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AAn aspect-oriented approach can be beneficial at different stages of

the software life cycle and at various levels of abstraction. Whenever

the description of a software artifact exhibits crosscutting structure,

the principles of modularity espoused by AOP offer a powerful tech-

nology for supporting separation of concerns. We have found this to

be true especially in the area of domain-

specific modeling [3].

In domain-specific modeling, a design engineer describes a system

by constructing a model using the terminology and concepts from a

specific domain. Analysis can then be performed on the model, or

the model can be synthesized into an implementation. At the Insti-

tute for Software Integrated Systems (ISIS) at Vanderbilt University

(see www.isis.vanderbilt.edu/) we implement this approach using a

core tool—the Generic Model Editor (GME). The GME is a 

Jeff Gray, Ted Bapty, Sandeep Neema,
and James Tuck

Uniting AOP with model-integrated computing. 



88 October  2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

modeling environment that can be configured and
adapted from metalevel paradigm specifications [8].
In using the GME, a modeler loads a domain,
implemented with a metalevel paradigm, into the
tool. This provides an environment containing all of
the modeling elements and valid relationships that
can be constructed in a model. This specific
approach to domain-specific modeling has been suc-
cessfully applied in several different domains,
including automotive manufacturing [7], digital sig-
nal processing [11], and electrical utilities.

In one particular domain-specific paradigm we
created for reconfigurable systems, a modeler may
deploy constraints (we use a variant of the Object
Constraint Language to specify system properties
[12]) to capture application specific rules. In these
models, constraints are used to specify properties
such as bit precision, timing, and power concerns.

Due to the large number of conflicting design crite-
ria in reconfigurable systems, constraints aid in the
reduction of the number of design states that must
be examined. However, the utility of specifying con-
straints within the model is often diminished due to
the scattering of constraints throughout the model
hierarchy. Consequently, constraints represent a type
of crosscutting concern.

This article describes the difficulties caused by
crosscutting constraints and provides a description
of the AO techniques that are being used to amelio-
rate the problem. Our goal is to encode important
issues about the system being modeled in a clean and
localized manner. A key feature of this approach is it
provides a framework that uses software code gener-
ators to create new domain-specific weavers.

Constraints as Aspects
“The crucial choice is, of course, what aspects to 
study ‘in isolation,’ how to disentangle the original
amorphous knot of obligations, constraints and goals
into a set of ‘concerns’ that admit a reasonably 
effective separation.” [2]

The same problems that result from tangled
code in programming languages [5] also
occur in the tangled constraints of our
models [3]. Often, the same constraint is

repeatedly applied in many different places in a
model, usually with slight node-specific variations.
It would be beneficial to describe a common con-
straint in a modular manner and designate the places
and conditions where it is to be applied. With
respect to code, a large amount of redundancy can

Figure 1. Illustration of the difficulty 
in managing constraints.
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Figure 2.  A tangled resource constraint.

constraint K2MULT_RESOURCE() 
{  

  ((self.children("Forwarder").implementedBy() = self.children("Forwarder").children("forward"))
  implies 
    ((self.children("K2_Multiplier").children("K2_Shift_Multiplier").assignedTo() = project().resources("Xilinx_FPGA_1")) 
   and 
     (self.children("K2_Multiplier").children("K2_Full_Multiply").children("K2_Multiplier").assignedTo() = project().resources("Xilinx_FPGA_1"))
   and 
     (self.children("K2_Multiplier").children("K2_Full_Multiply").children("K2_Retrieval_00").assignedTo() = project().resources("Xilinx_FPGA_1"))
   )) 
and 
  ((self.children("Forwarder").implementedBy() = self.children("Forwarder").children("resource_boundary"))
  implies 
   ((self.children("K2_Multiplier").children("K2_Shift_Multiplier").assignedTo() = project().resources("Xilinx_FPGA_2"))
  and 
   (self.children("K2_Multiplier").children("K2_Full_Multiply").children("K2_Multiplier").assignedTo() = project().resources("Xilinx_FPGA_2"))
  and 
    (self.children("K2_Multiplier").children("K2_Full_Multiply").children("K2_Retrieval_00").assignedTo() = project().resources("Xilinx_FPGA_2"))
  ))

}



be removed using AO techniques
[6]. We are finding the same
applies to our models and 
constraints.

There are several different
kinds of constraints a modeler can
apply. Operational constraints
express relations between design
space alternatives and modes of
operation of the system. Compos-
ability constraints express com-
patibility between different
alternatives. They can be used to
restrict alternatives not compati-
ble with each other. Resource
constraints are used to indicate
specific hardware resources
needed by software modules. Per-
formance constraints are widely
used in our models. These con-
straint expressions indicate the
end-to-end latency, throughput,
power consumption, and bit pre-
cision.

As illustrated in Figure 1, three
replicated structures are acted on
by context-sensitive constraints.
The dominant form of decomposition shown in this
figure is concentrated on the functional hierarchy of
the system being modeled. Notice that each con-
straint cuts across this hierarchy. The manner in
which a constraint is applied also depends upon the
context of the sub-model (for example, constraint
“1” may be applied in different ways depending on
the context of each model element). However, if it
were essential to change the intention of these con-
straints, it would be necessary to visit each one
uniquely and modify it for each context. The 
dependent nature of each constraint makes change
maintenance a daunting task for anything but a sim-
ple model.

An example of the complexity that can result
from a tangled constraint is evident in Figure 2. This
resource constraint describes the effects of two dif-
ferent design alternatives. Our former approach to
constraint specification, represented by this figure,
required that every possible design alternative be
enumerated. The consequence is that constraints
become tangled and difficult to understand. Our
new approach provides a modular construct for sep-
arating such design decisions. Often, what we desire
is the ability to express a global system-wide con-
straint and have it propagated to all relevant nodes
in our model.

Embedded Constraint Language (ECL). The
requirements for our new approach necessitate a dif-
ferent type of weaver from those others have con-
structed in the past (for example, the weaver for
AspectJ [5]) because the type of software artifact
processed by the weaver differs. Other weavers
process source code but our weaver works with the
structured textual description of a model. In partic-
ular, this new weaver requires the capability of read-
ing a model that has been stored in XML. This
weaver also requires the features of an enhanced con-
straint language.

Our new approach utilizes a constraint language
in three different ways:

• Model Constraints: This type of constraint
appears as attributes of modeling elements. In
this case, constraints are used in the same manner
as the former approach (Figure 2 is an example of
a model constraint, albeit a tangled one). 

• Specification Aspects: A specification aspect is the
new modular construct for defining model con-
straints across the hierarchy. Each specification
describes the binding and parameterization of
strategies to specific nodes in a model. A specifi-
cation aspect may be described as a distant rela-
tive to a pointcut [5]. 
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strategy ApplyConstraint(constraintName : string, expression : string)
{
  addAtom("ECLConstraint", "Constraint", constraintName).addAttribute("Expression", expression);
}

strategy RemoveConstraint(constraintName : string)
{
  findAtom(constraintName).removeChild();
}

strategy ReplaceConstraint(constraintName : string, expression : string)
{
  RemoveConstraint(constraintName);
  ApplyConstraint(constraintName, expression);
}

strategy PowerStrategy(level : int, power : int)
{

  if (level < 3) then
  
    <<CComBSTR aConstraint = "power < " + power; >>
    ApplyConstraint("PowerConstraint", aConstraint);
    <<power = power / 10; level++; >>
    modelParts()->forAll(PowerStrategy(level, power));

  endif;  

}

constraint ATR_Power
{
    in Structural models("ProcessingCompound")->select(p | p.name() == "ATR_Top")->PowerStrategy(1, 100); 
}

Figure 3. Strategy and specification aspect examples.



• Strategies: A strategy is used to specify elements
of computation, constraint propagation, and the
application of specific properties to the model
nodes. Strategies will be generic in the sense that
they are not bound to particular model nodes in
their description. Each weaver that supports a
specific metalevel GME paradigm will have dis-
parate strategies. The intent of a strategy is to
provide a hook the weaver may call in order to
process the node-specific constraint application
and propagation. Thus, strategies offer numerous
ways for instrumenting nodes in the model with
constraints.

The three types of constraints listed here dif-
fer in purpose and in application, yet each
is based on the same underlying constraint
language. We call this constraint language

the Embedded Constraint Language, which is an
extension of the Object Constraint Language [12].
ECL provides many of the common features of
OCL, such as arithmetic operators, logical opera-

tors, and numerous operators on
collections (size, forAll,
exists, select, and so
forth). Something unique to ECL
and not provided within OCL is a
set of reflective operators for nav-
igating the hierarchical structure
of a model. These operators can
be applied to first-class model
objects (for example, a container
model or primitive model ele-
ment) in order to obtain reflective
information needed in either a
strategy or specification aspect.

Sample Strategies and Speci-
fication Aspects. Several sample
strategies and specification aspects
are specified in Figure 3. The first
three strategies at the top of this
figure are generic strategies that
can be used for constraint applica-
tion, removal, and replacement.
These simple strategies make use
of standard functions provided
within ECL (for example,
addAtom and removeChild).
Because the underlying model
hierarchy is stored as an XML file,
these standard functions are often
implemented as wrappers for the
specific calls that are needed to
the XML Document Object

Model (DOM). The strategy named ReplaceCon-
straint demonstrates that strategies may depend
on the capability of other strategies.

The PowerStrategy strategy will insert a new
ECL model constraint that specifies power proper-
ties in an embedded system. There are a few things
worth noting about this strategy:

• The strategy language uses ECL in such a way
that conditional statements and even recursion
are possible. 

• It is possible to provide inlined C++ code inside
of a strategy (this is indicated by the << .. >> syn-
tax). 

• Constraint propagation can be passed along to
sub-models by using the ECL functions. In this
case, the modelParts reflective function returns
a collection of all immediate children. The
forAll standard function then iterates over this
collection and invokes PowerStrategy on each
sub-model (with new values for power and level). 

• Although not explicitly shown here, it is possible
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Figure 4. Process of using the Constraint Weaver.
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strategy ApplyConstraint(constraintName : string,
expression : string)
{



to create several different types of PowerStrat-
egy by varying the strategy signature. Overloaded
strategies can offer various ways of applying the
power constraint and propagating it to sub-models. 

Notice that strategies are not bound to any par-
ticular node in the model. The binding and parame-
terization of strategies occurs within the
specification aspects. An example specification
aspect is shown near the bottom of Figure 3. This
simple specification aspect will find the node in the
model that is of type ProcessingCompound and
has the name ATR_Top. The PowerStrategy will
then be applied to this specific node using the para-
meters provided.

Different sets of specification aspects can be
weaved into a model. This gives the modeler the
capability of constructing “what-if ” scenarios.
This capability was impossible in our
former approach because there was no
modular construct for collecting the
constraints in a single location. Specifi-
cation aspects can be much more com-
plicated than shown here. A single
specification aspect can cause the
weaver to visit many different
nodes in the model hierarchy.
It is even possible for one
global aspect to be diffused
across the entire model hierar-
chy. In the future, we plan to
allow wild cards in the naming of
models—this will allow even more
powerful ECL expressions.

Constraint Weaver: A New Approach
The manner in which our weaver is used is illus-
trated in Figure 4. The GME can export the con-
tents of a model in the form of an XML document
(in this case, the XML DTD is related to the meta-
level paradigm from which the model was con-
structed). In our former approach, the generated
XML would be tangled with constraints throughout
the document. Using our new approach, it may be
quite possible that the exported XML model is void
of any constraints. We believe many graphical mod-
eling environments can use this process; it is not nec-
essarily specific to our GME.

The input to the domain-specific weaver consists
of the XML representation of the model, as well as a
set of specification aspects provided by the modeler.
The output of the weaving process is a new descrip-
tion of the model in XML. This enhanced model,
though, contains new constraints that have been

integrated throughout the model by the weaver.
One way to understand this process is to recon-

sider the diagram in Figure 1. The XML model that
is fed into the weaver will often resemble the hierar-
chy depicted in this diagram but without the con-
straints (here, provided as the red blocks). The
purpose of the specification aspects is to specify the
manner in which the constraints are replicated and
applied to the context-sensitive model elements. The
resultant enhanced model, then, would resemble the
diagram in Figure 1 with the added model con-
straints. 

The benefits of this approach are numerous. Con-
sider the case of embedded systems where con-
straints often have contradictory goals (for example,
latency and resource usage). In our former approach

that did not use AOP, latency and
resource requirements would be

scattered and mixed throughout
the model. As a result, it was
quite difficult to isolate the
effects of latency or resource
constraints on the design. By
aspectifying these concerns,
the designer may apply
specification aspects sepa-
rately to see how the sys-
tem is affected in each

case. In this way, areas of the
system that will have more diffi-

culty meeting a requirement may be given
more relaxed constraints, and other parts of the sys-
tem may be given tighter constraints. In short, it
enables the designer to quickly isolate and study the
effects of constraints across the entire system. There-
fore, the separation of concerns provided by the
specification aspects improves the modular under-
standing of the effect of each constraint. We refer to
the plugging/unplugging of various sets of specifica-
tion aspects into the model as creating “what-if ” sce-
narios. This is somewhat analogous to the ability
that AspectJ offers in terms of being able to
plug/unplug certain aspects (for example, logging)
into a core piece of Java code.

A Meta-Weaver Framework
Each specific GME metamodeling paradigm intro-
duces different types of modeling elements, syntax,
and semantics. For example, the metalevel paradigm
that we used to create models of the Saturn automo-
bile factory [7] is very different from the paradigm
used to create avionics models for Boeing. Therefore,
different weavers are needed for different paradigms.
This section describes the process in which new
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instances of domain-specific weavers are constructed
using a meta-weaver framework (see Figure 5).

Strategy Code Generator (StratGen). Strategies
are used to aid in the rapid construction of new
domain-specific weavers. ECL constraints can suc-
cinctly capture portions of a strategy specification. A
generative programming approach has been adopted
with respect to constructing a weaver [1]. We have
developed a code generator capable of translating the
strategies into C++ code that is then compiled within
the weaver framework. Each domain-specific para-
digm can then be considered as being
componetized within the weaver. 

The C++ code that is gen-
erated by StratGen is much
more complex than the
strategy specification. All of
the details of making the
appropriate XML DOM
calls and the iterations over
collections are hidden
from the strategy specifier.
This allows the construc-
tion of a weaver at a higher
level of abstraction—a com-
monly recognized benefit of
using domain-specific languages and
code generators [1].

XML Parser. The C++ code generated
by StratGen is dependent upon several key
components. Strategies iterate and manipulate the
model, as stored in the DOM. The XML Parser
component is responsible for providing wrappers for
the methods used to interact with the DOM. XML
Parser is also given the task of encapsulating all of
the functionality needed to load/save a model using
XML. The generated C++ strategies are heavily
dependent upon the XML Parser functionality.

Aspect Parser. The Aspect Parser is another piece
of the framework. Its purpose is to parse and apply
the specification aspects. The application of a speci-
fication aspect will result in the invocation of some
strategy. It is the task of the Aspect Parser to locate
specific nodes in the model hierarchy and invoke
specific strategies on those nodes.

An ECL grammar has been created that is used
with the PCCTS parser generator [10]. The Aspect
Parser uses this grammar, and the associated data
structures that represent the parse tree, extensively.
In fact, StratGen uses the same grammar during the
translation of strategies into C++ code.

Meta-Weaver Instantiation versus Weaver
Invocation. A distinction should be made concern-
ing the way these various components are used in

the stages of meta-weaver instantiation (the creation
of a new domain-specific weaver) versus weaver
invocation (executing a weaver on a specific model
with a specific set of specification aspects).

While strategies are unique to each instance of a
domain-specific weaver, the aspect parser that
processes specification aspects is the same for every
weaver instance. Another difference between specifi-
cation aspects and strategies is in the way they are
realized. Specifically, ECL constraints applied within
strategies are actually used to generate C++ code that
is then compiled within the framework to create a
new weaver. On the other hand, the ECL constraints

used in specification aspects are interpreted, in
memory, during the invocation of a weaver.

Constraints used in strategies are synthesized
during instantiation of the meta-weaver.

Constraints used in specification aspects
are interpreted during the invocation of
a specific weaver.

A Meta-Weaver for Programming
Languages. Software development
occurs in a polyglot world. Recognizing
this truth, we are currently constructing a
new type of meta-weaver that works with
programming languages rather than
domain-specific models. This may be
useful to those who want some of the ben-

efits of AOP but use languages other than
Java and AspectJ. For example, this new type of

meta-weaver would allow the construction of a new
weaver that integrates stored procedure code (for exam-
ple, Oracle PL/SQL) with an aspect language designed
for improving the modularity of exception handling. In
a sense, each programming and aspect language becomes
componentized within the weaver. This new application
of a meta-weaver was initially presented in [4].

Our programming language meta-weaver bor-
rows from the previous work of adaptive program-
ming with respect to languages for traversal of object
structures [9]. In fact, a key adaptive programming
principle—structure shyness—is evident in Figure 5
since there is a distinct separation of behavior (strat-
egy specifications) from structure (the underlying
model and specification aspects). 

Conclusion
“Even for this let us divided live …That by this
separation I may give that due to thee which thou
derservest alone.”

—William Shakespeare, Sonnet XXXIX

We have found the source of some of our modeling
problems was directly related to a lack of support for
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separation of concerns with respect to constraints.
Constraints may be specified throughout the nodes of
a model in order to stipulate design criteria and limit
design alternatives. For example, power constraints
may be written for all the nodes in a functional hier-
archy. However, when the specification changes, each
node expressing a power constraint must be visited
and updated. Whether the constraints relate to the
operation, the composition, or the resources of the
system, their scattering throughout various levels of
our models has made it difficult to maintain and rea-
son about their effects and purpose.

We have proposed a solution that allows modular
specifications of constraints to be propagated
throughout a model via a domain-specific weaver.
Domain-specific weavers rely on aspect specifica-
tions and strategies to carry out their duty. Aspect
specifications, similar to pointcuts in AspectJ [5], are
used to describe where the constraints will be
applied in the model, and strategies describe how a
constraint is applied in the context of a particular
node in the model. Domain-specific weavers are cre-
ated as a particular instantiation of a meta-weaver
framework. A core component of this framework is
a code generator that translates high-level descrip-
tions of strategies into C++ source code.

This approach unites the new area of AOP with
model-integrated computing [3]. The preliminary
results indicate that simpler, more understandable con-
straints may be specified and propagated throughout
the model hierarchy. This also enables a designer to
examine various “what-if” scenarios based on alterna-
tive design decisions. Ostensibly, an AOP-based
approach to modeling and constraint utilization
greatly enhances the maintainability, understandabil-
ity, and evolvability of domain-specific models.
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