THE UNIVERSITY OF

ALABAMA

EMGINEERING

Extending Abstract GPU APIs to
Shared Memory

SPLASH Student Research Competition
October 19, 2010

Ferosh Jacob
University of Alabama
Department of Computer Science
fjacob@crimson.ua.edu
http://cs.ua.edu/graduate/fjacob

Parallel programming challenges

Duplicated code

“ocIMatrVecMul from the OpenCL
installation package of NVIDIA, three
steps — 1) creating the OpenCL context, 2)
creating a command queue and 3) setting
up the program — are achieved with 34
lines of code.”

Lack of Abstraction

The programmers should follow a
problem-oriented approach rather than
the current machine or architecture-
oriented approach towards parallel
problems.

Performance Evaluation

To make sure the obtained performance
cannot be further improved, a program
may need to be rewritten to different
parallel libraries supporting various
approaches (shared memory, GPUs, MPI)

time(s) in log scale

10 ¢

0.1

0.01

0.001

0.0001

T T rrry I T T T L)
Matrix Multiplication
Matrix Transpose

| i i gl

10

100 1000
size of matrix in log scale

1000(

Research question

-thread
CUDA p-threads
OpenMPI

\ R
fg\ \D OpenMPl
v \
OpenCL :
SSSG)
-

Is it possible to express parallel programs in a
platform-independent manner?

1.

2.

3.

4.

Solution approach

AbstractAPlIs: Design a DSL that can express two leading
GPU programming languages

Support CUDA and OpenCL
Automatic data transfer
Programmer freed from device variables

CUDACL: Introduce a configurable mechanism through
which programmers fine-tune their parallel programs

Eclipse plugin for configuring GPU parameters
Supports C (CUDA and OpenCL) and Java (JCUDA, JOCL)
Capable of specifying interactions between kernels

CalCon: Extends our DSL to shared memory; such that

programs can be executed on a CPU or GPU

Separating problem and configuration

Support Fortran and C
Extend CalCon to a multi-processor using a Message Passing
Library (MPL)

Phase 1: Abstract APlIs

Design a DSL that can express two leading GPU programming languages

APl comparison of CUDA and OpenCL
[Function __ |CUDA______ |OpenCL_______

Allocate Memory cudaMalloc clCreateBuffer *XPUmalloc
Transfer Memory cudaMemcpy SIRiEER By *GPUcall
clWriteBuffer XPUrel
[

call Kernel <<< X,y >>> clEnqueueNDRange re.ease

’ clSetKernelArg *GPUinit
Block Identifier blockldx get_group_id
Thread Identifier threadldx get_local_id
Release Memory cudaFree clReleaseMemObject

LOC comparison of CUDA, CPP and Abstract API

Vector Addition
2 Matrix Multiplication 28 14 12 3 14 6
3 Scan Test Cuda 82 NA 72 1 10 12
4 Transpose 39 17 26 2 13 8
5 Template 25 13 13 2 12 6
5

Phase 2: CUDACL

Introduce an easily configurable mechanism through which programmers
fine-tune their parallel programs

CUDACL Configuration)

Parallel blocks = Variables
The list of paraliel blocks from the file AmayAdd.c Variables identified and classified by static code analysis
& ArrayAdd |Add...| Input Variables T a Ob Oc

Output Variables Oc

Loop Variables [j

~ GPU Execution parameters
Thread (work item) and block (work group) size
Thread(x) 256 Thread(y) 001 Thread(z) 001

Block(x) 001 Block(y) 001

[] use OpenCL API based on variable v

» Linking sequential file

Code Generation
) CUDA

) OpenCL Execute on the device | W

h.] In same file

Generate code| 6

Phase 3: CalCon

Extend our DSL to shared memory such that programs can be
executed on a CPU or GPU

Design details of CalCon

—

. - _____-_-_-_-'-""--..,‘_
(_Eallel function calls + configu ratE:L/)

|
Generatingfbstract API

CDT parsing and refactoring

Y
Abstract API pre-defined functions

A -
Generat}gg source code
»

CDT parsing and refactoring

- T

— T~

(_ CUDAcode) (OpenCLcode) (OpenMPcode)

Related works

GPU
languages

CUDA

abstractions Other works

{ OpenCL

L.

s N s Y
{ Cg } — hiCUDA \— CalCon — Concurrencer

. J - J

— Brook — CUDA-lite — Sequoia

Only tool which
supports CUDA, Habenero
OpenCL, and | project

Shared memory

— PGl compiler

Hardware details
or lightweight { }
CuPP

communication framework

Not portable;
Only applicable for
GPUs from NVIDIA

Example: Matrix Transpose

Exchange Exchange Exchange

with 4 with 2 with 1

oo s s fa o oo

|.|=-||.|:-|.r.~.|.|:~.|:::n::::::::

http://biomatics.org/index.php/Image:Hct.jpg

~1km LHLD-LAJM|I—'D

0o o N & M e W R =

e e e
W = O

Matrix Transpose (CUDA kernel)

__global__ void transpose(float xodata,
float+ idata,
int width,
int height){
int xIndex = blockDim.x % blockIdx.x + threadIdx.x;
int yIndex = blockDim.y * blockIdx.y + threadldx.y:

if (xIndex < width && yIndex < height){

int index_in = xIndex + width # yIndex;
int index_out = yIndex + height * xIndex;
odata|[index_out] = idata[index_in];

Lol R B L L I B

Matrix Transpose (OpenMP)

void transpose(float =xodata,
float+ idata,
int width,
int height){
#pragma omp parallel private(xIndex,ylndex)
num_threads(N)
default (shared){
#pragma omp for
for(int xIndex = (0; xIndex < width:; xIndex++)
for (int yIndex = 0; yIndex < height; yIndex++) {
int index_in = xIndex + width #% yIndex:
int index_out = yIndex + height % xIndex;
odata|index_out| = idata|[index_in];

14
15
i6

Matrix Transpose (CalCon)

//Starting the parallel block named transpose

parallelstart (transpose);
Data Flow in GPU

42 CUDA kernels
were selected
from 25 programs.

//Use of abstract APl getLevell
Int xIndex = getLevell();

//Use of abstract APl getlLevel?2

int ylndex = getLevel2(); Program analysis

15 OpenCL
if(xIndex < width && ylndex < height){ programs
Int 1ndex _1In = XxIndex +width*ylndex;
int 1ndex out = ylndex +height*ylndex; Shared memory
odata[i1ndex out]= i1data[index_in]; 10 OpenMP
} programs from

varying domains

//Ending the parallel block
parallelend(transpose);
Abstract DSL code for matrix transpose

http://cs.ua.edu/graduate/fjacob/software/analysis/

Conclusion and Future work

1. Abstract APIs can be used for abstract GPU programming
which currently generate CUDA and OpenCL code.

— 42 CUDA kernels from different problem domains were selected to identify
the data flow

— 15 OpenCL programs were selected to compare with their CUDA counter
part to provide proper abstraction

— Focus on essence of parallel computing, rather than language-specific
accidental complexities of CUDA or OpenCL

— CUDACL can be used to configure the GPU parameters separate from the
program expressing the core computation

2. Extend our DSL to shared memory; such that programs can
be executed on a CPU or GPU CalCon

— Separating problem and configuration
— Support Fortran and C

3. Extend the DSL to a multi-processor using a Message Passing
Library (MPL)

References

Ferosh Jacob, David Whittaker, Sagar Thapaliya, Purushotham Bangalore,
Marjan Mernik, and JeffGray, “CUDACL: A tool for CUDA and OpenCL
programmers,” in Proceedings of 17th InternationalConference on High
Performance Computing, Goa, India, December 2010, 11 pages.

Ferosh Jacob, Ritu Arora, Purushotham Bangalore, Marjan Mernik, and Jeff
Gray, “Raising the level of abstraction of GPU-programming,” in Proceedings
of the 16th International Conference on Parallel and Distributed Processing,
Las Vegas, NV, July 2010, pp. 339-345

Ferosh Jacob, Jeff Gray, Purushotham Bangalore, and Marjan Mernik,
“Refining High Performance FORTRAN Code from Programming Model
Dependencies” HIPC Student Research Symposium, Goa, India, December
2010, 5 pages..

Questions ?

http://cs.ua.edu/graduate/fjacob/

OpenMP FORTRAN programs

Program Name Total LOC Parallel LOC No. of R W
0 blocks
2D Integral with N
! Quadrature rule 601 11.2%) ! v
2 Linear algebra routine 557 28 (5%) 4 N
3 Random number 20 9(11%) I
generator
Logical circuit o
4 satisfiability 157 37 (18%) ! v
5 Dijkstra’s shortest path 201 37 (18%) 1
Fast Fourier o
6 Transform 278 51 (18%) 3
7 Integral wﬁl1 Suadrature 41 8 (19%) | J
8 Molecular 215 48 (22%) 4 J J
dynamics
9 Prime numbers 65 17 (26%) 1 N
1 Steady stqte heat 08 56 (57%) 3 g
0 equation

Refined FORTRAN code (OpenMP)

1 Refined FORTRAN program
call parallel(instance_num,’satisfiability”)

ilo2 = ((instance_num - id) *ilo &
+ (id) * ihi) &
/ (instance_num

ihi2 = ((instance_num - id - 1) *ilo &
+ (id + 1) * ihi) &
/ (instance_num)

solution_num_local = 0

do i = ilo2, ihi2 -1
call i4_to_bvec (i, n, bvec)
value = circuit_value (n, bvec)

if (value == 1) then
solution_num_local = solution_num_local + 1

end if
end do

solution_num = solution_num + solution_num_local
call parallelend(“satisfiability”)

1 Configuration file for FORTRAN program above
block “satisfiability”

init:
1$omp parallel &
1$omp shared (ihi, ilo, thread _num) &
I$omp private (bvec, i, id, ilo2, ihi2,
J, solution_num_local, value) &
I$omp reduction (+ : solution_num).
final:.

FORTRAN code (MPI)

TPart 1: Master process setting up the data
if (my_id == 0) then dop=1, p_num-1

my_a = (real (p_num - p, kind =8) *a &
+ real (p-1, kind=8) *b) &
/ real (p_num -1, kind = 8)

target = p

tag = 1

call MP1_Send (my_a, 1, MPI_DOUBLE_PRECISION, &
target, tag, &VPI_COMM_WORLD, &
error_flag)
end do
TPart 2: Parallel execution
else
source = master
tag = 1
call MPI_Recv (my_a, 1, MPI_DOUBLE_PRECISION, source,
MP1_COMM_WORLD, status, error_flag)

my_total = 0.0D+00
doi =1, myn

x=(Creal (my_n-i, kind =8) *my_ a &
+ real (i-1, kind=8) *myb) &
/ real (my_n -1, kind = 8)
my_total = my _total + £ (x)
end do

my_total = (my_b - my_a) * my_total / real
(my_n, kind = 8)

end if

IPart 3: Results from different processes are collected to
I calculate the final result

call MPI_Reduce (my_total, total, 1,
MPI_DOUBLE_PRECISION, & MPI_SUM,
master, MP1_COMM_WORLD, error_flag)

tag,

18

Refined FORTRAN code (MPI)

IWork share part
do p = 1, instance_num - 1

my_a = (real (instance_num - p, kind =8) *a &
+ real (p-1, kind =8) *b) &
/ real (instance_num -1, kind = 8)

call distribute (my_a)
end do

IDeclaring parallel block
call parallel(num,’quadrature”)

my_total = 0.0D+00
doi=1, myn

x = (Creal Cmy_n -1, kind =8) *my_a &
+ real (i-1,kind=8) *myb)&
/ real (my_n -1, kind = 8)
my_total = my_total + ¥ (x)
end do

my_total = (my_b - my_a) * my_total / real
(my_n, kind = 8)
call endparallel(“quadrature’);

i Configuration file for FORTRAN program above
1

Block “quadrature”

init:
source = master
tag = 1
call MPI_Recv (my_a, 1, MPI_DOUBLE_PRECISION, source,
tag, &
MP1_COMM_WORLD, status, error_flag).
final:

call MPI_Reduce (my_total, total, 1,
MPI1_DOUBLE_PRECISION, & MPI_SUM,
master, MP1_COMM_WORLD, error_flag).

distribute param:

call MPI_Send (param, 1, MPI_DOUBLE_PRECISION, &
target, tag, &MPI_COMM_WORLD, &
error_flag).

Parallel and OpenMP features

Shared memory features Parallel features

Variable modifiers, Critical and | Parallel blocks, Reduction and
Singular blocks, Barrier blocks,

Number of threads Number of instances,

Workshare

