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thousands of elements requires a staggering amount of
clicking and typing within the modeling tool. The ad
hoc nature of this process causes errors, such as forget-
ting to make a connection between two replicated ele-
ments. Clearly, manual scaling affects not only modeling
performance, but also the representation’s correctness.

Both these change evolution categories would benefit
greatly from automation. To this end, we have devel-
oped the Constraint-Specification Aspect Weaver, a gen-
eralized transformation engine for manipulating models.
C-Saw is a plug-in for Vanderbilt University’s Generic
Modeling Environment (GME)—a configurable toolset
that supports the creation of domain-specific modeling
environments (www.isis.vanderbilt.edu/Projects/gme).
In “Developing Applications Using Model-Driven
Design Environments” on pp. 33-40, Krishnakumar
Balasubramanian and coauthors describe a GME appli-
cation. To address crosscutting changes, C-Saw incor-
porates several aspect-oriented principles.4

The combination of model transformation and aspect
weaving provides a powerful technology for rapidly
transforming legacy systems from the high-level prop-
erties that models describe. Further, by applying aspect-
oriented techniques and program transformation, small
changes at the modeling level can trigger very large
transformations at the source code level. Thus, model
engineers can explore alternative configurations using
an aspect weaver targeted for modeling tools and then
use the models to generate program transformation rules
for adapting legacy source code on a wide scale.

The escalating complexity of software and system models is making it difficult to 

rapidly explore the effects of a design decision. Automating such exploration with 

model transformation and aspect-oriented techniques can improve both productivity 

and model quality.
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W ith the expanded focus of software and
system models has come the urgent need
to manage complex change evolution
within the model representation.1 Design-
ers must be able to examine various design

alternatives quickly and easily among myriad and
diverse configuration possibilities. Ideally, a tool would
simulate each new design configuration so that design-
ers could rapidly determine how some configuration
aspect, such as a communication protocol, affects an
observed property, such as throughput.

To provide that degree of model-evolution support, a
tool must accommodate two categories of changes that
designers now do manually—typically with poor results.
The first category comprises changes that crosscut the
model representation’s hierarchy.2 An example is the
effect of fluctuating bandwidth on the quality of service
across avionics components that must display a real-
time video stream. To evaluate such a change, the
designer must manually traverse the model hierarchy by
recursively clicking on each submodel. This process is
tedious and error-prone, because system models often
contain hierarchies several levels deep. 

The second category of change evolution involves
scaling up parts of the model—a particular concern in
the design of large-scale distributed, real-time, embed-
ded systems,3 which can have thousands of coarse-
grained components.1 This type of change requires
creating multiple modeling elements and connections
among them. Scaling a base model of a few elements to
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On the basis of our experience applying C-Saw to
models from the mission-computing avionics domain,
we believe that it has the potential to greatly improve
productivity and decrease the errors characteristic of a
manual process.

AUTOMATED MODEL TRANSFORMATION
The idea of model transformation is to enable automa-

tion that will remove accidental design complexities in
the modeling process, just as software factories aim to
remove accidental software development complexities. 

Model transformation can take one of two approaches.5

Model-to-code transformation generates source code
(Java or C++, for example) from models, thus lowering
the abstraction level of modeling artifacts and making
them executable. Model-to-model transformation—this
article’s focus—applies a set of transformation rules that
take one or more source models as input to produce one
or more target models as output.6 A typical application of
model-to-model transformation is to refine an abstract
model with additional details that emerge in multiple loca-
tions. From our experience, model transformation can
automate many activities, which in turn will enhance engi-
neering productivity and model quality.

Figure 1 shows how model transformation works in
C-Saw. In GME, a metamodel represents the definition
of the language that describes a particular domain; meta-
model instances capture specific design configurations.
When a model engineer invokes C-Saw from the GME
toolbar, C-Saw asks the user to provide a set of files con-

taining transformation rules that describe the location
and behavior of the change to be performed on the
source models. 

Model transformation produces a new set of target
models that contain adaptations spread across the model
hierarchy according to the transformation specification.
The user can undo these adaptations and perform new
changes to the models by selecting different transforma-
tion rules. In essence, the user can distribute any system
property endemic to a specific domain across the model
hierarchy. C-Saw also aids in structural changes within
the model, even when the required change involves issues
that crosscut model components. Additional information
about C-Saw is available at www.cis.uab.edu/gray/
Research/C-SAW.

Model transformation language
To support the automation of model transformation,

several modeling tools provide different techniques 
to assist an engineer in performing a restricted set of
model changes. As the sidebar “Model Transformation
Languages” describes, a specific language for model engi-
neers and developers to use for specifying and executing
the desired transformations is a critical requirement.7

Such a language must have two core characteristics.
First, it must be focused on a particular domain or user
context. Users must be able to describe a transforma-
tion using concepts from their own domain. To maxi-
mize conciseness and comprehension, the language must
have core abstractions that are intuitive and cover the
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Figure 1. Model transformation in C-Saw. Source models and a transformation specification (written in the Embedded Constraint
Language—ECL) serve as input to a transformation engine that derives new target models.The center box represents C-Saw and
illustrates the connection between the GME API and the transformation specification language’s parser and interpreter.



largest possible range of situations that reflect current
modeling practice. A user-centered transformation lan-
guage should have a small (ideally minimal) set of con-
cepts and constructs, but be powerful enough to express
a complete set of desired transformation activities.

Second, a model transformation language must also
address specific model evolution tasks. It should have
full power to specify all types of modeling objects and
transformation behaviors, including model navigation,
querying, and modification. This requires both a robust
type system and a set of functionally rich operators. 

In addition to full expressiveness, such a language
should provide specific constructs and mechanisms for
users to describe model transformations in an efficient
way. In other words, a model transformation language
is a domain-specific language that captures all the model
evolution features, but also provides constructs that let
users refer to concepts from their own domains.

As Figure 1 shows, C-Saw uses the Embedded Con-
straint Language (ECL), an extension to the Object
Constraint Language (OCL), to meet these requirements.
ECL reflects concepts from the user’s modeling domain
and lets model engineers refine the model in a stepwise
manner.8 Model engineers can write transformations con-
cisely and intuitively because the transformations refer to
domain elements that they recognize. The ECL constructs
that support such transformation include a type system,
an element selection mechanism, and a set of operators
to manipulate the source models.

Type system. In GME terminology, a model is struc-
turally a graph in which its elements are the nodes and
the relationships between elements are the edges. An
atom is a model element that cannot contain any other
model elements. A model can be a container in which
there is a combination of submodels and atoms. Both
models and atoms have a set of properties. 
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Model Transformation Languages
In general, tools define model transformations using

direct model manipulation1 or intermediate representation
or by adopting a specialized transformation language. Because
the transformation language provides a set of constructs for
explicitly specifying transformation behavior, it enables a
more concise description than is possible by manipulating a
model through a general programming language.

Both academic and industrial researchers have proposed
many such languages that model engineers can use to define
transformation rules and rule application strategies, either
graphical or textual. Model transformation languages can
also be either imperative or declarative.2 In addition to our
Embedded Constraint Language, two transformation lan-
guages are worth noting.

The Graph Rewriting and Transformation Language3 is a
graphical transformation language based on graph grammars,
the approach that Atom3 also adopts.4 In GReAT, model
engineers treat models as graphs and specify model trans-
formations as graph transformations. Applying transforma-
tion rules, which are essentially rules for rewriting graphs,
realizes the graph transformations. A transformation rule
consists of two parts: the left-hand side (LHS) is a graph to
match, and the right-hand side (RHS) is a replacement graph.
If GReAT finds a match for the LHS graph, a rule is fired,
which results in replacing the matched subgraph with the
replacement RHS graph. GReAT provides graphical nota-
tions to specify graph patterns, model transformation rules,
and the control flow of transformation execution.

ATLAS Transformation Language (ATL)5 is a hybrid transfor-
mation language that combines declarative and imperative
constructs. Model engineers use declarative constructs to
specify source and target patterns as transformation rules
(to filter model elements, for example), and imperative

constructs to implement sequences of instructions (assign-
ment, looping, and conditional constructs, for example).

Choosing the most suitable transformation language style
depends on factors such as model size, designer experience,
and transformation task. Each style has its own set of trade-
offs. For example, with a pattern-based graph transformation
language, an engineer might be able to express a complex
pattern more concisely than with an imperative textual
language, but the pattern-matching engine could slow per-
formance in a large model. Understanding these tradeoffs
will help model engineers more effectively plan for model
evolution.
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modeling is growing. Indeed, the eighth AOM workshop
will take place in March 2006 (http://dawis.informatik.
uni-essen.de/events/AOM_AOSD2006).

The most prominent work in aspect modeling con-
centrates on notational aspects for the Unified Modeling
Language,9 but tools could also provide automation
using AOSD principles. In fact, one of our motivations
for developing C-Saw was the need to specify constraints
that crosscut the model of a distributed real-time embed-
ded system,2 such as the one in Figure 2. We have since
evolved C-Saw into a general model transformation
engine that addresses a broad range of transformations.

The top of Figure 2 shows the interaction among 
components in a mission-computing avionics application

modeled in the Embedded Systems
Modeling Language (http://escher.isis.
vanderbilt.edu/tools). The model illus-
trates a set of avionics components
(Global Positioning Satellite and nav-
igational display components, for
example) that collaborate to process
a video stream providing a pilot with
real-time navigational data. The mid-
dle of the figure shows the internal
representation of two components,
which reveals the data elements and

other constituents intended to describe the infrastruc-
ture of component deployment and the distribution mid-
dleware. The infrastructure implements an event-driven
model, in which components update and transfer data 
to each other through event notification and callback
methods.

Among the components in Figure 2 are a concurrency
atom and two data atoms (circled). Each of these atoms
represents a system concern that is spread across the
model hierarchy. The concurrency atom (red circle)
identifies a system property that corresponds to the syn-
chronization strategy distributed across the compo-
nents. The collection of atoms circled in blue defines the
recording policy of a black-box flight data recorder.
Some data elements also have an attached precondition
(green circle) to assert a set of valid values when a client
invokes the component at runtime.

To analyze the effect of an alternative design decision
manually, model engineers must change the synchro-
nization or flight data recorder policies, which requires
making the change manually at each component’s loca-
tion. The partial system model in Figure 2 is a subset of
an application with more than 6,000 components.
Manually changing a policy will strain the limits of
human ability in a system that large.

With ECL, model engineers merely define a modeling
aspect to specify the intention of a crosscutting concern.
The PreData2 aspect, for example, specifies that all
data2_ atoms must have a precondition defining the
valid range of values:

ECL provides a basic type system to describe values
and model objects in a transformation. The data types
in ECL include standard primitive data types (for exam-
ple, Boolean, integer, real, and string) and model object
types (for example, atom, model, object, and connec-
tion) that can reflectively refer to domain concepts spec-
ified in the metamodel.

Element selection. A common activity during model
transformation is to find model elements that might need
modifying. To locate these elements, model engineers
can use querying or pattern matching. Querying evalu-
ates a predicate expression over a model, returning only
the elements for which the expression holds. Pattern
matching binds a term or a graph pattern containing free
variables against the model.

ECL supports model queries by
providing the select operator, a set
of special operators to select a col-
lection of model objects, and a set of
operators to find a single model
object. The select operator speci-
fies a selection from an existing col-
lection, which can be the result of
previous operations and navigations.
The result of the select operation
is always a subset of the original 
collection. 

Numerous operators support model aggregation:
models(<expression>) selects all the submodels
that satisfy the constraint the expression specifies. Other
query operators include atoms(<expression>),
connections(<expression>), and attributes
(<expression>). Operators like findAtom and
findModel find a single atom or model; source and
destination are functions that return the source and
the destination objects in a connection.

Transformation operations.The primary operations
in this category support the engineer in adding and
removing objects and changing object properties.
Standard OCL can specify assertions about a model, but
is not intended to describe model changes. As an exten-
sion of OCL, ECL provides a set of operators for chang-
ing the model’s structure. For adding or removing
elements (a model, atom, or connection, for example),
ECL provides addModel, addAtom, addConnec-
tion, and removeModel, removeAtom, and remove
Connection. The setAttribute function aids in
changing the value of any element attribute.

CROSSCUTTING DESIGN PROPERTIES
When a concern spreads across an artifact, a model is

difficult to comprehend and change. Aspect-oriented
software development4 offers techniques to modularize
concerns that crosscut system components. Although the
application of AOSD originally focused on programming
languages, the community investigating aspect-oriented

ECL provides 
a basic type 

system to 
describe values 

and model objects 
in a transformation.



aspect PreData2()
{

rootFolder().findFolder
("ComponentTypes").models()->
select(m|m.name().endWith("Impl"))
->AddPre("data2_", "Data2Cond", 
"value<200");

}

This aspect tells C-Saw to collect from the root folder
all the models that are type ComponentTypes. From
this collection, it then selects all the components whose
name ends with "Impl" and applies the AddPre strategy.

C-Saw applies an aspect by traversing a model and
matching model elements that satisfy a predicate (in this
case, the selection predicate in the PreData2 aspect). It
then transforms the matched elements according to the
rules in the associated strategy—a modular ECL con-
struct that defines the transformation. C-Saw performs
each strategy in a specific modeling context, which the

aspect provides. The context can be an entire project; a
specific model, atom, or connection; or a collection of
assembled modeling elements. Using ECL, engineers can
define aspects to quantify the modeling elements they
want to change and apply the strategy construct to per-
form the required transformation.

Figure 3 shows how transformation strategies work.
C-Saw begins by applying the AddPre strategy to each
component it has selected from the PreData2 aspect.
AddPre finds all the Data component atoms and
matches the name passed in as an argument from the
aspect. The AddCond strategy attaches a new precon-
dition to all Data atoms that match this predicate. In
line 12, AddCond retrieves a placeholder for the actual
Data to be transformed. It then reflectively obtains the
parent component that contains the Data atom (line
13). The transformation sequence defined in lines 15
through 17 creates a new Condition atom (line 15)
and sets attributes defining a precondition with an
associated expression (lines 16 and 17). Finally,
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Figure 2. A subset of a model hierarchy with crosscutting model properties. Concerns related to synchronization (red circle),
black-box data recording (blue circle), and preconditions (green circle) are scattered across many submodels.
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AddCond adds a connection to the parent
component that links the Data atom to the
newly created Condition atom.

AUTOMATED MODEL SCALABILITY
A second form of design exploration involves
scaling up different parts of a model. Scala-
bility support within modeling tools is of
utmost concern to designers of distributed
real-time embedded systems. The issue of
scalability affects the performance of the
modeling activity, as well as the model rep-
resentation’s correctness. 

Figure 4 is an example of applying scalabil-
ity to the Event QoS Aspect Language (EQAL),
which model engineers use to configure a large
collection of federated event channels for mis-
sion-computing avionics applications (www.
dre.vanderbilt.edu/cosmic). 

The scalability issues in EQAL arise when
the model engineer must scale a small feder-
ation of CORBA event services from a base
model to accommodate more publishers and
subscribers. As the figure shows, scaling an
EQAL model from three sites and two gate-
ways per site to a model with eight sites and

Figure 4. Replication among a federation of CORBA gateways.The model engineer is attempting to replicate three sites to eight
(bottom), as well as replicate two internal sites to seven gateways (top). Such manual replication is tedious and error prone,
requiring close to 300 mouse clicks.

1 strategy AddPre(atomName, condName, condExpr : 
string)

2 {
3 atoms()->select(a | a.kind() == "Data" and 

a.name() == atomName)->
4 AddCond(condName, condExpr);
5 }
6 
7 strategy AddCond(condName, condExpr : string)
8 {
9 declare p : model;

10 declare data, pre : atom;
11
12 data := self;
13 p := parent();
14 
15 pre := p.addAtom("Condition", condName);
16 pre.setAttribute("Kind", "PreCondition");
17 pre.setAttribute("Expression", condExpr);
18 p.addConnection("AddCondition", pre, data);
19 }

Figure 3. ECL transformation to add a precondition expression to a 
Data atom.



seven gateways per site requires adding many
new connections. Indeed, to perform the equiv-
alent transformation manually, the model engi-
neer would have to insert more than 120 new
modeling elements and almost 150 connections
among all the new elements. Model transfor-
mations that serve as replicators can signifi-
cantly automate this manual task.3

Figure 5 shows the model transformation
that replicates the internal CORBA gateways
for a specific site. In line 1, C-Saw obtains the
site and number of desired gateways from the
user and passes them as parameters to the
expandSite strategy, which then finds the
specific site (line 3) and calls addGateWay_r,
a strategy that ensures C-Saw adds the right
number of gateways. addGateWay performs
the actual transformation by creating a new
gateway (line 19), locating the site’s core event
channel (line 20), and connecting the new gate-
way to the existing channel (line 21).

The collection of interacting strategies in
Figure 5 accomplishes the transformation
within each internal site (for example, the inter-
nal expansion of Site 2 in the top right of Figure
4). Because C-Saw strategies are reusable, the
model engineer can flexibly explore a design by
applying the transformation to several sites. We
have also specified a set of transformations to
scale the outermost number of sites (the trans-
formation that expands sites in the bottom of
Figure 4).

Being able to pass parameters to expand-
Site is critical to defining alternative designs. In con-
trast, manual replication severely limits the exploration
of design alternatives. Suppose the model engineer now
needs to scale the base model to 20 sites with 12 gate-
ways per site. Using a manual approach, the engineer
must repeat the same task from the beginning. With C-
Saw, the engineer merely inputs new parameters to the
strategies.

D espite recent advances in modeling tools, many
modeling tasks can still benefit from increased
automation. In contrast, integrated development

environments for programming languages provide many
features for comprehending and evolving large code
bases, including automated refactoring, code navigation,
and visualization. These capabilities still need investi-
gating within the context of modeling tools.

Model transformation can provide a common tech-
nology for implementing various kinds of model evolu-
tion. We have applied our C-Saw transformation engine
to several modeling languages in the distributed real-
time and embedded system domain to modularize cross-

cutting properties and replicate elements of a core
model. We are exploring several additions that will pro-
vide extra value to the transformation process, such as
testing and debugging support for ECL to detect and
find possible errors in a transformation specification.

C-Saw is just one of many model transformation
approaches, which differ widely in application and
results.5 Standards might appear in the near future, how-
ever, since in 2002 the Object Management Group
issued a request for proposals on query/views/transfor-
mations, which is near finalization (www.omg.org/
docs/ad/05-07-01.pdf). Given the diversity of existing
approaches, the effects of such standardization on gen-
eral modeling practice remain to be seen. �
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Figure 5. Model transformation to expand the number of CORBA
gateways at a specific site.

1 strategy expandSite(site, numGW : 
integer)

2 {
3 findModel("Site" + intToString 

(site)).addGateWay_r(1, numGW);
4 }
5 
6 strategy addGateWay_r(curr, numGW : 

integer)
7 {
8 if (curr <= numGW) then
9 addGateWay(curr); 

10 addGateWay_r(curr+1, numGW);
11 endif;
12 }
13 
14 strategy addGateWay(num : integer)
15 {
16 declare site_gw : atom;
17 declare ec : model;
18 
19 site_gw := addAtom("CORBA_Gateway", 

"CORBA_Gateway" + intToString(num));
20 ec := findModel("Event_Channel”);
21 addConnection("LocalGateway_EC", site_gw, 

ec); 
22 }
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