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Abstract 
 

Many software evolution and maintenance problems 
can be addressed through techniques of program 
transformation. To facilitate development of language 
tools assisting software evolution and maintenance, we 
created a Domain-Specific Language (DSL), named 
SPOT (Specifying PrOgram Transformation), which can 
be used to raise the abstraction level of code 
modification. The design goal is to automate source-to-
source program transformations through techniques of 
code generation, so that developers only need to specify 
desired transformations using constructs provided by the 
DSL while being oblivious to the details about how the 
transformations are performed. The paper provides a 
general motivation for using program transformation 
techniques and explains the design details of SPOT. In 
addition, we present a case study to illustrate how SPOT 
can be used to build a code coverage tool for 
applications implemented in different programming 
languages.  
 
1    Introduction 

Advances in the software industry have resulted in 
billions of lines of legacy code in hundreds of different 
programming languages. According to Lehman’s laws of 
software evolution [1], legacy software will experience 
continuous and rigorous adaption or modernization in 
order to avoid progressive decay in quality over time. It is 
often very expensive to make changes to code on a large 
scale [2].  

Program transformation is a special computation 
domain where source code is manipulated as data. A 
system capable of transforming programs usually works 
by taking a program in a source language as input, 
performing desired operations, and generating another 
program in a target language. Research on program 
transformation can be divided into different branches 
based on various criteria, e.g., application, 
implementation, and improvement [3]. Evolution of 
existing programs is one primary branch of program 
transformation, referring to the mechanical manipulation 
of a program in order to improve it with respect to 

modularity, understandability, performance, 
maintainability, or satisfaction of requirements. Based on 
whether the semantics of a program are affected, program 
evolution can be classified into two broad categories: 
refactoring (where source code is restructured while its 
semantics are preserved) and program renovation (where 
semantics are deliberately changed to meet certain 
requirements). 

Many software engineering problems, like system 
adaptation or optimization, can be addressed through 
source-to-source program transformation techniques. 
While program transformation can be realized by 
manually modifying source code, the objective is to 
increase productivity through automating transformation 
tasks, which usually entails manipulation of source code 
at a higher level of abstraction. 

 
1.1 Domain-Specific Languages (DSLs) 

A DSL refers to a “programming language or 
executable specification language that offers, through 
appropriate notations and abstractions, expressive power 
focused on, and usually restricted to, a particular 
problem domain” [4]. DSLs trade generality, a feature 
supported by general-purpose programming languages 
(GPLs), for expressiveness in a particular problem 
domain via tailoring the notations and abstractions 
towards the domain. A DSL can assist in more concise 
description of domain problems than a corresponding 
program in a GPL [5]. 

There are several benefits available when using a DSL. 
By raising the abstraction level, DSLs are able to offer 
substantial gains in productivity [5]. With the aid of 
generative programming, a few lines of code in a DSL 
might be transformed to an executable solution including 
several hundred lines of code in a GPL. The common 
declarative characteristic of a DSL offers significant 
benefits to individuals who have expertise about a 
particular domain, but lack necessary programming skills 
to implement a computational solution with a GPL. A 
DSL often can be declarative because the domain 
semantics are clearly defined, so that the declarations can 
have a precise interpretation [5]. 



To assist software maintenance and evolution, we have 
created a DSL, named SPOT, which can be used to 
perform source-to-source translation of programs by 
providing a higher level of abstraction for specifying 
program transformations [6]. In this paper, we focus on 
the generalization of the DSL which was originally 
devised to extend Fortran programs with the capacity of 
meta-programming [6]. However, SPOT is not limited to 
only transforming Fortran code but it can also be 
extended to support other languages, because the high-
level abstraction makes it language-independent. This 
paper motivates the need for SPOT and demonstrates 
through a case study (i.e., a code coverage tool) to show 
that the same transformation task specified with SPOT 
can be applied to programs written in different languages 
with a little adjustment. 

The paper is organized as follows. Section 2 explains 
design details of SPOT and its primary syntax and 
semantics. Section 3 illustrates the case study to show 
what SPOT can be used to achieve. Section 4 shows 
related work. We conclude the paper in Section 5. 
 

2    Design of SPOT 
To raise the level of abstraction of program 

transformation, high-level programming concepts (e.g., 
classes, functions, variables, and statements) are used in 
SPOT as language constructs. Declarative built-in 
functions are provided to precisely locate the place(s) for 
transformation in the target source code and to perform 
systematic actions on programming concepts 

 
2.1   SPOT Syntax 

Figure 1 shows the core subset of the abstract syntax of 
SPOT in the form of a model represented as a class 
diagram in UML. This model depicting the specification 
of code transformations is independent of any particular 
programming language. As indicated in the class 
diagram, every SPOT program contains a Transformer 
that consists of multiple Transformation components. 
Each Transformation component specifies some 
Operations to access or manipulate some 
LanguageEntities that can be pinpointed through 
specifying the Location.  

An Operation, represented as an abstract class in the 
class diagram, can be further categorized into different 
types of actions, such as Add, Delete, Update, and 
Retrieve, which are systematic actions that can be 
performed towards language entities. It has been 
observed in recent research that most source code 
modifications are systematic and developers usually add, 
delete or update code in a similar, but not identical 
manner [7]. Retrieve obtains the handler of a target 
LanguageEntity given a name, which can then be used to 

access its structural information or to modify its internal 
attributes.  

One crucial problem that challenges most program 
transformation systems is how to provide a scheme for 
developers to specify the location(s) for translation. 
SPOT provides different methods in the form of a set of 
built-in functions to achieve accurate positioning. 
Location and LanguageEntity together constitute the key 
for pattern matching in the underlying transformation 
implementation. For example, developers can invoke 
Within (Entity name) to indicate that the subsequent 
translation be performed for the entity identified with the 
given name. Before and After can be used to pinpoint the 
locations between lines. In addition, a wildcard can also 
be utilized to match multiple locations with similar 
scenarios. As seen in Figure 1, both ScopeEntity and 
BasicEnity are derived from LanguageEntity. ScopeEntity 
denotes language constructs such as function definitions, 
class definitions, or statements that also contain a scope 
(e.g., a if-else statement or a for statement). BasicEnity 
represents points of interest in source code that are 
frequently visited in program transformation, such as 
function calls, variable reads and writes, and statements 
without scope information. 

In this model, Operation and Location are completely 
language-independent while LanguageEntity is closely 
related with the target programming language. However, 
in order to increase the extensibility of SPOT, we only 
abstract the generic features depicted by LanguageEntity 
and its subclasses. Those features are shared among a 
family of languages with block-structured syntax, but not 
language-specific. Abstract language entities are actually 
the places where extensions are allowed in order for 
SPOT to support a particular programming language. 

The concrete syntax of SPOT is expressed as a 
grammar in Extended Backus-Naur Form (EBNF). As 

 

Figure 1: Core abstract syntax of SPOT  

 

Operate On Identify 
Location 

* 

1 

1 
* 

1 1 
* * 

* 

* 

1 1 

1 

1 



shown in Figure 2, different elements in the abstract 
syntax are expressed with generation rules that include 
keywords reserved by SPOT and some other terminal 
tokens such as separators, semicolons, and parentheses. 
Figure 3 describes the design structure of the code 
generator we implemented to generate the underlying 
transformation code from a SPOT program that 
represents desired translation tasks specified directly with 
SPOT constructs for the source code. The actual 
transformation code is responsible for carrying out the 
specified transformations on the base-program with the 
assistance of the low-level transformation engine. As 
shown in Figure 3, the code generator consists of a parser 
that is able to recognize the syntax of both SPOT and the 
target programming language and then builds an AST for 
the recognized program. A template engine is used to 
generate C++ code while traversing the AST.  

The parser is generated with ANTLR [8] from the 
EBNF grammars. ANTLR is a powerful generator that 
can be used to generate a recognizer for the language, and 
can also be used to build an AST for the recognized 
program, which can then be traversed and manipulated. 
The output models are built with StringTemplate [8], a 
template engine for generating formatted text output. The 
basic idea behind building the output models is that we 
create a group of templates representing the output and 
inject them with attributes while traversing the ASTs. To 
demostrate that SPOT can be used to specify 
transformations for programs in multiple GPLs, we have 
implemented the code generator by specifying the 

grammar of Fortran 90, C, and C++ and combining them 
with an extended SPOT grammar.  

The underlying transformation engine used is ROSE 
[9], an open source compiler infrastructure for building 
source-to-source transformation tools that are able to read 
and translate programs in large-scale systems. ROSE 
integrates mature parsers as the front-end to support a 
dozen different programming languages. We chose 
ROSE from a group of available candidates because 
ROSE provides sufficient interfaces that allow users to 
specify code transformation through coding in C++. In 
addition, ROSE plays an important role in enhancing the 
extensibility of SPOT because it utilizes a consistent 
intermediate representation (IR) after parsing source code 
written in different programming languages it supports. 
Most of the APIs for manipulating ASTs are shared 
among various languages. 

 
2.2   An Example SPOT Program 

Figure 4 shows an example of SPOT code with the 
basic structure and language constructs to automate code 
changes in C programs. The code adds a function call to 
printInt after every assignment statement whose left-hand 
side is the variable with the name varName. As indicated 
by the code snippet, a typical SPOT program starts with a 
keyword “Transformer,” followed by a user-defined 
name, “PrintResult” in this case, which will be used as 
the file name of the generated .cpp file.  

A transformer is usually composed of one or more 
scope blocks where action statements, nested scope 
blocks or condition blocks are included. As shown in 

Figure 3: Design structure of the Code Generator 
 

transformer 
    : 'Transformer' ID '{' transformation (';' 
       transformation)* '}' 
     -> ^(TRANSFORMER_ND ID transformation+); 
transformation 
    : location '{' subTransform+ '}' 
    -> ^(TFBODY_ND location subTransform+); 
location 
    : scopeKeyword '(' languageEntity (ID|'*'|'%' ID) ')'  
    -> ^(TRANS_LOCATION scopeKeyword languageEntity  
       (ID|'*'|'%'^ ID)); 
languageEntity 
    : scopeEntity 
    | basicEntiy; 
scopeKeyword 
    : 'Within'; 
locationKeyword 
    :'After' 
    |'Before';  
scopeEntity 
    :'Function'  
    |'Project' 
    |'Statement';   
basicEntiy 
    :'FunctionCall' 
    |'VariableRead' 
    |'VariableWrite' 
    | statementTypeName  
    | '"' statement '"'; 
subTransform 
    :location '{' operation+ '}' 
    -> ^(SUB_TRANSFORMER location operation+)  
    | operation ; 
operation 
    :actionVariable ';' 
    -> ^(ACTION_ND actionVariable) 
    |actionStatement ';' 
    -> ^(ACTION_ND actionStatement) 
    |actionFunction ';' 
    -> ^(ACTION_ND actionFunction) 
    |scopeEntity '%'? ID '=' actionRetrieve ';'  
    -> ^(RETRIEVE_ND scopeEntity '%'? ID '=' actionRetrieve); 

Figure 2: Core concrete syntax of SPOT 

1. Transformer PrintResult{ 
2.   Within(Function *){ 
3.    StatementAssignment %stmt=  
                           getStatementAssignment(); 
4.    IF($stmt.varName==varName){  
5.      AddCallStatement(After, $stmt.statement, 
              printInt, varName, $stmt.assignValue); 
6.    }  
7.   } 
8. }       
 Figure 4: An example program coded in SPOT 

 



Figure 4, we define a scope block from line 2 to line 6. 
The wildcard feature is also supported to translate source 
code in multiple locations with similar scenarios. For 
instance “Within(Function *)” indicates that the 
following translation would be performed for all function 
definitions in current code where “*” acts as a wildcard. 
Line 3 defines a variable named “stmt” with a percent 
sign that serves as the handler for a set of assignment 
statements. Lines 4 to 6 define a condition block with the 
keyword “IF.” If the left-hand side in an assignment 
statement is the variable varName, line 5 adds a line of 
code that calls “printInt” after the assignment statement. 
The “$” sign is used together with a user-defined variable 
to reference any element in the list. For example, “$stmt” 
iterates over all elements held by the handler “%stmt.” As 
indicated by line 2 in the example, location and scope 
information is expressed in AspectJ style [10]. We have 
included a detailed description about the semantics of 
SPOT for Fortran in our previous work [6]. We have also 
demonstrated how to use SPOT to deal with the 
challenges of both crosscutting and parallelization 
concerns in High Performance Computing (HPC) [6, 11].  

For developers, coding with SPOT provides a means to 
manipulate the entities of source code in a direct manner, 
which may more resemble their thoughts on program 
transformation than coding with other facilities such as 
program transformation engines (PTEs) or refactoring 
IDEs. In addition, developers can focus their attention 
more on specifying desired code modification using the 
functional SPOT constructs while not needing to care 
about the underlying transformations. Therefore, to use 
SPOT, developers do not need deep knowledge about the 

accidental complexities associated with using a program 
transformation engine. 

 
3 Building a Code Coverage Tool 

In this section, we present a case study to demonstrate 
how to implement a code coverage tool with SPOT. The 
same SPOT program can be used to specify translation 
tasks for programs coded in different GPLs.  

Code coverage analysis is a means for determining the 
quantitative measure of the extent to which the source 
code of a program is covered by running a test suite [12]. 
Implementing a code coverage tool is a typical problem 
encountered in software testing, which demonstrates the 
characteristic of crosscutting concerns. There are a 
variety of criteria used to measure coverage levels, 
among which the following two are commonly used: 
statement coverage, indicating whether each executable 
statement has run at least once, and decision (or branch) 
coverage, indicating whether each control structure (e.g., 
if-statement or while-statement) has been evaluated to 

1. Transformer statementCoverage { 
2.   Within(File %file){ 
3.     AddIncludeStatement(CodeCoverage.h); 
4.     FORALL(Function *){ 
5.       FORALL(Statement %stmt){ 
6.          AddCallStatement(Before, 
            $stmt.statement, Visited, 
            $stmt.lineNum, $file.fileName); 
7.       } 
8.    } 
9.  } 
10.} 
 

Figure 6: SPOT code implementing statement coverage  

1. void cfft2 ( int n, double x[], double y[], double w[], double sgn ){ 
    ...... 
    Visited(2, “fft_serial.c”); 
2.  tgle = 1; 
    Visited(3, “fft_serial.c”); 
3.  step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn ); 
    Visited(4, “fft_serial.c”); 
4.  if ( n == 2 ){ 
      Visited(5, “fft_serial.c”); 
5.    return; 
6.  } 
    Visited(7, “fft_serial.c”); 
7.  for ( j = 0; j < m - 2; j++ ){ 
      Visited(8, “fft_serial.c”); 
8.    mj = mj * 2; 
      Visited(9, “fft_serial.c”); 
9.    if ( tgle ){ 
        Visited(10, “fft_serial.c”); 
10.     step ( n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0], w, sgn ); 
        Visited(11, “fft_serial.c”); 
11.     tgle = 0; 
12.   } 
13.   else{ 
        Visited(14, “fft_serial.c”); 
14.     step ( n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn ); 
        Visited(15, “fft_serial.c”); 
15.     tgle = 1; 
16.   } 
17. } 
  ...... 
 

Figure 5: Instrumented source code calculating FFT for statement coverage 
 



both true and false at least once. 
A code coverage tool is usually implemented by first 

instrumenting the source code or intermediate binaries 
with instructions that are used to navigate the generation 
of coverage data during program execution, and then by 
analysing the collected coverage information to produce 
a coverage report [13]. To manipulate source code is 
more straightforward conceptually than the intermediate 
object code. For example, in order to achieve statement 
coverage, first identify each statement in a program and 
then, in a copy of source code, add a line of code after a 
statement acting as a self-identifying probe for the 
statement. 

In this case study, we mainly illustrate how to use 
SPOT to implement a coverage tool that supports both 
statement coverage and branch coverage for C programs, 
and then to slightly adapt the SPOT code to make it work 
for Fortran programs. It is not trivial to implement a code 
coverage tool because it requires that the target program 
is parsed and analyzed semantically for locating target 
statements and the source code is then instrumented to 
insert probe code. This usually involves manipulation of 
complicated data structures such as an AST. However, by 
raising the abstraction of program transformation, our 
approach can be used to deal with such a complicated 
task through only a few lines of code written in SPOT.  

We have tested the coverage library on several 
applications, one of which is an algorithm for Fast 
Fourier Transform (FFT) [14]. The FFT algorithm can be 
used to rapidly compute the Fourier analysis that converts 
time or space to frequency and vice versa [15]. It has 
been widely used for many applications in mathematics 
and engineering. Figure 5 (at the end of the paper) shows 
a code snippet from the algorithm, which has been 
instrumented with probe code to realize statement 
coverage.  

Before each executable statement, a function call to an 
auxiliary function Visited (int lineNumber, string 
fileName) is added. Within function Visited, a unique 

identifying number is generated and associated with each 
line number within each source file involved, which is 
necessary for testing an entire software system comprised 
of multiple source files. ROSE is a transformation engine 
with industrial strength and it is able to read thousands of 
files in a single session, perform transformations, and 
then produce the complete set of modified files. 
Supporting code is responsible for resetting all the visited 
flags, setting them after running the program with test 
cases, while other code accumulates the results of the 
visited array across multiple tests. Figure 6 demonstrates 
the transformer that enables code translation indicated by 
Figure 5.  

To implement decision coverage is a little more 
complicated than statement coverage, but the transformer 
can still be implemented with a few lines of code in 
SPOT. Instead of inserting a probe for each executable 
statement, we only need to focus on statements that 
contain control structures; for example, condition 
statements (if-else and switch) and loop statements (for 
and while). A control statement is usually a scope 
statement (i.e., a block that may include a set of 
statements). In the transformer that implements branch 
coverage as indicated in Figure 7, we are only interested 
in those statements whose type is StatementIF, 
StatementELSEIF, StatementELSE, StatementFOR, 
StatementWHILE, StatementSWITCHCASE, or 
StatementSWITCHDefault. In lines 7 and 8, we locate 
such a statement and insert a line of code calling Visited 
before the first statement that is included in its following 
block. In addition, we also add the same function call at 
the very beginning of each function definition as in line 5. 
The instrumented example code is omitted due to page 
limits.  

To implement a similar tool that supports both 
statement coverage and branch coverage for applications 
written in Fortran, we can reuse most of the SPOT 
programs introduced in the previous subsection. The two 
SPOT programs for instrumenting C applications have to 
be modified in order to be applicable to Fortran. For the 

1. Transformer branchCoverage { 
2.   Within(File %file){ 
3.     AddIncludeStatement(CodeCoverage.h); 
4.     FORALL(Function %fun){ 
5.       AddCallStatement(Before, $fun.firstStatement,  
            Visited, $fun.lineNum, $file.fileName); 
6.       FORALL(Statement %stmt){ 
7.         IF($stmt.type==StatementIF  
               OR $stmt.type==StatementELSEIF 
               OR $stmt.type==StatementELSE 
               OR $stmt.type==StatementFOR  
               OR $stmt.type==StatementWHILE 
               OR $stmt.type==StatementSWITCHCASE  
               OR $stmt.type==StatementSWITCHDefault){ 
8.             AddCallStatement(Before, 
               $stmt.firstStatement, Visited, 
               $stmt.lineNum, $file.fileName); 
9.          } 
10.       } 
11.     } 
12.   } 
13. } 

Figure 7: SPOT code implementing branch coverage  

1.Transformer branchCoverage { 
2.  Within(File %file){ 
3.   FORALL(Function %fun){ 
4.     AddUseStatement(CodeCoverage); 
5.     AddCallStatement(Before, $fun.firstStatement, 
             Visited,$fun.lineNum, $file.fileName); 
6.     FORALL(Statement %stmt){ 
7.       IF($stmt.type==StatementIF 
            OR $stmt.type==StatementTHEN 
            OR $stmt.type==StatementELSE 
            OR $stmt.type==StatementWHILE){ 
8.        AddCallStatement(Before, 
               $stmt.firstStatement, 
               Visited, $stmt.lineNum, 
               $file.fileName); 
9.          } 
10.       } 
11.     } 
12.   } 
13. } 

Figure 8: SPOT code implementing 
branch coverage for Fortran 



SPOT code in Figure 6 which achieves statement 
coverage, AddIncludeStatement is specific to C++ and 
needs to be replaced by AddUseStatement(ModuleName) 
that is used for giving a Fortran program unit 
accessibility to public entities in a module specified with 
ModuleName, where all auxiliary Fortran code resides. 
Also, the use statement should be inserted at the 
beginning of each procedure (program, function, or 
subroutine). The rest of the SPOT code remains the same. 
Figure 8 shows the adjusted SPOT code for Fortran from 
that in Figure 7 which implements branch coverage for C. 
Besides replacing AddIncludeStatement with 
AddUseStatement, we also removed C statement types 
and added corresponding Fortran statement types as 
shown in line 7 of Figure 8. 

 
4    Related Work 

In the context of automating source-to-source code 
translation, DSLs have already been used in many 
approaches, where the research goal with regard to 
raising the level of abstraction is the same. Hi-PaL [16] is 
a DSL that can be used to automate the process of 
parallelization with MPI. Liszt [17] is a DSL that is 
designed particularly to address the problem of mesh-
based partial differential equations on heterogeneous 
architectures. These two DSLs are designed to solve only 
a particular type of problems while SPOT has the 
potential to address different types of problems in 
software maintenance and evolution. 

Another similar work is POET [18], a scripting 
language, originally developed to perform compiler 
optimizations for performance tuning. POET can be used 
to parameterize program transformations so that system 
performance can be empirically tuned. Compared with 
POET’s parameterization scheme, our approach raises 
the abstraction for program transformation and thus more 
aligns with developers’ understanding of program 
transformations by allowing direct manipulation of 
language constructs. 
 
5    Conclusion 

The work described in this paper is mainly focused on 
SPOT, a DSL providing a higher level of abstraction for 
expressing program transformations. The design focus of 
SPOT is to automate source-to-source program 
transformations through techniques of code generation, 
so that developers only need to specify desired 
transformations using building constructs and built-in 
functions provided while being delivered from knowing 
the details about how the transformations are performed.  

The paper provides a detailed description for the design 
and implementation of SPOT. We provided a case study 
to illustrate how SPOT can be used to perform program 
transformations for applications written in different 
programming languages.  
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