modifying each constraint, for every context, represent-
ing the property. This requires the modeler to “drill-down” (i.e., traverse the hierarchy 
by recursively opening, with the mouse, each sub-model), manually, to many loca-
tions of the model. It is common for a model in the GME to contain thousands of 
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different modeling elements with hierarchies that are ten or more levels deep. The 
interdependent nature of each constraint makes change maintenance a daunting task 
for anything but a simple model. The benefits of a single model representation of a 
product family are nullified because the “Parnasian” objectives [27] of changeability, 
comprehensibility, and independent development are sacrificed in the presence of 
crosscutting constraints.  

As models grow in size and complexity, it becomes unmanageable to view the con-
tents of a model in its entirety because there are too many participating entities. The 
concept of viewpoints has been researched frequently as a topic within requirements 
engineering [25]. The GME supports the concept of a viewpoint as a first-class mod-
eling construct, which assists a modeler in separating the concerns of multi-
perspective views [20]. Each GME viewpoint describes a partitioning that selects a 
subset of entities as being visible. 

Although they offer a powerful conceptualization for concern separation, GME’s 
implementation of viewpoints, however, does not fit completely within the definition 
of aspects (at least in the way that they are defined within the AOSD community). 
Using only viewpoints, for example, a modeler cannot quantify over a model’s join 
points and apply advice. The key parts of AOP, as enumerated in [19], are not fully 
present in many viewpoint-oriented implementations. Research into aspectual re-
quirements also suggests that viewpoints alone are incapable of capturing many 
crosscutting concerns [30]. 

Because the current viewpoint implementation in most modeling tools does not 
adequately capture crosscutting concerns, a new extension to modeling tools is 
needed. We further motivate this need in the next section and provide an introduction 
to our approach for AODM. 

2.1 The Need for Domain-Specific Model Weavers 

Different domains typically will have different dominant decompositions and dissimi-
lar crosscutting concerns. For instance, the adaptation of the frame rate or size of a 
visual display in an avionics system would have no counterpart in a domain that mod-
els an automotive factory. Consequently, because each new GME meta-modeling 
paradigm introduces different types of modeling elements, syntax, and semantics, 
different weavers are needed for each new modeling paradigm. The situation is simi-
lar to the reason that a different compiler is needed for a new programming language 
– the syntax and semantics typically vary too much between each language to permit 
a single instance of a generalized translator that compiles multiple languages. Thus, 
the domain for automotive manufacturing (e.g., a Saturn car) [22] needs its own spe-
cialized weaver, as does the BBN Unmanned Aerial Vehicle (UAV) domain [31], and 
the Boeing Bold Stroke domain [32]. 

 
<model id="id-05" kind="Component"> 
 <name>InertialSensor</name> 
 <atom id="id-17" kind="ComputeMethod" role="ComputeMethod"> 
  <name>compute</name> 
    <attribute kind="WCET"> 
      <value>2</value> 
    </attribute> 

Fig. 1. Bold Stroke XML Model 
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<model id="id—544975-39" kind="State">  
  <name>frameRate</name>  
<model id="id—544975-42" kind="State"> 
  <name>Range1-7</name>  
<connection id="id—544975-63" kind="Transition"> 
  <name>Transition</name>  
<connpoint role="dst" target="id—544975-42" />  
<connpoint role="src" target="id—544975-46" />  
  <attribute kind="Guard"> 
    <value>latency > 25</value>  
  </attribute> 
  <attribute kind="Action"> 
    <value>frameRate=4</value> 
  </attribute> 

Fig. 2. BBN/UAV XML Model 

The GME has the capability to store models persistently using XML. To better un-
derstand the need for multiple weavers, consider the XML document in Figure 1. This 
represents a subset of a domain model description. The document has distinctly 
named regions with respect to the kind of elements being presented in the domain 
(e.g., “Component”), as well as roles (e.g., “ComputeMethod”), name, and even 
attributes (e.g., “WCET”). This is the meta-description of the Bold Stroke domain. 

Further consider the XML fragment in Figure 2. It also has its own unique model-
ing entities (e.g., “State,” “Transition,” “Guard”). It should be noted that the 
same XML DTD is used in both Figures 1 and 2. However, the modeling concepts 
captured in each model are significantly different. The quoted strings in some of these 
models (e.g., the “kind” slots) show that something “meta” is truly happening. 

Because of the diversity of domains, the ability to construct weavers for new do-
mains is desired. The AODM approach that we are using can be summarized by the 
diagram in Figure 3. In this figure, new weavers are created by integrating domain-
specific strategies into a meta-weaver framework (shown in the top-part of Figure 3). 
A strategy specifies a heuristic (e.g., processor assignment, as shown in the example 
in Section 3) for a specific modeling paradigm. Strategies are specified in a DSL 
called the Embedded Constraint Language (ECL), which is described in Section 4. A 
generator translates each strategy into C++, such that an instantiation of the meta-
weaver framework is created (i.e., the generated C++ is in the middle of the frame-
work). The instantiation of the framework (with a set of strategies) produces a new 
domain-specific weaver (middle of Figure 3). After a weaver is created for a specific 
domain, GME models (represented in that domain) can be woven with modeling 
pointcuts. A modeling pointcut identifies specific points in a model that are affected 
by a crosscutting modeling concern. 

As mentioned earlier, the output of a domain-specific weaver is a new GME model 
that contains constraints that have been woven, i.e., the input to the weaver may be a 
base model that is void of any constraints, like the middle-right of Figure 3. The 
newly created constrained model can then be passed on to the design-space explora-
tion tool, as mentioned previously in Section 1.2. The content inside the box of Figure 
3 represents our contributions to AODM. The design space exploration research is a 
previous effort that provided the initial motivation for exploring this new area. 
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Fig. 3. Summary of AODM Process 

3 Example 

Bold Stroke is a product-line framework from Boeing for avionics navigation soft-
ware [32]. In this section, an example crosscutting modeling concern is presented in a 
domain for modeling a subset of Bold Stroke applications and configurations. 

Consider the requirements for a simple model that contains five software compo-
nents representing a simplified scenario of an avionics mission program (see Figure 
4). The first component is an inertial sensor. This sensor outputs, at a 100Hz rate, the 
position and velocity deltas of an aircraft. A second component is a position integra-
tor. It computes the absolute position of the aircraft given the deltas received from the 
sensor. It must at least match the sensor rate such that there is no data loss. The 
weapon release component uses the absolute position to determine the time at which a 
weapon is to be deployed. It has a fixed period of 2Hz and a minimal-latency re-
quirement. A mapping component is responsible for obtaining visual location infor-
mation based on the absolute position. A map must be constructed such that the cur-
rent absolute position is at the center of the map. A fifth component is responsible for 
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displaying the map on an output device. Each of these components has distinct fre-
quencies, latencies, and Worst Case Execution Times (WCET) [29]. The specific 
values of these properties will likely differ depending on the type of aircraft repre-
sented by the model, e.g., the latencies and WCETs for an F/A-18 fighter aircraft 
would most likely be lower than a helicopter. The core modeling components describe 
a product family with the values for each property indicating the specific characteris-
tics of a member of the family. 

 

 

Fig. 4. Bold Stroke Component Interactions as Modeled in the GME 

Figure 4 depicts the weapons deployment model represented within the GME. The 
model is an instance of the domain that was developed initially for modeling of Bold 
Stroke applications and component-based middleware. Each of the components in 
Figure 4 has internal details that also are modeled. For instance, the contents of the 
“Compute Position” component are rendered in Figure 5. As shown in the internals of 
this component, the series of interactions actually take place using a publish/subscribe 
model. The figure specifically highlights the attributes of a method called “compute” 
(see the bottom-right of the figure). The attributes provide the name of the method, 
the C++ source file that contains the method, and the method’s estimated WCET. 

3.1 Example Crosscutting Concern: Processor Assignment 

Suppose that we wanted to model the processor assignment of each component. That 
is, based upon the expected WCET, the component methods are executed as tasks on 
various processors. A notation is needed to specify the assignment of component 
methods/tasks to processors. One way to accomplish this representation issue is to 
specify the processor assignment as a constraint of the component model. 
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Fig. 5. A GME Model of the Internals of Compute Position 

The way that processor assignment is typically modeled involves the application of 
a set of heuristics that globally assign tasks to processors based on specific properties 
of each component. In modeling, this often requires the modeler to visit each compo-
nent, or task, in order to manually apply the heuristic. For a model with a large num-
ber of components, this can be a daunting task. It becomes increasingly unmanageable 
in situations where the modeler would like to play “what-if” scenarios. These “what-
if” scenarios are used to drive the iterative evolution of the model, such that interme-
diate scenarios may even be discarded. This is helpful because a modeler may want to 
change the values of different properties, or even modify the details of the heuristic, 
in order to observe the effect of different scenarios. A manual application of a heuris-
tic would require that the modeler re-visit every component and re-apply the rules of 
the heuristic. 

An example of our approach for separating the concern of processor assignment 
can be found in Figures 6 and 7. The details of the language are defined elsewhere in 
the paper, but an outline of the meaning of these figures is offered here. The interpre-
tation of the pointcut called ProcessorAssignment (Figure 7) is that a selection 
is specified over all of the modeling elements that are of type “Comp*” (note the use 
of the wildcard designator). Although not shown here, modeling pointcuts can also be 
formally named and composed with other pointcuts. It is not necessary that a pointcut 
be bound to a strategy, but the pointcut in Figure 7 is tied to a particular strategy 
called Assign (Figure 6). The combination of the pointcut and strategy invokes 
Assign on each of these modeling components (here, a parameter bound to the 
value 10 represents a threshold of the execution time for each processor load). The 
purpose of the Assign strategy is to look into the “compute” method of each com-
ponent and find its WCET. The WCETs of each component are accumulated. When-
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ever this accumulated value reaches past the threshold, a new processor is created for 
component assignment. Assign will finally call another strategy, named AddCon-
straint, which will add a new constraint to the model. The new constraint, in this 
case, represents the processor assignment. 

Note that the ProcessorAssignment pointcut could be modified so that a 
different strategy is invoked (i.e., some strategy other than Assign); or, a different 
parameter threshold could be provided that may result in a different set of constraints 
(i.e., the parameter to Assign may be changed from 10 to 20). The key advantage of 
this approach is realized in the observation that, from a change in one place, an en-
tirely different set of constraints can be weaved into the model. This solves a serious 
scalability problem concerning maintenance issues, and the ability to change the con-
straints within a model. 

 
defines AddConstraint, Assign, ProcessorAssignment; 
 
strategy AddConstraint(constraintName, expression : string) 
{ 
  addAtom("OCLConstraint", "Constraint", 
          constraintName).addAttribute("Expression", expression); 
} 
 
strategy Assign(limit : integer) 
{ 
  declare static accumulateWCET, processNum : integer; 
  declare currentWCET : integer; 
  declare aConstraint : string; 
 
  self.compute.WCET.getInt(currentWCET); 
  accumulateWCET := accumulateWCET + currentWCET; 
 
  if (limit < accumulateWCET) then 
    accumulateWCET := currentWCET; 
    processNum := processNum + 1; 
  endif; 
 
  aConstraint = "self.assignTo() = processor" + processNum; 
  AddConstraint("ProcessConstraint", aConstraint); 
} 

Fig. 6. Strategy for Processor Assignment 

pointcut ProcessorAssignment 
{ 
  models("")->select(m | m.kind() = “Comp*”)->Assign(10); 
} 

Fig. 7. Pointcut Defining Model Locations for Applying the Assign Strategy 

In comparison to the weaving performed at the coding level, as typified by As-
pectJ, the pointcut specification is encapsulated with the advice in order to describe 
where and when the aspect is to be applied. We took a different approach in the 
mechanism for specifying crosscutting modeling concerns. In our approach, the 
pointcut and strategies are often specified in separate files. This permits better reuse 
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among the pointcuts and strategies (i.e., the pointcuts are more transparent to the 
individual strategy definitions). 

Figure 8 shows the same component that was given in Figure 5. The only differ-
ence is that the component now contains a constraint that was added by the weaver as 
a result of applying the strategies described by the pointcut. Notice that the strategy 
has assigned this component to processor 0. An examination of all the other compo-
nents involved in this interaction would reveal that different components are assigned 
to processors based on their WCET and the parameterized threshold. 

 

 

Fig. 8. Component with Weaved Constraint 

4 Embedded Constraint Language 

Model weavers are specified using the ECL - an extension (and subset) of the OMG 
Object Constraint Language (OCL) [37]. This language allows the weaver designer to 
specify the traversal of models, computations upon the model structure and attributes, 
and subsequent modifications to the models. In essence, the ECL is used to describe 
the transformations of an existing domain model that are needed to represent the 
crosscutting modeling concerns. Examples of the type of modifications that can be 
performed on models would be the addition of constraint objects, addi-
tion/modification of attributes to existing models, and addition of domain-specific 
modeling objects. A short description of the ECL follows.  

The ECL supports many of the basic language constructs found in the OCL, as 
categorized in Table 1. The following capabilities distinguish ECL from OCL: 
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Table 1. Included OCL Operators 

Arithmetic Operators 
+, -, *, /, =, <, >, 

<=, >=, <> 

Logical Operators 
and, or, xor, not, implies, if/then/else 

Collection Operator & Property Operator 
-> 
. 

Standard OCL Collection Operators 
collection->size() : integer 

collection->forAll(x | f(x) ) : Boolean 

collection->select(x | f(x) ) : collection 

collection->exists(x | f(x) ) : Boolean 

 
• ECL provides a set of operators to navigate the hierarchical structure of a model 

(see Table 2). These aggregate operators can be applied to first-class model objects 
(e.g., a container model or primitive model element) to obtain reflective informa-
tion needed in either a strategy or modeling pointcut, such as findModel, 
getID, findAttribute. These operators are akin to the introspective opera-
tors in Java (e.g., getName, getType, getInt); i.e., they are reflective to the 
internal representation used in the GME. These operators, and the standard OCL 
selection operators, have similarities to the submitted OMG proposals to support 
Query/View/Transformations (QVT) [26] (e.g., CompuWare’s TPL, and Rational 
XDE’s pattern engine). In ECL, a query across the model can be specified using 
these navigational operators. The underlying XML representation of the model is 
searched by translating the ECL navigational statements into the XPath querying 
language. 

• ECL also supports the “Transformation” idea of the OMG QVT. Traditionally, 
OCL has been used as a declarative language to specify properties of UML dia-
grams [37]. The use of ECL, however, requires the capability to introduce side-
effects into the underlying XML model. This capability is needed because the 
strategies often specify transformations that must be performed on the model, 
which requires the ability to make modifications to the model as the strategy is ap-
plied. ECL therefore supports an imperative procedural style with numerous opera-
tions that can alter the state of the model, such as addAtom, addAttribute, 
removeChild. Because the underlying model hierarchy is stored as an XML 
file, these functions are often implemented as wrappers for the specific calls that 
are needed to use XPath and the XML Document Object Model (DOM). 

• The procedural nature of ECL permits dependencies between strategies. Strategies 
can be chained together as procedure calls. Recursion is also supported in the ECL. 
Circular dependencies are possible (of course, the strategy must specify a termina-
tion condition for the strategy to complete its processing). 
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Table 2. ECL Model Operators 

Aggregates 
folders, models, atoms, attributes,  

connections 

Connections 
connpoint, target, refs, resolveReferredID 

Transformation 
addAttribute, addAtom, addModel,  

addConnection, removeNode 

Selection 
findFolder, findModel, findAtom,  

findAttributeNode 
General 

id, parent, getID, getInt, getStr 

5 Comparison to AOP 

Domain-specific weavers rely on modeling pointcuts and strategies to perform their 
responsibilities. Modeling pointcuts are used to describe where the concern will be 
applied in the model, and strategies describe how a concern is applied in the context 
of a particular node in the model. Several comparisons can be made between the ap-
proach to AODM described in this paper and traditional AOP. 

Table 3 provides a comparison of the critical elements that make a system aspect-
oriented, according to the definition provided in [19]; i.e., the join point model, the 
pointcut designator construct, and the concept of advice. The AODM approach pre-
sents a way to query and traverse over a large model space. As such, the approach has 
borrowed from the experience of traversal specifications as typified by work done in 
Demeter and Adaptive Programming techniques [21]. The crucial difference is that 
the implementations of Demeter have primarily focused on code-level traversals. Our 
models are graphical representations of a domain at a higher level of abstraction, thus 
necessitating a different focus. 

Table 3. Comparison of AspectJ and AODM 

 AspectJ AODM 
Join Point 

Model 
Well-defined points in the 

execution of a program 
Static points (nodes) 

in a model 
 

Pointcut 
Designator 

A declarative statement 
(formed from a set of 
primitives like call, 

this, and target) that 
describes a set of join 
points in a program 

A declarative statement 
(formed from ECL collec-
tion operators) that identi-

fies a set of locations 
within a model 

 
Advice 

A block of code that is 
executed at a join point 

A strategy, or heuristic, 
for instrumenting a model 
with information related 

to a concern 
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The box in the bottom of Figure 9 represents a subset of a modeling pointcut. In 
the pointcut of Figure 9, a predicate within the select statement instructs the 
weaver to collect all nodes in the model that are of kind “StateFlow” and have a name 
that matches “Model*.” Such a statement has a direct correspondence to a pointcut (as 
in AspectJ) that picks out specific points in the execution of a program satisfying 
some condition. The modeling pointcut also describes the strategy that is to be in-
voked on each node selected from the predicate. The effect of this association is the 
quantification of a concern over multiple join points [11]. As the strategy is applied at 
each node, the model is transformed according to the intent of the strategy, which has 
a direct correspondence to the association of pointcuts with advice in AspectJ, and 
how advice affects the execution of the program (of course, our models as represented 
in XML are static). 

 

 

Fig. 9. Effects of the Coordination Between Modeling Pointcuts and Strategies 

6 Code Generation 

This section discusses issues related to the development of the ECL code generator. In 
particular, the benefits of using a domain-specific language (DSL) to isolate several 
accidental complexities (e.g., the lower-level XML DOM, and the COM data struc-
tures) are described. 

The Strategy Code Generator (StratGen) tool translates strategies, as specified in 
the ECL, into C++ code that can be inserted into the meta-weaver framework (see the 
top of Figure 3). This sub-section provides an example of the translation approach 
used within StratGen. 

 
components.models("")->select(c |  
            c.id()==refID)->DetermineLaziness(); 

Fig. 10. Fragment of an EagerLazy Strategy 
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Figure 10 contains a statement from a strategy, described in [16], which is focused 
on eager/lazy evaluation for a CORBA event channel (this is just one of several lines 
found in that strategy – it is not meant to imply that this single line represents the 
entirety of the strategy). This statement finds all of the models that match a specific id 
and then calls the DetermineLaziness strategy on those selected nodes. The 
amount of C++ code that is generated by StratGen, however, is far from being concise 
or simple (see Figure 11). Much of the code for implementing this strategy statement 
is focused on iterating over a collection and selecting elements of the collection that 
satisfy the predicate. The ECL hides the accidental details that pertain to the fact that 
the underlying model is represented in XML. As such, the COM invocations of the 
lower-lever API calls to manipulate the XML DOM are concealed. 

 
… 
CComPtr<IXMLDOMNodeList> models0 = XMLParser::models(components, ""); 
nodeTypeVector selectVec1 = XMLParser::ConvertDomList(models0); 
nodeTypeVector selectVecTrue1 = new std::vector<nodeType>; 
vector<nodeType>::iterator itrSelect1; 
for(itrSelect1 = selectVec1->begin();  
    itrSelect1 != selectVec1->end(); itrSelect1++) { 
  nodeType selectNode1 = (*itrSelect1);  
  nodeType c; 
  c = selectNode1; 
  CComBSTR id0 = XMLParser::id(c); 
 
  ClData varforward1(id0); 
  ClData varforward2(referredID); 
  bool varforward3 = varforward1 == varforward2; 
  if(varforward3) 
     selectVecTrue1->push_back(*itrSelect1); 
} 
 
vector<nodeType>::iterator itrCollCall1; 
for(itrCollCall1 = selectVecTrue1->begin();  
    itrCollCall1 != selectVecTrue1->end(); itrCollCall1++) 
  DetermineLaziness::apply(…); 
… 

Fig. 11. Sample of Generated C++ Code 

The code in Figure 11 contains a generic value class named ClData. It is in this 
class where the equality operator performs a special match for string wildcards. The 
C++ code calls an XML Parser wrapper class that retrieves a set of all models. An 
iteration over the list of models checks to see if the name of the node referenced by 
the current iterator matches the wildcard. The ECL was one of several candidate lan-
guages used in a study of the conciseness of DSLs [15]. In that study, the ECL was 
shown to be 3 times more concise than the representative C++. 

7 Future Work 

The ECL has truly been an evolving language – each new strategy that was created 
brought fresh insight into additional language constructs that would be beneficial. In 
the future, the ECL will continue to evolve to support additional features (e.g., sup-
port for a “cflow” or “dflow” modeling construct, similar to AspectJ). This section 
outlines some additional research objectives that will be explored in the immediate 
future. 
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A potentially rewarding subject for future investigation will be to subsume the tex-
tual descriptions formulated within the ECL into a graphical modeling language. This 
effort will investigate the expression of modeling pointcuts, and even strategies, using 
a graphical formalism similar to that of visual programming languages. This kind of 
visual aspect modeling would, of course, be perfectly suited for exploration from 
within the GME. The concept of generating weavers from visual formalisms (i.e., 
interpreting strategy specifications that are described visually) is also appealing. 

The current version of C-SAW assumes that the separation of modeling concerns 
was being performed on models created with the GME. In fact, this assumption is 
built into the XML Parser within the weaver framework. The limitation imposed by 
this assumption precludes other modeling tools (that also can export models using 
XML) from being able to employ the benefits of an aspect weaver. In addition to the 
GME, other examples of domain-specific visual modeling tools are Honeywell’s 
Domain Modeling Environment [9], and metaEdit+ (from metaCASE) [28]. It is pos-
sible that these, and other modeling tools could benefit from an aspect-oriented mod-
eling approach. A new code generator could be inserted into the weaver framework in 
order to provide an added measure of variability. From the modeling tool’s Document 
Type Definition (DTD), the functionality of the wrappers provided within the XML 
Parser can be generated. This would permit adaptability of the framework between 
domains (using the strategy code generator), and also adaptability between modeling 
tools, using Generative Programming [7] and invasive composition techniques [2]. 

A future goal of our project is to provide the capability for generating the configu-
ration of Bold Stroke components from domain-specific models in such a way that 
specific parts of each component are weaved together as an aspect. For example, a 
base model can capture the infrastructure of a product-line with constraints represent-
ing specific configuration information for a particular product (e.g., for distributed 
real-time embedded systems [13]). A synthesis process can generate AspectJ compo-
nents from an analysis of the model and constraints (initial ideas for supporting this 
have been presented in [16]). This goal fits well with quality of service issues applied 
to the OMG’s Model Driven Architecture (MDA) [12]. 

8 Concluding Remarks 

The main objective of the research described in this paper is to apply the concepts of 
AOSD to domain modeling. The implementation of this objective has resulted in a 
means to add aspect modeling to the repertoire of the well-established GME modeling 
tool. The result of our work is a model weaver framework called the Constraint-
Specification Aspect Weaver (C-SAW). Earlier work on aspect modeling has concen-
trated on important notational issues for extending the UML, whereas the research 
described in this paper has brought the benefits of aspect-orientation to the modeling 
process itself. The work described in this paper has been applied to modeling efforts 
of Boeing Bold Stroke [16, 32]. A model weaver has also been demonstrated with 
BBN’s adaptive UAV project [31], as briefly described in [24]. 

There are several reasons that would support the adoption of our approach into a 
general modeling paradigm. It has been discovered that a lack of support for separa-
tion of concerns with respect to constraints can pose a difficulty when creating do-
main-specific models. Constraints may be specified throughout the nodes of a model 
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to stipulate design criteria and limit design alternatives. However, because these con-
straints are scattered across the hierarchy of a model, they are hard to change. The 
scattering of constraints throughout various levels of a model makes it hard to main-
tain and reason about their effects and purpose. 

The concept of a domain-specific weaver can be used in many ways beyond the 
application of constraints. For example, a weaver can be used to distribute any system 
property endemic to a specific domain across the hierarchy of a model. A weaver can 
also be used to instrument structural changes within the model according to the dic-
tates of some higher-level requirement that represents a crosscutting concern.  

The C-SAW weaver framework serves as a generalized transformation engine for 
manipulating models. The framework, in conjunction with several code generators 
and DSLs, is used to provide the adaptability needed to construct new instances of the 
framework. A core component of this framework is a code generator that translates 
high-level descriptions of strategies into C++ source code. The conciseness of the 
ECL, compared to the generated code, provides a measure of the benefit for using 
DSLs to provide a higher level of abstraction. 
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