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Parallel programming challenges

Duplicated code

“ocIMatrVecMul from the OpenCL
installation package of NVIDIA, three
steps — 1) creating the OpenCL context, 2)
creating a command queue and 3) setting
up the program — are achieved with 34
lines of code.”

Lack of Abstraction

The programmers should follow a
problem-oriented approach rather than
the current machine or architecture-
oriented approach towards parallel
problems.

Performance Evaluation

To make sure the obtained performance
cannot be further improved, a program
may need to be rewritten to different
parallel libraries supporting various
approaches (shared memory, GPUs, MPI)

time(s) in log scale

10 ¢

0.1

0.01

0.001

0.0001

T T rrry I T T T L)
Matrix Multiplication
Matrix Transpose

| i i gl

10

100 1000
size of matrix in log scale

1000(



Research question
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Is it possible to express parallel programs in a
platform-independent manner?
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Solution approach

AbstractAPlIs: Design a DSL that can express two leading
GPU programming languages

Support CUDA and OpenCL
Automatic data transfer
Programmer freed from device variables

CUDACL: Introduce a configurable mechanism through
which programmers fine-tune their parallel programs

Eclipse plugin for configuring GPU parameters
Supports C (CUDA and OpenCL) and Java (JCUDA, JOCL)
Capable of specifying interactions between kernels

CalCon: Extends our DSL to shared memory; such that

programs can be executed on a CPU or GPU

Separating problem and configuration

Support Fortran and C
Extend CalCon to a multi-processor using a Message Passing
Library (MPL)



Phase 1: Abstract APlIs

Design a DSL that can express two leading GPU programming languages

APl comparison of CUDA and OpenCL
[Function __ |CUDA______ |OpenCL_______

Allocate Memory cudaMalloc clCreateBuffer *XPUmalloc
Transfer Memory cudaMemcpy SIRiEER By *GPUcall
clWriteBuffer XPUrel
[

call Kernel <<< X,y >>> clEnqueueNDRange re.ease

’ clSetKernelArg *GPUinit
Block Identifier blockldx get_group_id
Thread Identifier threadldx get_local_id
Release Memory cudaFree clReleaseMemObject

LOC comparison of CUDA, CPP and Abstract API

Vector Addition
2 Matrix Multiplication 28 14 12 3 14 6
3 Scan Test Cuda 82 NA 72 1 10 12
4 Transpose 39 17 26 2 13 8
5 Template 25 13 13 2 12 6
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Phase 2: CUDACL

Introduce an easily configurable mechanism through which programmers
fine-tune their parallel programs

CUDACL Configuration )

Parallel blocks = Variables
The list of paraliel blocks from the file AmayAdd.c Variables identified and classified by static code analysis
& ArrayAdd |Add...| Input Variables T a Ob Oc

Output Variables Oc

Loop Variables [ j

~ GPU Execution parameters
Thread (work item) and block (work group) size
Thread(x) 256 Thread(y) 001 Thread(z) 001

Block(x) 001 Block(y) 001

[] use OpenCL API based on variable v

» Linking sequential file

Code Generation
) CUDA

) OpenCL Execute on the device | W

h. ] In same file

Generate code| 6



Phase 3: CalCon

Extend our DSL to shared memory such that programs can be
executed on a CPU or GPU

Design details of CalCon
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Related works

GPU
languages

CUDA

abstractions Other works

{ OpenCL
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{ Cg } —  hiCUDA \— CalCon — Concurrencer
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— Brook — CUDA-lite —  Sequoia

Only tool which
supports CUDA, Habenero
OpenCL, and | project

Shared memory

— PGl compiler

Hardware details
or lightweight { }
CuPP

communication framework

Not portable;
Only applicable for
GPUs from NVIDIA



Example: Matrix Transpose
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Matrix Transpose (CUDA kernel)

__global__ void transpose(float xodata,
float+ idata,
int width,
int height){
int xIndex = blockDim.x % blockIdx.x + threadIdx.x;
int yIndex = blockDim.y * blockIdx.y + threadldx.y:

if (xIndex < width && yIndex < height){

int index_in = xIndex + width # yIndex;
int index_out = yIndex + height * xIndex;
odata|[index_out] = idata[index_in];
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Matrix Transpose (OpenMP)

void transpose(float =xodata,
float+ idata,
int width,
int height){
#pragma omp parallel private(xIndex,ylndex)
num_threads(N)
default (shared){
#pragma omp for
for(int xIndex = (0; xIndex < width:; xIndex++)
for (int yIndex = 0; yIndex < height; yIndex++) {
int index_in = xIndex + width #% yIndex:
int index_out = yIndex + height % xIndex;
odata|index_out| = idata|[index_in];
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Matrix Transpose (CalCon)

//Starting the parallel block named transpose

parallelstart (transpose);
Data Flow in GPU

42 CUDA kernels
were selected
from 25 programs.

//Use of abstract APl getLevell
Int xIndex = getLevell();

//Use of abstract APl getlLevel?2

int ylndex = getLevel2(); Program analysis

15 OpenCL
if(xIndex < width && ylndex < height){ programs
Int 1ndex _1In = XxIndex +width*ylndex;
int 1ndex out = ylndex +height*ylndex; Shared memory
odata[i1ndex out]= i1data[index_in]; 10 OpenMP
} programs from

varying domains

//Ending the parallel block
parallelend(transpose);
Abstract DSL code for matrix transpose

http://cs.ua.edu/graduate/fjacob/software/analysis/



Conclusion and Future work

1. Abstract APIs can be used for abstract GPU programming
which currently generate CUDA and OpenCL code.

— 42 CUDA kernels from different problem domains were selected to identify
the data flow

— 15 OpenCL programs were selected to compare with their CUDA counter
part to provide proper abstraction

— Focus on essence of parallel computing, rather than language-specific
accidental complexities of CUDA or OpenCL

— CUDACL can be used to configure the GPU parameters separate from the
program expressing the core computation

2. Extend our DSL to shared memory; such that programs can
be executed on a CPU or GPU CalCon

—  Separating problem and configuration
—  Support Fortran and C

3. Extend the DSL to a multi-processor using a Message Passing
Library (MPL)
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OpenMP FORTRAN programs

Program Name Total LOC Parallel LOC No. of R W
0 blocks
2D Integral with N
! Quadrature rule 601 11.2%) ! v
2 Linear algebra routine 557 28 (5%) 4 N
3 Random number 20 9(11%) I
generator
Logical circuit o
4 satisfiability 157 37 (18%) ! v
5 Dijkstra’s shortest path 201 37 (18%) 1
Fast Fourier o
6 Transform 278 51 (18%) 3
7 Integral wﬁl1 Suadrature 41 8 (19%) | J
8 Molecular 215 48 (22%) 4 J J
dynamics
9 Prime numbers 65 17 (26%) 1 N
1 Steady stqte heat 08 56 (57%) 3 g
0 equation




Refined FORTRAN code (OpenMP)

1 Refined FORTRAN program
call parallel(instance_num,’satisfiability”)

ilo2 = ( ( instance_num - id ) *ilo &
+ ( id ) * ihi ) &
/ ( instance_num

ihi2 = ( ( instance_num - id - 1) *ilo &
+ ( id + 1) * ihi) &
/ ( instance_num )

solution_num_local = 0

do i = ilo2, ihi2 -1
call i4_to_bvec ( i, n, bvec )
value = circuit_value ( n, bvec )

if ( value == 1 ) then
solution_num_local = solution_num_local + 1

end if
end do

solution_num = solution_num + solution_num_local
call parallelend(“satisfiability”)

1 Configuration file for FORTRAN program above
block “satisfiability”

init:
1$omp parallel &
1$omp shared ( ihi, ilo, thread _num ) &
I$omp private ( bvec, i, id, ilo2, ihi2,
J, solution_num_local, value ) &
I$omp reduction ( + : solution_num ).
final:.




FORTRAN code (MPI)

TPart 1: Master process setting up the data
if (my_id == 0 ) then dop=1, p_num-1

my_a = ( real ( p_num - p, kind =8 ) *a &
+ real ( p-1, kind=8) *b ) &
/ real ( p_num -1, kind = 8)

target = p

tag = 1

call MP1_Send ( my_a, 1, MPI_DOUBLE_PRECISION, &
target, tag, &VPI_COMM_WORLD, &
error_flag )
end do
TPart 2: Parallel execution
else
source = master
tag = 1
call MPI_Recv ( my_a, 1, MPI_DOUBLE_PRECISION, source,
MP1_COMM_WORLD, status, error_flag )

my_total = 0.0D+00
doi =1, myn

x=(Creal (my_n-i, kind =8 ) *my_ a &
+ real ( i-1, kind=8) *myb) &
/ real ( my_n -1, kind = 8 )
my_total = my _total + £ ( x )
end do

my_total = ( my_b - my_a ) * my_total / real
( my_n, kind = 8)

end if

IPart 3: Results from different processes are collected to
I calculate the final result

call MPI_Reduce ( my_total, total, 1,
MPI_DOUBLE_PRECISION, & MPI_SUM,
master, MP1_COMM_WORLD, error_flag)

tag,
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Refined FORTRAN code (MPI)

IWork share part
do p = 1, instance_num - 1

my_a = ( real ( instance_num - p, kind =8 ) *a &
+ real ( p-1, kind =8) *b) &
/ real ( instance_num -1, kind = 8 )

call distribute (my_a)
end do

IDeclaring parallel block
call parallel(num,’quadrature”)

my_total = 0.0D+00
doi=1, myn

x = (Creal Cmy_n -1, kind =8 ) *my_a &
+ real ( i-1,kind=8) *myb)&
/ real ( my_n -1, kind = 8)
my_total = my_total + ¥ ( x )
end do

my_total = ( my_b - my_a ) * my_total / real
( my_n, kind = 8)
call endparallel(“quadrature’);

i Configuration file for FORTRAN program above
1

Block “quadrature”

init:
source = master
tag = 1
call MPI_Recv ( my_a, 1, MPI_DOUBLE_PRECISION, source,
tag, &
MP1_COMM_WORLD, status, error_flag ).
final:

call MPI_Reduce ( my_total, total, 1,
MPI1_DOUBLE_PRECISION, & MPI_SUM,
master, MP1_COMM_WORLD, error_flag).

distribute param:

call MPI_Send ( param, 1, MPI_DOUBLE_PRECISION, &
target, tag, &MPI_COMM_WORLD, &
error_flag ).




Parallel and OpenMP features

Shared memory features Parallel features

Variable modifiers, Critical and | Parallel blocks, Reduction and
Singular blocks, Barrier blocks,

Number of threads Number of instances,

Workshare




