
Challenges
•Most speech programs focus on real‐time capabilities. This
project is focused on the identification in pre‐existing audio
streams.

•Accuracy is key for the success of the algorithm. Low accuracy
could actually hinder the search process rather than improve it.

•Waveform analysis of speech is difficult due to different styles
and tones. This project investigated and designed an algorithm
based on principles of waveform analysis.

Objective
The objective of this project is to develop a general single word
search algorithm that allows for identification and removal of a
specified word within an audio file through waveform analysis.
The application of this objective is to reduce time for manual
editing of audio streams. A specific use for this program is the
identification of excessive stutter words in a voice recording.
The program will be written in the language of Java.

The focus of this research is an investigation into
waveform analysis of an existing audio file. The
investigation developed and tested an algorithm that
identifies a given specified word/section within an audio
stream file. The user is prompted to pick a word that
needs to be searched for either through a .wav file or
through specifying a section within the currently
represented audio file. After the word specification is
set, an audio file can be searched through. The possible
word transitions and sections matching the desired word
will be marked and tagged in a visual manner on the
audio stream, allowing the user to see where the
positions if the target sound were found. Once the
matches have been identified, the developed software
will allow the user to play each section to see if there
are any false positives within the search. Several
classes were created in helping to develop the search
method. The research included an investigation into
new algorithms to search large audio streams for
sample sounds. An application of the project was used
to identify stutter words uttered during an interview.

Extra Classes

Several classes were created to enhance the existing
Media Computation library and in order to permit
easier manipulation of other classes.

•SampleArray class – creates an object containing
an ArrayList. The ArrayList holds every SoundSample
object within the audio stream. This allows for
simpler access to a large section of SoundSample
objects instead of calling on each individual one.

•Multi class – keeps track of multiple selections and
positions within the audio stream.

Abstract

Portion of the SampleArray class

Analysis

−Average value – Takes the average value of the sample
section.

•The specified bands from the sample are compared to the bands
in the audio file. A value is then generated to determine whether
the compared bands are a matching set. Note: some
measurements are weighted more heavily in determining a
match.

•The matching sections are then presented to the user to confirm
the selection.

Part of the
Band class, a
nested class
within
Analysis. An
object is
created that
represents a
single time
band.

• Several measurements will be taken to determine if there was
a matching sequence in the stream:

− Root mean square (RMS) of the samples.
− Crest Factor – a waveform measurement, the crest factor is
calculated by dividing the peak magnitude by the root mean
square of the sample sequence. This program gave some
flexibility by taking the three largest peaks above the line and
averaging them.
− Range (crest‐trough) – Finds the value difference from the
largest crest to the lowest trough of the sample sequence.

The highlighted section is a single time band of roughly five
milliseconds in duration. The size of the band in this particular file is
220 samples.

A transitional point in the audio stream, usually indicating a shift in phonemes.

The Analysis class

Background

The Georgia Tech media computation library provides different
classes and files related to media‐based interactions. The project
utilized the following classes.

• SoundExplorer – Creates an object that presents a waveform
representation of the specified audio file. The graphical user
interface of the class was modified to allow the user to perform the
sample sound search.

• SoundSample – A class that represents one sample of the sound.

• SimpleSound – Represents the entire specified audio file.

Sampling (Signal Processing)

Execution of SoundExplorer class.

•Sampling is the reduction of a continuous wave signal into a discrete wave signal.
Samples are taken at equal time intervals and those are used to reconstruct the original
signal. Since noise is considered a continuous wave, sampling is used in order to create a
discrete form. Data loss may occur when converting a continuous signal to a discrete
form if the sampling rate is too low. Therefore, a minimum sampling rate should be
calculated. An analog signal and its sampled form. 

•According to the Nyquist‐Shannon sampling theorem, a perfect reconstruction requires a sampling frequency of at least twice the
maximum frequency of the audio stream. (e.g., 8 kHz requires 16 ,000 samples/second).

Media Computation Library

• Class Analysis encompasses all of the methods that pertain to
waveform analysis.

•The audio wave is split into time bands of relatively similar duration (~5 milliseconds).
•The final step is to perform automated waveform analysis on each individual band, recording the measurements stated.

Recognition of Sound Sample Sequences Using Waveform Analysis:
Detecting Stutter Words in an Audio Stream

A section 
from the 
Analysis 

class.



Future Work

•Decrease amount of false transitions and matches: The main future focus is to
reduce any false transitions or matches that may be present during a search.

•Extended support for audio formats: Extended support to popular extensions
such as .mp3 or .ogg would have greater productivity compared to only
supporting .wma.

•Real‐time Speech Recognition: The program searches through pre‐existing audio
streams, but more use could be added if it was capable of analyzing speech in
real‐time.

Conclusion 

•There was success in identification of a sample sound. The words identified correctly ranged from
20‐50%. The variance in success is most likely attributed to the sample value range in the audio
stream. In some cases, there were no correct identifications in the stream. Files with a very low
range created more false matches than those with high ranges.

•Overall, this project showed that it is possible to automatically identify similar words, albeit, it may
need a more thorough comparison in order to correctly match them.

Applications

•There are a fewmedia based applications in which this program will be useful.

−Reduce manual editing time by lowering the amount of instances a word is
present in the audio file. This would be especially useful with speakers that
excessively stutter, or audio where the word occurs a large amount of times.

−The program could serve as a method of searching through the sound file. Key
words can be passed in to be searched for and determine whether it occurs or not.
This could be applied to data mining.


