Sub-clones: Considering the Part Rather than the Whole

Robert Tairas' and Jeff Gray®
'Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, AL
2Department of Computer Science, University of Alabama, Tuscaloosa, AL

Abstract - Researchers have proposed various automated
clone detection tools that can assist programmers in finding
code clones (i.e., duplicated sections of code). Such tools can
serve as input into the process of clone removal through
refactoring activities. In this paper, we consider the scenario
in which an automated clone detection tool was used to find
code clones as part of the clone refactoring process. Actual
refactorings associated with the detected clones were obtained
from changes identified between consecutive versions of open
source software artifacts. Based on two separate studies,
observations reveal instances of sub-clone refactoring where
only part of the clone ranges are actually refactored. We
conclude that sub-clone refactoring should be considered to
augment refactoring performed on the entire clone.

Keywords: code clones; analysis; refactoring; maintenance

1 Introduction

Code clones represent sections of code that are
duplicates of each other. The structural similarity between
these clones is based on the degree to which they match each
other (i.e., identical copies of each other, contain identifier
differences, or contain a few extra or missing statements). The
amount of clones in software can be as much as 15% based on
several studies of cloning in software [4][9][14].

When a section of code that is related to a group of
clones (i.e., clones representing the same duplication) needs
to be updated, it is necessary to determine whether the code
associated with the other clones in the group must also be
updated. Failure to update all relevant and duplicate sections
of code can introduce errors in the program. Removing the
duplication represented by the clones is one way to reduce the
possibility of errors. The activity of refactoring [7] (i.e., when
the code is changed, but its behavior is not) can be used as a
means to remove the duplication associated with the clones.
Refactorings such as Extract Method and Pull-up Method can
modularize the code represented by the clones, thus
eliminating the duplication.

Research into the detection of clones that can
automatically find clones in code have produced various
techniques and tools [4][9][10][14][16][17]. However,
knowledge regarding the utilization of these tools in the
practice of software maintenance and specifically within the

context of clone refactoring is still limited. This paper
describes our investigation into how clones reported by an
automated clone detection tool are refactored. We focus our
interest on observing characteristics of the clones in a scenario
where a programmer uses a clone detection tool to find the
clones before performing clone refactoring. Our observations
are based on mining the changes identified between
consecutive versions of open source software artifacts. We
found that in some cases the range of the clone and the range
of code that was actually refactored differed in that
refactoring was performed on only part of the clone (i.e., a
sub-clone). By evaluating the instances of the partially
refactored clones, we discovered characteristics influencing
sub-clone refactoring. Such characteristics can inform a
process that utilizes clone detection in an effort to remove
duplicate code where sub-clones are also considered, thus
augmenting the choices of refactoring given to the maintainer
of the code.

The rest of the paper is organized as follows: the next
section introduces the study that was performed to observe
actual refactoring of duplicated code revealing sub-clone
refactoring. Section 4 provides a further study focusing on
one clone detection tool and additional open source projects.
A discussion of general observations from our studies is
included in Section 5. Related work, a conclusion and future
work are given in sections 6 and 7, respectively.

2 Observing Clone Refactoring

In this paper, we focus our interest on observing the
refactoring of clones that occur between consecutive versions
of a software release. A programmer may perform some
activity of refactoring on the original code of one version and
the result of this refactoring is subsequently evident in the
next version. In this case, the original code and refactored
code is stored within two consecutive versions. By comparing
two consecutive versions of the code, we are able to find
actual refactorings performed between the two versions. More
specifically, we focus on finding clone-related refactorings.

Our method of finding clone refactorings between code
versions starts with the use of a clone detection tool. The tool
is executed on the source code of one version. This step
identifies the sections of code that are reported as clones by
the tool. The next step is to compare these sections of code
with the corresponding sections of code in the next version of

the source code. The comparison utilizes the Unix diff
command. For each section of code reported as a clone, the
file where it resides is compared using diff with the next
version of that same file. A batch process automates this step
for all clones that were reported by the clone detection tool.
We are interested in the changes reported by diff that consist
of deletions and additions of lines in the approximate location
of the reported clone range. Figure 1 illustrates three different
scenarios of changes in two versions of a file. Our focus in
this paper is on instances of Figure 1(c), because the changes
occur within the range of a clone. For example, the deletion of
lines followed by the addition of one line within the clone
range can signal the possibility of an Extract Method
refactoring activity. Figures 1(a) and 1(b) represent changes
outside the clone range that are ignored in our observations.

Version 1 Version 2 Version 1 Version 2 Version 1 Version 2

diff region

Clone c Clone c Clone c Clone c

Clone ¢

diff region

(a) Ignored (b) Ignored (c) Further evaluated

Figure 1. File changes based on diff information

3 Sub-clone Refactoring

We conducted a study to observe the refactorings that
were performed on clone-related code among versions of the
JBoss Application Server, which is an open source
implementation of J2EE [8]. Specifically, these refactorings
were identified by observing changes between two
consecutive versions from version 2.2.0 to 4.2.3 (44 versions).
It is worth noting that we do not know if the developers of
JBoss used a clone detection tool to identify clones, which
quite possibly was not the case. However, the main purpose of
the study is to see how a section of code that would have been
reported as a clone was maintained in actual practice.

Table 1. Extract Method-related refactorings in JBoss

Extract Method 14
Extract Method with Pull-up Method 1
Extract Method to utility class 6

Total 21

The Simian [16] clone detection tool was initially
chosen to detect the clones in the first part of our study.
Simian was selected because of its relatively fast speed in
detecting and reporting clones. In Simian and a majority of
other clone detection tools, clones that have been detected are
represented by three properties: the location of the file
containing the clone and the clone’s starting and ending lines
within that file. Thus, a clone, ¢, can be represented by ¢ = (f,
s, €), where f is the file containing the clone, and s and e are
the line numbers signifying the range of the clone. Clones that
are duplicates of each other are grouped together by Simian in
its report.

The process outlined in the previous section was
performed and changes reported by diff within the clone
ranges were further evaluated. Some common refactoring
activities within the range of the clones were discovered in the
JBoss version sequences, such as Extract Method, Pull-up
Method, and Extract Class [7]. In many cases, the refactorings
removed the duplication of code by extracting the duplicate
functionality into a new method or pulling up duplicated code
to a super class. Table 1 summarizes the 21 instances of
Extract Method-related refactorings associated with clones
found across the versions of JBoss. In addition to Extract
Method, a Pull-up Method refactoring also contains Extract
Method if only a part of a method is pulled up. Also, some
statements were extracted to a separate class, generating more
of a utility-type method. It was observed that only in two of
the refactorings in Table 1 the range that was reported by
Simian as a clone was exactly the range that was refactored.
In the remaining cases, refactoring was not performed on the
exact range of the reported clone.

To provide a wider spectrum of observation, we
evaluated additional clone detection tools. Four other clone
detection tools were selected: CCFinder [10], which is a
token-based clone detection tool, and CloneDR [4], Deckard
[9], and SimScan [17], which are tree-based tools. The
detection configuration settings for each tool are listed in
Appendix A. For this evaluation, these tools were not
requested to find clones on all of the source files of JBoss, but
rather only on the source files containing the Simian clones
associated with the identified refactorings in Table 1. The
purpose of this activity was to see how other tools presented
(or not) the code ranges of the same clones that were
originally detected by Simian.

Table 2. Coverage of Extract Method-related refactorings

Clone Detection Exact Larger
No. Tool Coverage Coverage Total
1. CCFinder 4 8 12
2. CloneDR 6 9 15
3. Deckard 8 3 11
4. Simian 2 0 2
5. SimScan 6 12 18

Table 2 provides the detection results from Simian and the
four additional tools for the refactorings observed in the clone
ranges initially detected by Simian. The “Exact Coverage”
column records the number of times each clone detection tool
reported a clone group consisting of clones that represented
exactly the code range that was refactored. As can be seen in
the table, the number of times this is the case for each tool
were all less than half of the 21 total instances. For example,
Deckard exactly matched only eight of the 21 instances. The
“Larger Coverage” column represents the number of times a

12 45 protected String getValue(String name, String value) {
12 45 ifT (value.startsWith("${"") && value.endsWith("}'")) {
12345 - try {
12345 - String propertyName = value.substring(2, value.length()-1);
12345 - ObjectName propertyServiceON new ObjectName(...);
12345 - KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getinstance();
12345 - String propertyvalue = .. _;
123 5- log.debug(--.);
123 5 - return propertyValue;
123 5- } catch (Exception e) {
123 5 - log.warn(...);
123 5 -
+ String replacement = StringPropertyReplacer._replaceProperties(value);
+ ifT (replacement != null)
+ value = replacement;
12 5
12 5 return value;
12 5 3}

Figure 2. File changes based on diff information

clone group contains clones that represent a larger coverage
of code that included the statements that were refactored. In
these instances, refactoring was only performed on part of the
code range associated to the clones, an example of which can
be seen in Figure 2 and is explained below.

Figure 2 shows an example of the coverage of the tools
for a sequence of refactored statements between versions
4.0.5 and 4.2.0 of JBoss in the EjbJarDDObjectFactory class.
Lines containing “...” were truncated for brevity. The range
of the clone detected by each tool is marked with the
corresponding number as assigned in Table 2 (i.e., CCFinder
is 1 and SimScan is 5). The refactoring that occurs is
represented by the sequence of deleted lines (i.e., identified
with “-*) being replaced by the sequence of added lines (i.e.,
identified with ‘+‘). The refactored code in the method
getvalue is only the Try-statement inside the If-statement.
Most tools (i.e., CCFinder, CloneDR, and SimScan) contain
the entire method, which is more than the refactored code
range and was counted as an instance of a “Larger Coverage”
in Table 2. Simian’s clone region contains only the method
header and part of the code. Only the clone reported by
Deckard is exactly the same as the range of the refactoring.

Simian looks for similarities in the textual representation
of the code. This technique may not detect well-formed clones
(i.e., clones representing proper syntactic blocks of code) or
clones with subtle differences not related to the syntax of the
code. Hence, Simian may not report the appropriate code
range associated to code that was refactored. This is mainly
why Simian did not have any instances designated as “Larger
Coverage” in Table 2. In many cases the clone range reported
by Simian did not consist of a syntactically meaningful block
of code. The other tools utilize more structured
representations of the code such as token or tree
representations and thus can report more structured clones.

4 Deckard Sub-Clone Refactoring

In this section, we describe evaluations of observed
refactorings related to clones in JBoss, and two additional
open source projects: ArgoUML [2] and Apache Derby [1].
ArgoUML is an open source tool to develop UML diagrams
written in Java. Apache Derby is an open source
implementation of a relational database also written in Java.
We used Deckard on these projects to further discover and
evaluate instances of sub-clone refactoring.

4.1 Deckard characteristics

In Table 2, Deckard provided the most clones with
ranges that are exactly the ranges of the observed refactorings.
Clone detection tools typically combine smaller clones into
larger clones that encompass the smaller clones to report
maximal sized clones. Deckard reports both the maximal
sized clone groups and groups representing smaller related
clones. Because of this, Deckard not only reported a clone
group of the exact code range that is refactored in Figure 2,
but also reported a separate clone group containing a larger
clone range consisting of the If-statement above the refactored
Try-statement.

As a tree-based tool, Deckard can provide more
syntactically meaningful clones compared to the text-based
Simian tool. CCFinder, CloneDR, and SimScan also report
syntactically meaningful clones, but Deckard’s output consists
of both the smaller clone groups and larger clone groups in
which the smaller clone groups are contained. With its ability
to report syntactically meaningful clones and the reporting of
multiple sized clone groups, Deckard was used in a further
study to observe relationships between reported clones and
actual refactorings associated with these clones. JBoss was re-
evaluated in addition to ArgoUML and Apache Derby. The
evaluation of Deckard in the previous section differs in that it
only detected source files associated with refactored clones
initially detected by Simian, whereas in the study described in
this section Deckard was run independently on all source files.

For ArgoUML, nine versions from 0.10.1 to 0.26 were
observed. For Apache Derby, ten versions from 10.1.1.0 to
10.5.3.0 were observed. From the studies of these software
artifacts, we determined properties of situations when a sub-
clone, rather than the whole clone, was refactored.

4.2 Evaluation results

Table 3 (Refactoring Coverage) provides a summary of
clones reported by Deckard that are related to refactorings
observed in the three projects. The first general observation is
that the number of clones detected by Deckard in JBoss that
are associated with Extract Method-related refactorings is
more than the results from Simian (i.e., 36 with Deckard
compared to 21 with Simian). This larger number is mainly
because Deckard can detect more structured clones that can
contain superficial differences, which Simian does not identify
as clones. In addition, refactoring performed on a selection of
clones in a clone group is also included. The second general
observation is that although Deckard provides smaller sized
clone groups representing syntactic blocks below the maximal
sized clone group, the observed refactorings related to some
of these clones still only account for part of the code
associated to the clone ranges. In Table 3, 14 instances in
JBoss, 9 instances in ArgoUML, and 15 instances in Apache
Derby represent refactorings that were not performed on the
entire code range of clones detected by Deckard.

Table 3. Refactoring coverage and code properties

Property JBoss ArgoUML Derby
Refactoring Exact clone coverage 19 17 12
Coverage o p-clone coverage 14 9 15
Coverage Same level 4 4 6
Levels 1 level above 9 2 8

> 1 level above 1 3 1

_Clone Refactorable 7 4 8
Differences .t refactorable 7 5 7

4.3 Sub-clone refactoring properties

We further evaluated the refactorings related to the
“Sub-clone coverage” instances in Table 3 to determine
characteristics that may have influenced the refactoring to be
performed on only part of the duplicated code.

Deckard results — In Table 2, Deckard provided the most
exact matches. Its results included smaller clone groups of the
maximal sized groups allowing more exact ranges to be
found. Even with these reported smaller clone groups, Table 3
(Coverage Levels) shows that in some cases refactoring was
still performed under the syntactic level of the reported clone.
For JBoss and Apache Derby, this is mostly the case (i.e., nine
and eight instances, respectively) as seen in the “1 level
above” row. These instances suggest a practice that keeps

some logic of the code at the original location for better
program comprehension. For example, in Figure 2, the If-
Statement is not refactored; only the statements inside the
block are refactored. This eliminates most of the duplicated
code, but keeps some logic in the original location.

Excluded statements — In Table 3 (Coverage Levels), JBoss
and ArgoUML consisted of four instances of clones being at
the same level as the refactored code. Apache Derby consisted
of six instances. However, some statements in the same level
were not included as part of the refactoring. An example can
be seen in Figure 3, where the first and last statements in the If
block were not refactored although they were part of the
clone.

ifT (edge instanceof MTransition) {
MTransition tr = (MTransition) edge;
FigTrans trFig = new FigTrans(tr);
// set source and dest
// set any arrowheads, labels, or colors
MStateVertex sourceSV = tr.getSource();
MStateVertex destSV = tr.getTarget();
FigNode sourceFN = (FigNode) lay...
FigNode destFN = (FigNode) lay...
trFig.setSourcePortFig(sourceFN);
trFig.setSourceFigNode(sourceFN);
trFig.setDestPortFig(destFN);
trFig.setDestFigNode(destFN);
FigTrans trFig = new FigTrans(tr,
return trFig;

¥
Figure 3. Incomplete block of refactored code

[< R I Y Y A N N A B |

lay);

Clone Differences — Differences between clones can include
variable names, literal values, and object types. The extent of
a group of clones’ similarity influences their possibility of
refactoring. In Table 3 (Clone Differences), we consider the
hypothetical situation in which the entire clone was refactored
rather than just the sub-clone. In this case, a section of code is
refactorable if it meets the pre-conditions for the Extract
Method refactoring activity. Specifically for clone refactoring,
differences in the clones should be able to be passed to the
new method to allow for a generalized version of the
duplicated code. For example, clones with variable name
differences can be refactored by including a formal parameter
for those variables in the new method signature. In all three
software artifacts, the instances in which an entire clone could
have been refactored and the times it could not be refactored
did not differ much. This implies that in some cases the
programmer could have refactored the entire clone, but did
not.

Instances counted as “not refactorable” include
situations where the entire clone ranges contained object type
differences where a variable in one clone is declared as one
type and the same variable in another clone is declared as a
different type. Such a situation is more difficult to refactor. A
possible way of refactoring situations with more complex
differences is to use the control coupling [13] mechanism that
includes a flag to determine which extracted code to execute
(i.e., for one clone execute one sequence of statements and for

another clone execute a different sequence of statements in
the extracted method). It was observed that the programmer
did not use such flags to refactor these instances. In most
cases, the programmer refactored the more exact parts of the
clones with simpler differences such as variable names and
literal values and did not include differences such as variable

types.

5 Discussion

This section provides some points for consideration
related to the studies described in this paper.

Differences of clone detection results — Table 2 shows the
variations in the results of a clone detection tool that is run on
the same set of source files. Even changing the configuration
settings of one tool can result in a separate listing of clones.
Sub-clones then can be considered relative to the tool that is
used such that one tool may report a section of code as a
clone, while another tool reports it as a sub-clone of a larger
clone. However, if we look in terms of the use of these tools
to assist in finding clones for refactoring, running multiple
tools to search for clones could potentially increase the effort
during the maintenance process in an unnecessary way.
Selecting a single tool based on the maintainer’s decision
provides a more straightforward process. In this case, each
tool, whichever is selected, will have its own set of clones
with related instances of sub-clones that would be considered
for refactoring.

Exact matching clones are easier to refactor and clone
detection tools can be set to report only these types of clones.
However, limiting the detection to only exact matching clones
reduces the ability to observe the overall cloning of the
system. If clones that contain specified differences were
initially detected, the results from this detection can then be
followed by evaluating whether the clone group with
differences should be refactored rather than sub-clones that
have more limited differences or exactly match each other.
Sub-clones then can allow for more refactoring options.

Incorporating sub-clone refactoring into the clone
maintenance process — Currently, if a clone reported by a
clone detection tool is selected for refactoring, the process of
refactoring requires many manual steps. For example, to
replace several clones with a call to a new method, the method
must first be extracted from one of the clone instances, which
may include using a refactoring engine in an IDE. However,
once the method is created each clone must be replaced with a
call to that method. These are the same steps that need to be
done when a sub-clone is selected for refactoring. A
mechanism that can keep track of the clones and forward the
necessary information to a refactoring engine upon approval
of the programmer can reduce the amount of manual steps
needed during clone maintenance. Based on the evaluation of
sub-clones and their related refactorings in the previous
section, a mechanism that can select sub-clones for refactoring

should focus on allowing a programmer to select a sub-clone
that is one or more syntactic levels below the main clone and
the ability to include/exclude bordering statements.

6 Related Work

Related work is summarized in this section, which
includes work related to the observation of clone evolution,
refactoring between versions, and identifying crosscutting
concerns with clones.

Clone evolution analysis — The evolution of clones in multiple
release versions has been studied for various purposes, such
as how the clones are maintained. Kim et al. [11] generated
genealogies of clones and provided several categories related
to how clones evolved (e.g., a new clone added or one was
subtracted, clones were consistently or inconsistently
changed). The studies described in Sections 3 and 4 differ
from [11] in that they are specifically looking at the properties
of the code where refactoring occurred, whereas Kim et al.
focused on characteristics of clones that made refactoring
unsuitable.

The work of both Aversano et al. [3] and Krinke [12] looked
at how consistently clones were maintained in terms of
keeping the code associated with clones of the same group
consistent with each other when an update is required. They
provided overall trends of how clones were consistently or
inconsistently changed during a specific time frame, whereas
the evolution analysis in this paper mainly considered
refactoring of clones between two versions of the same source
code.

Refactoring identification — Some works have looked at the
instances of refactoring between versions in general without a
specific focus on refactoring of clones [6][15]. However,
these focused on giving an overall view of the activity of
refactoring. Our paper focuses specifically on refactoring
instances related to clones resulting in the observation of the
relationship between the ranges of refactored code and the
actual reported clone. WeilRgerber and Diehl proposed a
technique to detect refactorings, where a clone detection tool
was used [19]. However, the detection tool was not used to
determine clone-related refactorings, but rather to improve the
results of the technique. Clone-related refactorings could be
part of the results of the technique, but a post-processing step
must be done to identify them.

Clone range analysis — A comparison of the line ranges of
clones reported by clone detection tools and the lines
annotated as crosscutting concerns was studied by Bruntink et
al. [5]. The evaluation of multiple clone detection tools in our
paper looks at instances of refactoring that had already
occurred between two versions, whereas in [5] the
crosscutting concerns were not already changed into aspects,
but rather were determined at the beginning by a human
observer.

7 Conclusion and Future Work

This paper described the analysis of code clones
identified by a clone detection tool and their relationships
with actual refactorings obtained from changes between
consecutive versions of the source code. According to our
evaluation of running different clone detection tools on open
source software artifacts, the refactoring of parts of clones or
sub-clones is evident in several cases. We conclude that sub-
clone refactoring should be included in the clone maintenance
process. Such support should allow programmers to
selectively determine partial ranges in a clone for refactoring
within its syntactic hierarchy in addition to the exclusion of
edge statements.

For future work, we plan to include support for sub-
clone refactoring in our Eclipse plug-in called CeDAR (Clone
Detection, Analysis, and Refactoring) that currently can parse
the output of several clone detection tools and display clone
information within the Eclipse IDE [18]. The plug-in
represents an effort to assist the programmer in the refactoring
of clones. Future work related to this paper will include a
mechanism for the programmer to select sub-clones within a
clone for refactoring.

Acknowledgment

This material is based upon work supported by the
National Science Foundation under Grant No. 0702764.

8 References
[1] Apache Derby, http://db.apache.org/derby.

[2] ArgoUML, http://argouml.tigris.org.

[3] L. Aversano, L. Cerulo, and M. Di Penta, “How Clones
are Maintained: An Empirical Study”, European Conf. on
Software Maintenance and Reengineering, Amsterdam, The
Netherlands, March 2007, pp. 81-90.

[4] 1. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.
Bier, “Clone Detection using Abstract Syntax Trees”, Int.
Conf. on Software Maintenance, Bethesda, MD, November
1998, pp. 368-377.

[5] M. Bruntink, A. van Deursen, R. van Engelen, and T.
Tourwe, “On the Use of Clone Detection for Identifying
Crosscutting Concern Code”, IEEE Trans. on Software
Engineering, vol. 31, pp. 804-818, October 2005.

[6] S. Counsell, Y. Hassoun, G. Loizou, and R. Najjar,
“Common Refactorings, a Dependency Graph and Some Code
Smells: an Empirical Study of Java OSS”, Int. Symp. on
Empirical Software Engineering, Rio de Janeiro, Brazil,
September 2006, pp. 288-296.

[71 M. Fowler, Refactoring: Improving the Design of
Existing Code, Reading, MA: Addison-Wesley, 1999.

[8] JBoss, http://www.jboss.org.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,
“DECKARD: Scalable and Accurate Tree-based Detection of
Code Clones”, Int. Conf. on Software Engineering,
Minneapolis, MN, May 2007, pp. 96-105.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code”, IEEE Trans. on Software
Engineering, vol. 28, pp. 654-670, July 2002.

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
Empirical Study of Code Clone Genealogies”, European
Software Engineering Conf. and the Symp. on the
Foundations of Software Engineering, Lisbon, Portugal,
September 2005, pp. 187-196.

[12] J. Krinke, “A Study of Consistent and Inconsistent
Changes to Code Clones”, Working Conf. on Reverse
Engineering, Vancouver, Canada, October 2007, pp. 170-
178.

[13] S. Lawrence and J. Atlee, Software Engineering: Theory
and Practice, Upper Saddle River, NJ, Prentice Hall, 2006.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in Operating
System Code,” Symp. on Operating System Design and
Implementation, San Francisco, CA, December 2004, pp.
289-302.

[15] C. Schofield, B. Tansey, Z. Xing, and E. Stroulia,
“Digging the Development Dust for Refactorings”, Int. Conf.
on Program Comprehension, Athens, Greece, June 2006, pp.
23-34.

[16] Simian,
http://mww.redhillconsulting.com.au/products/simian.

[17] SimScan, http://blue-edge.bg/simscan.

[18] R. Tairas, and J. Gray, “Get to Know Your Clones with
CeDAR”, Int. Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, Orlando, FL, October
2009, pp. 817-818.

[19] P. WeiRgerber, and S. Diehl, “Identifying Refactorings
from Source-Code Changes”, Int. Conf. on Automated
Software Engineering, Tokyo, Japan, September 2006, pp.
231-240.

Appendix A. Clone Detection Tool Configuration Settings

This appendix summarizes the non-default configuration settings chosen for the clone detection tools used in the studies
presented in this paper. In most cases the value set was the default value given by a tool. An explanation of the settings and value
selected is also given.

Tool Setting Value Description
CCFinder Shaper level Hard Generate clones enclosed in blocks as much as possible
CloneDR All default settings
Deckard Similarity 0.95 Allow for small differences in clones
Stride 0 Limit the size of the clones
Simian All default settings
SimScan Volume Small Include smaller matches
Similarity Loosely similar ~ Allow for small differences in clones

Speed /quality Exhaustive search

Provide more detailed results

	Sub-clones: Considering the Part Rather than the Whole
	Introduction
	Observing Clone Refactoring
	Sub-clone Refactoring
	The process outlined in the previous section was performed and changes reported by diff within the clone ranges were further evaluated. Some common refactoring activities within the range of the clones were discovered in the JBoss version sequences, ...
	Deckard Sub-Clone Refactoring
	Deckard characteristics
	Evaluation results
	Sub-clone refactoring properties

	Discussion
	Related Work
	Conclusion and Future Work
	Acknowledgment
	References
	Appendix A. Clone Detection Tool Configuration Settings

