
Sub-clones: Considering the Part Rather than the Whole 
 

Robert Tairas1 and Jeff Gray2 
1Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, AL 

2Department of Computer Science, University of Alabama, Tuscaloosa, AL 
 
 

Abstract - Researchers have proposed various automated 
clone detection tools that can assist programmers in finding 
code clones (i.e., duplicated sections of code). Such tools can 
serve as input into the process of clone removal through 
refactoring activities. In this paper, we consider the scenario 
in which an automated clone detection tool was used to find 
code clones as part of the clone refactoring process. Actual 
refactorings associated with the detected clones were obtained 
from changes identified between consecutive versions of open 
source software artifacts. Based on two separate studies, 
observations reveal instances of sub-clone refactoring where 
only part of the clone ranges are actually refactored. We 
conclude that sub-clone refactoring should be considered to 
augment refactoring performed on the entire clone. 

Keywords: code clones; analysis; refactoring; maintenance 

 

1 Introduction 
 Code clones represent sections of code that are 
duplicates of each other. The structural similarity between 
these clones is based on the degree to which they match each 
other (i.e., identical copies of each other, contain identifier 
differences, or contain a few extra or missing statements). The 
amount of clones in software can be as much as 15% based on 
several studies of cloning in software [4][9][14]. 

 When a section of code that is related to a group of 
clones (i.e., clones representing the same duplication) needs 
to be updated, it is necessary to determine whether the code 
associated with the other clones in the group must also be 
updated. Failure to update all relevant and duplicate sections 
of code can introduce errors in the program. Removing the 
duplication represented by the clones is one way to reduce the 
possibility of errors. The activity of refactoring [7] (i.e., when 
the code is changed, but its behavior is not) can be used as a 
means to remove the duplication associated with the clones. 
Refactorings such as Extract Method and Pull-up Method can 
modularize the code represented by the clones, thus 
eliminating the duplication. 

 Research into the detection of clones that can 
automatically find clones in code have produced various 
techniques and tools [4][9][10][14][16][17]. However, 
knowledge regarding the utilization of these tools in the 
practice of software maintenance and specifically within the 

context of clone refactoring is still limited. This paper 
describes our investigation into how clones reported by an 
automated clone detection tool are refactored. We focus our 
interest on observing characteristics of the clones in a scenario 
where a programmer uses a clone detection tool to find the 
clones before performing clone refactoring. Our observations 
are based on mining the changes identified between 
consecutive versions of open source software artifacts. We 
found that in some cases the range of the clone and the range 
of code that was actually refactored differed in that 
refactoring was performed on only part of the clone (i.e., a 
sub-clone). By evaluating the instances of the partially 
refactored clones, we discovered characteristics influencing 
sub-clone refactoring. Such characteristics can inform a 
process that utilizes clone detection in an effort to remove 
duplicate code where sub-clones are also considered, thus 
augmenting the choices of refactoring given to the maintainer 
of the code. 

 The rest of the paper is organized as follows: the next 
section introduces the study that was performed to observe 
actual refactoring of duplicated code revealing sub-clone 
refactoring. Section 4 provides a further study focusing on 
one clone detection tool and additional open source projects. 
A discussion of general observations from our studies is 
included in Section 5. Related work, a conclusion and future 
work are given in sections 6 and 7, respectively. 

2 Observing Clone Refactoring 
 In this paper, we focus our interest on observing the 
refactoring of clones that occur between consecutive versions 
of a software release. A programmer may perform some 
activity of refactoring on the original code of one version and 
the result of this refactoring is subsequently evident in the 
next version. In this case, the original code and refactored 
code is stored within two consecutive versions. By comparing 
two consecutive versions of the code, we are able to find 
actual refactorings performed between the two versions. More 
specifically, we focus on finding clone-related refactorings. 

 Our method of finding clone refactorings between code 
versions starts with the use of a clone detection tool. The tool 
is executed on the source code of one version. This step 
identifies the sections of code that are reported as clones by 
the tool. The next step is to compare these sections of code 
with the corresponding sections of code in the next version of 



the source code. The comparison utilizes the Unix diff 
command. For each section of code reported as a clone, the 
file where it resides is compared using diff with the next 
version of that same file. A batch process automates this step 
for all clones that were reported by the clone detection tool. 
We are interested in the changes reported by diff that consist 
of deletions and additions of lines in the approximate location 
of the reported clone range. Figure 1 illustrates three different 
scenarios of changes in two versions of a file. Our focus in 
this paper is on instances of Figure 1(c), because the changes 
occur within the range of a clone. For example, the deletion of 
lines followed by the addition of one line within the clone 
range can signal the possibility of an Extract Method 
refactoring activity. Figures 1(a) and 1(b) represent changes 
outside the clone range that are ignored in our observations. 

C lo n e  c

C lo n e  c

d iff reg ion

C lo n e  c C lo n e  c

d iff reg ion

C lo n e  c

V ers ion  1 V ers ion  1 V ers ion  1V ers ion  2 V ers ion  2 V ers ion  2

 
(a) Ignored (b) Ignored (c) Further evaluated 

Figure 1. File changes based on diff information 

3 Sub-clone Refactoring 
 We conducted a study to observe the refactorings that 
were performed on clone-related code among versions of the 
JBoss Application Server, which is an open source 
implementation of J2EE [8]. Specifically, these refactorings 
were identified by observing changes between two 
consecutive versions from version 2.2.0 to 4.2.3 (44 versions). 
It is worth noting that we do not know if the developers of 
JBoss used a clone detection tool to identify clones, which 
quite possibly was not the case. However, the main purpose of 
the study is to see how a section of code that would have been 
reported as a clone was maintained in actual practice. 

Table 1. Extract Method-related refactorings in JBoss 
Extract Method 14 
Extract Method with Pull-up Method 1 
Extract Method to utility class 6 

Total 21 
 
 The Simian [16] clone detection tool was initially 
chosen to detect the clones in the first part of our study. 
Simian was selected because of its relatively fast speed in 
detecting and reporting clones. In Simian and a majority of 
other clone detection tools, clones that have been detected are 
represented by three properties: the location of the file 
containing the clone and the clone’s starting and ending lines 
within that file. Thus, a clone, c, can be represented by c = (f, 
s, e), where f is the file containing the clone, and s and e are 
the line numbers signifying the range of the clone. Clones that 
are duplicates of each other are grouped together by Simian in 
its report. 

 The process outlined in the previous section was 
performed and changes reported by diff within the clone 
ranges were further evaluated. Some common refactoring 
activities within the range of the clones were discovered in the 
JBoss version sequences, such as Extract Method, Pull-up 
Method, and Extract Class [7]. In many cases, the refactorings 
removed the duplication of code by extracting the duplicate 
functionality into a new method or pulling up duplicated code 
to a super class. Table 1 summarizes the 21 instances of 
Extract Method-related refactorings associated with clones 
found across the versions of JBoss. In addition to Extract 
Method, a Pull-up Method refactoring also contains Extract 
Method if only a part of a method is pulled up. Also, some 
statements were extracted to a separate class, generating more 
of a utility-type method. It was observed that only in two of 
the refactorings in Table 1 the range that was reported by 
Simian as a clone was exactly the range that was refactored. 
In the remaining cases, refactoring was not performed on the 
exact range of the reported clone. 

 To provide a wider spectrum of observation, we 
evaluated additional clone detection tools. Four other clone 
detection tools were selected: CCFinder [10], which is a 
token-based clone detection tool, and CloneDR [4], Deckard 
[9], and SimScan [17], which are tree-based tools. The 
detection configuration settings for each tool are listed in 
Appendix A. For this evaluation, these tools were not 
requested to find clones on all of the source files of JBoss, but 
rather only on the source files containing the Simian clones 
associated with the identified refactorings in Table 1. The 
purpose of this activity was to see how other tools presented 
(or not) the code ranges of the same clones that were 
originally detected by Simian. 

Table 2. Coverage of Extract Method-related refactorings 

No. 
Clone Detection 
Tool 

Exact 
Coverage 

Larger 
Coverage Total 

1. CCFinder 4 8 12 
2. CloneDR 6 9 15 
3. Deckard 8 3 11 
4. Simian 2 0 2 
5. SimScan 6 12 18 

 

Table 2 provides the detection results from Simian and the 
four additional tools for the refactorings observed in the clone 
ranges initially detected by Simian. The “Exact Coverage” 
column records the number of times each clone detection tool 
reported a clone group consisting of clones that represented 
exactly the code range that was refactored. As can be seen in 
the table, the number of times this is the case for each tool 
were all less than half of the 21 total instances. For example, 
Deckard exactly matched only eight of the 21 instances. The 
“Larger Coverage” column represents the number of times a



  

1 2   4 5   protected String getValue(String name, String value) { 
1 2   4 5     if (value.startsWith("${") && value.endsWith("}")) { 
1 2 3 4 5 -     try { 
1 2 3 4 5 -       String propertyName = value.substring(2, value.length()-1); 
1 2 3 4 5 -       ObjectName propertyServiceON = new ObjectName(...); 
1 2 3 4 5 -       KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getInstance(); 
1 2 3 4 5 -       String propertyValue = ...; 
1 2 3   5 -       log.debug(...); 
1 2 3   5 -       return propertyValue; 
1 2 3   5 -     } catch (Exception e) { 
1 2 3   5 -       log.warn(...); 
1 2 3   5 -     } 
          +     String replacement = StringPropertyReplacer.replaceProperties(value); 
          +     if (replacement != null) 
          +       value = replacement; 
1 2     5     } 
1 2     5     return value; 
1 2     5   } 

Figure 2. File changes based on diff information 

clone group contains clones that represent a larger coverage 
of code that included the statements that were refactored. In 
these instances, refactoring was only performed on part of the 
code range associated to the clones, an example of which can 
be seen in Figure 2 and is explained below. 

 Figure 2 shows an example of the coverage of the tools 
for a sequence of refactored statements between versions 
4.0.5 and 4.2.0 of JBoss in the EjbJarDDObjectFactory class. 
Lines containing “…” were truncated for brevity. The range 
of the clone detected by each tool is marked with the 
corresponding number as assigned in Table 2 (i.e., CCFinder 
is 1 and SimScan is 5). The refactoring that occurs is 
represented by the sequence of deleted lines (i.e., identified 
with ‘-‘) being replaced by the sequence of added lines (i.e., 
identified with ‘+‘). The refactored code in the method 
getValue is only the Try-statement inside the If-statement. 
Most tools (i.e., CCFinder, CloneDR, and SimScan) contain 
the entire method, which is more than the refactored code 
range and was counted as an instance of a “Larger Coverage” 
in Table 2. Simian’s clone region contains only the method 
header and part of the code. Only the clone reported by 
Deckard is exactly the same as the range of the refactoring. 

 Simian looks for similarities in the textual representation 
of the code. This technique may not detect well-formed clones 
(i.e., clones representing proper syntactic blocks of code) or 
clones with subtle differences not related to the syntax of the 
code. Hence, Simian may not report the appropriate code 
range associated to code that was refactored. This is mainly 
why Simian did not have any instances designated as “Larger 
Coverage” in Table 2. In many cases the clone range reported 
by Simian did not consist of a syntactically meaningful block 
of code. The other tools utilize more structured 
representations of the code such as token or tree 
representations and thus can report more structured clones. 

4 Deckard Sub-Clone Refactoring 
 In this section, we describe evaluations of observed 
refactorings related to clones in JBoss, and two additional 
open source projects: ArgoUML [2] and Apache Derby [1]. 
ArgoUML is an open source tool to develop UML diagrams 
written in Java. Apache Derby is an open source 
implementation of a relational database also written in Java. 
We used Deckard on these projects to further discover and 
evaluate instances of sub-clone refactoring. 

4.1 Deckard characteristics 
 In Table 2, Deckard provided the most clones with 
ranges that are exactly the ranges of the observed refactorings. 
Clone detection tools typically combine smaller clones into 
larger clones that encompass the smaller clones to report 
maximal sized clones. Deckard reports both the maximal 
sized clone groups and groups representing smaller related 
clones. Because of this, Deckard not only reported a clone 
group of the exact code range that is refactored in Figure 2, 
but also reported a separate clone group containing a larger 
clone range consisting of the If-statement above the refactored 
Try-statement. 

 As a tree-based tool, Deckard can provide more 
syntactically meaningful clones compared to the text-based 
Simian tool. CCFinder, CloneDR, and SimScan also report 
syntactically meaningful clones, but Deckard’s output consists 
of both the smaller clone groups and larger clone groups in 
which the smaller clone groups are contained. With its ability 
to report syntactically meaningful clones and the reporting of 
multiple sized clone groups, Deckard was used in a further 
study to observe relationships between reported clones and 
actual refactorings associated with these clones. JBoss was re-
evaluated in addition to ArgoUML and Apache Derby. The 
evaluation of Deckard in the previous section differs in that it 
only detected source files associated with refactored clones 
initially detected by Simian, whereas in the study described in 
this section Deckard was run independently on all source files. 



For ArgoUML, nine versions from 0.10.1 to 0.26 were 
observed. For Apache Derby, ten versions from 10.1.1.0 to 
10.5.3.0 were observed. From the studies of these software 
artifacts, we determined properties of situations when a sub-
clone, rather than the whole clone, was refactored. 

4.2 Evaluation results 
 Table 3 (Refactoring Coverage) provides a summary of 
clones reported by Deckard that are related to refactorings 
observed in the three projects. The first general observation is 
that the number of clones detected by Deckard in JBoss that 
are associated with Extract Method-related refactorings is 
more than the results from Simian (i.e., 36 with Deckard 
compared to 21 with Simian). This larger number is mainly 
because Deckard can detect more structured clones that can 
contain superficial differences, which Simian does not identify 
as clones. In addition, refactoring performed on a selection of 
clones in a clone group is also included. The second general 
observation is that although Deckard provides smaller sized 
clone groups representing syntactic blocks below the maximal 
sized clone group, the observed refactorings related to some 
of these clones still only account for part of the code 
associated to the clone ranges. In Table 3, 14 instances in 
JBoss, 9 instances in ArgoUML, and 15 instances in Apache 
Derby represent refactorings that were not performed on the 
entire code range of clones detected by Deckard. 

Table 3. Refactoring coverage and code properties 
Property  JBoss ArgoUML Derby 

Refactoring 
Coverage 

Exact clone coverage 19 17 12 
Sub-clone coverage 14 9 15 

Coverage 
Levels 

Same level 4 4 6 
1 level above 9 2 8 
> 1 level above 1 3 1 

Clone 
Differences 

Refactorable 7 4 8 
Not refactorable 7 5 7 

 

4.3 Sub-clone refactoring properties 
 We further evaluated the refactorings related to the 
“Sub-clone coverage” instances in Table 3 to determine 
characteristics that may have influenced the refactoring to be 
performed on only part of the duplicated code. 

Deckard results – In Table 2, Deckard provided the most 
exact matches. Its results included smaller clone groups of the 
maximal sized groups allowing more exact ranges to be 
found. Even with these reported smaller clone groups, Table 3 
(Coverage Levels) shows that in some cases refactoring was 
still performed under the syntactic level of the reported clone. 
For JBoss and Apache Derby, this is mostly the case (i.e., nine 
and eight instances, respectively) as seen in the “1 level 
above” row. These instances suggest a practice that keeps 

some logic of the code at the original location for better 
program comprehension. For example, in Figure 2, the If-
Statement is not refactored; only the statements inside the 
block are refactored. This eliminates most of the duplicated 
code, but keeps some logic in the original location. 

Excluded statements – In Table 3 (Coverage Levels), JBoss 
and ArgoUML consisted of four instances of clones being at 
the same level as the refactored code. Apache Derby consisted 
of six instances. However, some statements in the same level 
were not included as part of the refactoring. An example can 
be seen in Figure 3, where the first and last statements in the If 
block were not refactored although they were part of the 
clone. 

  if (edge instanceof MTransition) { 
    MTransition tr = (MTransition) edge; 
-   FigTrans trFig = new FigTrans(tr); 
-   // set source and dest 
-   // set any arrowheads, labels, or colors 
-   MStateVertex sourceSV = tr.getSource(); 
-   MStateVertex destSV = tr.getTarget(); 
-   FigNode sourceFN = (FigNode) lay... 
-   FigNode destFN = (FigNode) lay... 
-   trFig.setSourcePortFig(sourceFN); 
-   trFig.setSourceFigNode(sourceFN); 
-   trFig.setDestPortFig(destFN); 
-   trFig.setDestFigNode(destFN); 
+   FigTrans trFig = new FigTrans(tr, lay); 
    return trFig; 
  } 

Figure 3. Incomplete block of refactored code 

Clone Differences – Differences between clones can include 
variable names, literal values, and object types. The extent of 
a group of clones’ similarity influences their possibility of 
refactoring. In Table 3 (Clone Differences), we consider the 
hypothetical situation in which the entire clone was refactored 
rather than just the sub-clone. In this case, a section of code is 
refactorable if it meets the pre-conditions for the Extract 
Method refactoring activity. Specifically for clone refactoring, 
differences in the clones should be able to be passed to the 
new method to allow for a generalized version of the 
duplicated code. For example, clones with variable name 
differences can be refactored by including a formal parameter 
for those variables in the new method signature. In all three 
software artifacts, the instances in which an entire clone could 
have been refactored and the times it could not be refactored 
did not differ much. This implies that in some cases the 
programmer could have refactored the entire clone, but did 
not. 

 Instances counted as “not refactorable” include 
situations where the entire clone ranges contained object type 
differences where a variable in one clone is declared as one 
type and the same variable in another clone is declared as a 
different type. Such a situation is more difficult to refactor. A 
possible way of refactoring situations with more complex 
differences is to use the control coupling [13] mechanism that 
includes a flag to determine which extracted code to execute 
(i.e., for one clone execute one sequence of statements and for 



another clone execute a different sequence of statements in 
the extracted method). It was observed that the programmer 
did not use such flags to refactor these instances. In most 
cases, the programmer refactored the more exact parts of the 
clones with simpler differences such as variable names and 
literal values and did not include differences such as variable 
types. 

5 Discussion 
 This section provides some points for consideration 
related to the studies described in this paper. 

Differences of clone detection results – Table 2 shows the 
variations in the results of a clone detection tool that is run on 
the same set of source files. Even changing the configuration 
settings of one tool can result in a separate listing of clones. 
Sub-clones then can be considered relative to the tool that is 
used such that one tool may report a section of code as a 
clone, while another tool reports it as a sub-clone of a larger 
clone. However, if we look in terms of the use of these tools 
to assist in finding clones for refactoring, running multiple 
tools to search for clones could potentially increase the effort 
during the maintenance process in an unnecessary way. 
Selecting a single tool based on the maintainer’s decision 
provides a more straightforward process. In this case, each 
tool, whichever is selected, will have its own set of clones 
with related instances of sub-clones that would be considered 
for refactoring. 

 Exact matching clones are easier to refactor and clone 
detection tools can be set to report only these types of clones. 
However, limiting the detection to only exact matching clones 
reduces the ability to observe the overall cloning of the 
system. If clones that contain specified differences were 
initially detected, the results from this detection can then be 
followed by evaluating whether the clone group with 
differences should be refactored rather than sub-clones that 
have more limited differences or exactly match each other. 
Sub-clones then can allow for more refactoring options. 

Incorporating sub-clone refactoring into the clone 
maintenance process – Currently, if a clone reported by a 
clone detection tool is selected for refactoring, the process of 
refactoring requires many manual steps. For example, to 
replace several clones with a call to a new method, the method 
must first be extracted from one of the clone instances, which 
may include using a refactoring engine in an IDE. However, 
once the method is created each clone must be replaced with a 
call to that method. These are the same steps that need to be 
done when a sub-clone is selected for refactoring. A 
mechanism that can keep track of the clones and forward the 
necessary information to a refactoring engine upon approval 
of the programmer can reduce the amount of manual steps 
needed during clone maintenance. Based on the evaluation of 
sub-clones and their related refactorings in the previous 
section, a mechanism that can select sub-clones for refactoring 

should focus on allowing a programmer to select a sub-clone 
that is one or more syntactic levels below the main clone and 
the ability to include/exclude bordering statements. 

6 Related Work 
 Related work is summarized in this section, which 
includes work related to the observation of clone evolution, 
refactoring between versions, and identifying crosscutting 
concerns with clones. 

Clone evolution analysis – The evolution of clones in multiple 
release versions has been studied for various purposes, such 
as how the clones are maintained. Kim et al. [11] generated 
genealogies of clones and provided several categories related 
to how clones evolved (e.g., a new clone added or one was 
subtracted, clones were consistently or inconsistently 
changed). The studies described in Sections 3 and 4 differ 
from [11] in that they are specifically looking at the properties 
of the code where refactoring occurred, whereas Kim et al. 
focused on characteristics of clones that made refactoring 
unsuitable. 

The work of both Aversano et al. [3] and Krinke [12] looked 
at how consistently clones were maintained in terms of 
keeping the code associated with clones of the same group 
consistent with each other when an update is required. They 
provided overall trends of how clones were consistently or 
inconsistently changed during a specific time frame, whereas 
the evolution analysis in this paper mainly considered 
refactoring of clones between two versions of the same source 
code. 

Refactoring identification – Some works have looked at the 
instances of refactoring between versions in general without a 
specific focus on refactoring of clones [6][15]. However, 
these focused on giving an overall view of the activity of 
refactoring. Our paper focuses specifically on refactoring 
instances related to clones resulting in the observation of the 
relationship between the ranges of refactored code and the 
actual reported clone. Weißgerber and Diehl proposed a 
technique to detect refactorings, where a clone detection tool 
was used [19]. However, the detection tool was not used to 
determine clone-related refactorings, but rather to improve the 
results of the technique. Clone-related refactorings could be 
part of the results of the technique, but a post-processing step 
must be done to identify them. 

Clone range analysis – A comparison of the line ranges of 
clones reported by clone detection tools and the lines 
annotated as crosscutting concerns was studied by Bruntink et 
al. [5]. The evaluation of multiple clone detection tools in our 
paper looks at instances of refactoring that had already 
occurred between two versions, whereas in [5] the 
crosscutting concerns were not already changed into aspects, 
but rather were determined at the beginning by a human 
observer. 



7 Conclusion and Future Work 
 This paper described the analysis of code clones 
identified by a clone detection tool and their relationships 
with actual refactorings obtained from changes between 
consecutive versions of the source code. According to our 
evaluation of running different clone detection tools on open 
source software artifacts, the refactoring of parts of clones or 
sub-clones is evident in several cases. We conclude that sub-
clone refactoring should be included in the clone maintenance 
process. Such support should allow programmers to 
selectively determine partial ranges in a clone for refactoring 
within its syntactic hierarchy in addition to the exclusion of 
edge statements. 

 For future work, we plan to include support for sub-
clone refactoring in our Eclipse plug-in called CeDAR (Clone 
Detection, Analysis, and Refactoring) that currently can parse 
the output of several clone detection tools and display clone 
information within the Eclipse IDE [18]. The plug-in 
represents an effort to assist the programmer in the refactoring 
of clones. Future work related to this paper will include a 
mechanism for the programmer to select sub-clones within a 
clone for refactoring. 

Acknowledgment 
 This material is based upon work supported by the 
National Science Foundation under Grant No. 0702764. 

8 References 
[1] Apache Derby, http://db.apache.org/derby. 

[2] ArgoUML, http://argouml.tigris.org. 

[3] L. Aversano, L. Cerulo, and M. Di Penta, “How Clones 
are Maintained: An Empirical Study”, European Conf. on 
Software Maintenance and Reengineering, Amsterdam, The 
Netherlands, March 2007, pp. 81–90. 

[4] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. 
Bier, “Clone Detection using Abstract Syntax Trees”, Int. 
Conf. on Software Maintenance, Bethesda, MD, November 
1998, pp. 368–377. 

[5] M. Bruntink, A. van Deursen, R. van Engelen, and T. 
Tourwe, “On the Use of Clone Detection for Identifying 
Crosscutting Concern Code”, IEEE Trans. on Software 
Engineering, vol. 31, pp. 804–818, October 2005. 

[6] S. Counsell, Y. Hassoun, G. Loizou, and R. Najjar, 
“Common Refactorings, a Dependency Graph and Some Code 
Smells: an Empirical Study of Java OSS”, Int. Symp. on 
Empirical Software Engineering, Rio de Janeiro, Brazil, 
September 2006, pp. 288–296. 

[7] M. Fowler, Refactoring: Improving the Design of 
Existing Code, Reading, MA: Addison-Wesley, 1999. 

[8] JBoss, http://www.jboss.org. 

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, 
“DECKARD: Scalable and Accurate Tree-based Detection of 
Code Clones”, Int. Conf. on Software Engineering, 
Minneapolis, MN, May 2007, pp. 96–105. 

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A 
Multilinguistic Token-Based Code Clone Detection System 
for Large Scale Source Code”, IEEE Trans. on Software 
Engineering, vol. 28, pp. 654–670, July 2002. 

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An 
Empirical Study of Code Clone Genealogies”, European 
Software Engineering Conf. and the Symp. on the 
Foundations of Software Engineering, Lisbon, Portugal, 
September 2005, pp. 187–196. 

[12] J. Krinke, “A Study of Consistent and Inconsistent 
Changes to Code Clones”, Working Conf. on Reverse 
Engineering, Vancouver, Canada, October 2007, pp. 170–
178. 

[13] S. Lawrence and J. Atlee, Software Engineering: Theory 
and Practice, Upper Saddle River, NJ, Prentice Hall, 2006. 

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A 
Tool for Finding Copy-paste and Related Bugs in Operating 
System Code,” Symp. on Operating System Design and 
Implementation, San Francisco, CA, December 2004, pp. 
289–302. 

[15] C. Schofield, B. Tansey, Z. Xing, and E. Stroulia, 
“Digging the Development Dust for Refactorings”, Int. Conf. 
on Program Comprehension, Athens, Greece, June 2006, pp. 
23–34. 

[16] Simian, 
http://www.redhillconsulting.com.au/products/simian. 

[17] SimScan, http://blue-edge.bg/simscan. 

[18] R. Tairas, and J. Gray, “Get to Know Your Clones with 
CeDAR”, Int. Conf. on Object-Oriented Programming, 
Systems, Languages, and Applications, Orlando, FL, October 
2009, pp. 817–818. 

[19] P. Weißgerber, and S. Diehl, “Identifying Refactorings 
from Source-Code Changes”, Int. Conf. on Automated 
Software Engineering, Tokyo, Japan, September 2006, pp. 
231–240. 



Appendix A. Clone Detection Tool Configuration Settings 
 This appendix summarizes the non-default configuration settings chosen for the clone detection tools used in the studies 
presented in this paper. In most cases the value set was the default value given by a tool. An explanation of the settings and value 
selected is also given. 

Tool Setting Value Description 
CCFinder Shaper level Hard Generate clones enclosed in blocks as much as possible 
CloneDR All default settings 
Deckard Similarity 0.95 Allow for small differences in clones 

Stride 0 Limit the size of the clones 
Simian All default settings 
SimScan Volume Small Include smaller matches 

Similarity Loosely similar Allow for small differences in clones 

Speed /quality Exhaustive search Provide more detailed results 

 

 


	Sub-clones: Considering the Part Rather than the Whole
	Introduction
	Observing Clone Refactoring
	Sub-clone Refactoring
	The process outlined in the previous section was performed and changes reported by diff within the clone ranges were further evaluated. Some common refactoring activities within the range of the clones were discovered in the JBoss version sequences, ...
	Deckard Sub-Clone Refactoring
	Deckard characteristics
	Evaluation results
	Sub-clone refactoring properties

	Discussion
	Related Work
	Conclusion and Future Work
	Acknowledgment
	References
	Appendix A. Clone Detection Tool Configuration Settings


