
A DSL for Reducing the Accidental Complexities of using
Program Transformation Engines

Songqing Yue* and Jeff Gray†
*Department of Mathematics and Computer Science, University of Central Missouri

Warrensburg, Missouri 64093, USA
syue@ucmo.edu

†Department of Computer Science, University of Alabama
Tuscaloosa, Alabama 35401, USA

gray@cs.ua.edu

Abstract

Many software evolution and maintenance problems
can be addressed through techniques of program
transformation. To facilitate development of language
tools assisting software evolution and maintenance, we
created a Domain-Specific Language (DSL), named
SPOT (Specifying PrOgram Transformation), which can
be used to raise the abstraction level of code
modification. The design goal is to automate source-to-
source program transformations through techniques of
code generation, so that developers only need to specify
desired transformations using constructs provided by the
DSL while being oblivious to the details about how the
transformations are performed. The paper provides a
general motivation for using program transformation
techniques and explains the design details of SPOT. In
addition, we present a case study to illustrate how SPOT
can be used to build a code coverage tool for
applications implemented in different programming
languages.

1 Introduction

Advances in the software industry have resulted in
billions of lines of legacy code in hundreds of different
programming languages. According to Lehman’s laws of
software evolution [1], legacy software will experience
continuous and rigorous adaption or modernization in
order to avoid progressive decay in quality over time. It is
often very expensive to make changes to code on a large
scale [2].

Program transformation is a special computation
domain where source code is manipulated as data. A
system capable of transforming programs usually works
by taking a program in a source language as input,
performing desired operations, and generating another
program in a target language. Research on program
transformation can be divided into different branches
based on various criteria, e.g., application,
implementation, and improvement [3]. Evolution of
existing programs is one primary branch of program
transformation, referring to the mechanical manipulation
of a program in order to improve it with respect to

modularity, understandability, performance,
maintainability, or satisfaction of requirements. Based on
whether the semantics of a program are affected, program
evolution can be classified into two broad categories:
refactoring (where source code is restructured while its
semantics are preserved) and program renovation (where
semantics are deliberately changed to meet certain
requirements).

Many software engineering problems, like system
adaptation or optimization, can be addressed through
source-to-source program transformation techniques.
While program transformation can be realized by
manually modifying source code, the objective is to
increase productivity through automating transformation
tasks, which usually entails manipulation of source code
at a higher level of abstraction.

1.1 Domain-Specific Languages (DSLs)

A DSL refers to a “programming language or
executable specification language that offers, through
appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular
problem domain” [4]. DSLs trade generality, a feature
supported by general-purpose programming languages
(GPLs), for expressiveness in a particular problem
domain via tailoring the notations and abstractions
towards the domain. A DSL can assist in more concise
description of domain problems than a corresponding
program in a GPL [5].

There are several benefits available when using a DSL.
By raising the abstraction level, DSLs are able to offer
substantial gains in productivity [5]. With the aid of
generative programming, a few lines of code in a DSL
might be transformed to an executable solution including
several hundred lines of code in a GPL. The common
declarative characteristic of a DSL offers significant
benefits to individuals who have expertise about a
particular domain, but lack necessary programming skills
to implement a computational solution with a GPL. A
DSL often can be declarative because the domain
semantics are clearly defined, so that the declarations can
have a precise interpretation [5].

To assist software maintenance and evolution, we have
created a DSL, named SPOT, which can be used to
perform source-to-source translation of programs by
providing a higher level of abstraction for specifying
program transformations [6]. In this paper, we focus on
the generalization of the DSL which was originally
devised to extend Fortran programs with the capacity of
meta-programming [6]. However, SPOT is not limited to
only transforming Fortran code but it can also be
extended to support other languages, because the high-
level abstraction makes it language-independent. This
paper motivates the need for SPOT and demonstrates
through a case study (i.e., a code coverage tool) to show
that the same transformation task specified with SPOT
can be applied to programs written in different languages
with a little adjustment.

The paper is organized as follows. Section 2 explains
design details of SPOT and its primary syntax and
semantics. Section 3 illustrates the case study to show
what SPOT can be used to achieve. Section 4 shows
related work. We conclude the paper in Section 5.

2 Design of SPOT
To raise the level of abstraction of program

transformation, high-level programming concepts (e.g.,
classes, functions, variables, and statements) are used in
SPOT as language constructs. Declarative built-in
functions are provided to precisely locate the place(s) for
transformation in the target source code and to perform
systematic actions on programming concepts

2.1 SPOT Syntax

Figure 1 shows the core subset of the abstract syntax of
SPOT in the form of a model represented as a class
diagram in UML. This model depicting the specification
of code transformations is independent of any particular
programming language. As indicated in the class
diagram, every SPOT program contains a Transformer
that consists of multiple Transformation components.
Each Transformation component specifies some
Operations to access or manipulate some
LanguageEntities that can be pinpointed through
specifying the Location.

An Operation, represented as an abstract class in the
class diagram, can be further categorized into different
types of actions, such as Add, Delete, Update, and
Retrieve, which are systematic actions that can be
performed towards language entities. It has been
observed in recent research that most source code
modifications are systematic and developers usually add,
delete or update code in a similar, but not identical
manner [7]. Retrieve obtains the handler of a target
LanguageEntity given a name, which can then be used to

access its structural information or to modify its internal
attributes.

One crucial problem that challenges most program
transformation systems is how to provide a scheme for
developers to specify the location(s) for translation.
SPOT provides different methods in the form of a set of
built-in functions to achieve accurate positioning.
Location and LanguageEntity together constitute the key
for pattern matching in the underlying transformation
implementation. For example, developers can invoke
Within (Entity name) to indicate that the subsequent
translation be performed for the entity identified with the
given name. Before and After can be used to pinpoint the
locations between lines. In addition, a wildcard can also
be utilized to match multiple locations with similar
scenarios. As seen in Figure 1, both ScopeEntity and
BasicEnity are derived from LanguageEntity. ScopeEntity
denotes language constructs such as function definitions,
class definitions, or statements that also contain a scope
(e.g., a if-else statement or a for statement). BasicEnity
represents points of interest in source code that are
frequently visited in program transformation, such as
function calls, variable reads and writes, and statements
without scope information.

In this model, Operation and Location are completely
language-independent while LanguageEntity is closely
related with the target programming language. However,
in order to increase the extensibility of SPOT, we only
abstract the generic features depicted by LanguageEntity
and its subclasses. Those features are shared among a
family of languages with block-structured syntax, but not
language-specific. Abstract language entities are actually
the places where extensions are allowed in order for
SPOT to support a particular programming language.

The concrete syntax of SPOT is expressed as a
grammar in Extended Backus-Naur Form (EBNF). As

Figure 1: Core abstract syntax of SPOT

Operate On Identify
Location

*

1

1
*

1 1
* *

*

*

1 1

1

1

shown in Figure 2, different elements in the abstract
syntax are expressed with generation rules that include
keywords reserved by SPOT and some other terminal
tokens such as separators, semicolons, and parentheses.
Figure 3 describes the design structure of the code
generator we implemented to generate the underlying
transformation code from a SPOT program that
represents desired translation tasks specified directly with
SPOT constructs for the source code. The actual
transformation code is responsible for carrying out the
specified transformations on the base-program with the
assistance of the low-level transformation engine. As
shown in Figure 3, the code generator consists of a parser
that is able to recognize the syntax of both SPOT and the
target programming language and then builds an AST for
the recognized program. A template engine is used to
generate C++ code while traversing the AST.

The parser is generated with ANTLR [8] from the
EBNF grammars. ANTLR is a powerful generator that
can be used to generate a recognizer for the language, and
can also be used to build an AST for the recognized
program, which can then be traversed and manipulated.
The output models are built with StringTemplate [8], a
template engine for generating formatted text output. The
basic idea behind building the output models is that we
create a group of templates representing the output and
inject them with attributes while traversing the ASTs. To
demostrate that SPOT can be used to specify
transformations for programs in multiple GPLs, we have
implemented the code generator by specifying the

grammar of Fortran 90, C, and C++ and combining them
with an extended SPOT grammar.

The underlying transformation engine used is ROSE
[9], an open source compiler infrastructure for building
source-to-source transformation tools that are able to read
and translate programs in large-scale systems. ROSE
integrates mature parsers as the front-end to support a
dozen different programming languages. We chose
ROSE from a group of available candidates because
ROSE provides sufficient interfaces that allow users to
specify code transformation through coding in C++. In
addition, ROSE plays an important role in enhancing the
extensibility of SPOT because it utilizes a consistent
intermediate representation (IR) after parsing source code
written in different programming languages it supports.
Most of the APIs for manipulating ASTs are shared
among various languages.

2.2 An Example SPOT Program

Figure 4 shows an example of SPOT code with the
basic structure and language constructs to automate code
changes in C programs. The code adds a function call to
printInt after every assignment statement whose left-hand
side is the variable with the name varName. As indicated
by the code snippet, a typical SPOT program starts with a
keyword “Transformer,” followed by a user-defined
name, “PrintResult” in this case, which will be used as
the file name of the generated .cpp file.

A transformer is usually composed of one or more
scope blocks where action statements, nested scope
blocks or condition blocks are included. As shown in

Figure 3: Design structure of the Code Generator

transformer
 : 'Transformer' ID '{' transformation (';'
 transformation)* '}'
 -> ^(TRANSFORMER_ND ID transformation+);
transformation
 : location '{' subTransform+ '}'
 -> ^(TFBODY_ND location subTransform+);
location
 : scopeKeyword '(' languageEntity (ID|'*'|'%' ID) ')'
 -> ^(TRANS_LOCATION scopeKeyword languageEntity
 (ID|'*'|'%'^ ID));
languageEntity
 : scopeEntity
 | basicEntiy;
scopeKeyword
 : 'Within';
locationKeyword
 :'After'
 |'Before';
scopeEntity
 :'Function'
 |'Project'
 |'Statement';
basicEntiy
 :'FunctionCall'
 |'VariableRead'
 |'VariableWrite'
 | statementTypeName
 | '"' statement '"';
subTransform
 :location '{' operation+ '}'
 -> ^(SUB_TRANSFORMER location operation+)
 | operation ;
operation
 :actionVariable ';'
 -> ^(ACTION_ND actionVariable)
 |actionStatement ';'
 -> ^(ACTION_ND actionStatement)
 |actionFunction ';'
 -> ^(ACTION_ND actionFunction)
 |scopeEntity '%'? ID '=' actionRetrieve ';'
 -> ^(RETRIEVE_ND scopeEntity '%'? ID '=' actionRetrieve);

Figure 2: Core concrete syntax of SPOT

1. Transformer PrintResult{
2. Within(Function *){
3. StatementAssignment %stmt=
 getStatementAssignment();
4. IF($stmt.varName==varName){
5. AddCallStatement(After, $stmt.statement,
 printInt, varName, $stmt.assignValue);
6. }
7. }
8. }
 Figure 4: An example program coded in SPOT

Figure 4, we define a scope block from line 2 to line 6.
The wildcard feature is also supported to translate source
code in multiple locations with similar scenarios. For
instance “Within(Function *)” indicates that the
following translation would be performed for all function
definitions in current code where “*” acts as a wildcard.
Line 3 defines a variable named “stmt” with a percent
sign that serves as the handler for a set of assignment
statements. Lines 4 to 6 define a condition block with the
keyword “IF.” If the left-hand side in an assignment
statement is the variable varName, line 5 adds a line of
code that calls “printInt” after the assignment statement.
The “$” sign is used together with a user-defined variable
to reference any element in the list. For example, “$stmt”
iterates over all elements held by the handler “%stmt.” As
indicated by line 2 in the example, location and scope
information is expressed in AspectJ style [10]. We have
included a detailed description about the semantics of
SPOT for Fortran in our previous work [6]. We have also
demonstrated how to use SPOT to deal with the
challenges of both crosscutting and parallelization
concerns in High Performance Computing (HPC) [6, 11].

For developers, coding with SPOT provides a means to
manipulate the entities of source code in a direct manner,
which may more resemble their thoughts on program
transformation than coding with other facilities such as
program transformation engines (PTEs) or refactoring
IDEs. In addition, developers can focus their attention
more on specifying desired code modification using the
functional SPOT constructs while not needing to care
about the underlying transformations. Therefore, to use
SPOT, developers do not need deep knowledge about the

accidental complexities associated with using a program
transformation engine.

3 Building a Code Coverage Tool

In this section, we present a case study to demonstrate
how to implement a code coverage tool with SPOT. The
same SPOT program can be used to specify translation
tasks for programs coded in different GPLs.

Code coverage analysis is a means for determining the
quantitative measure of the extent to which the source
code of a program is covered by running a test suite [12].
Implementing a code coverage tool is a typical problem
encountered in software testing, which demonstrates the
characteristic of crosscutting concerns. There are a
variety of criteria used to measure coverage levels,
among which the following two are commonly used:
statement coverage, indicating whether each executable
statement has run at least once, and decision (or branch)
coverage, indicating whether each control structure (e.g.,
if-statement or while-statement) has been evaluated to

1. Transformer statementCoverage {
2. Within(File %file){
3. AddIncludeStatement(CodeCoverage.h);
4. FORALL(Function *){
5. FORALL(Statement %stmt){
6. AddCallStatement(Before,
 $stmt.statement, Visited,
 $stmt.lineNum, $file.fileName);
7. }
8. }
9. }
10.}

Figure 6: SPOT code implementing statement coverage

1. void cfft2 (int n, double x[], double y[], double w[], double sgn){

 Visited(2, “fft_serial.c”);
2. tgle = 1;
 Visited(3, “fft_serial.c”);
3. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn);
 Visited(4, “fft_serial.c”);
4. if (n == 2){
 Visited(5, “fft_serial.c”);
5. return;
6. }
 Visited(7, “fft_serial.c”);
7. for (j = 0; j < m - 2; j++){
 Visited(8, “fft_serial.c”);
8. mj = mj * 2;
 Visited(9, “fft_serial.c”);
9. if (tgle){
 Visited(10, “fft_serial.c”);
10. step (n, mj, &y[0*2+0], &y[(n/2)*2+0], &x[0*2+0], &x[mj*2+0], w, sgn);
 Visited(11, “fft_serial.c”);
11. tgle = 0;
12. }
13. else{
 Visited(14, “fft_serial.c”);
14. step (n, mj, &x[0*2+0], &x[(n/2)*2+0], &y[0*2+0], &y[mj*2+0], w, sgn);
 Visited(15, “fft_serial.c”);
15. tgle = 1;
16. }
17. }

Figure 5: Instrumented source code calculating FFT for statement coverage

both true and false at least once.
A code coverage tool is usually implemented by first

instrumenting the source code or intermediate binaries
with instructions that are used to navigate the generation
of coverage data during program execution, and then by
analysing the collected coverage information to produce
a coverage report [13]. To manipulate source code is
more straightforward conceptually than the intermediate
object code. For example, in order to achieve statement
coverage, first identify each statement in a program and
then, in a copy of source code, add a line of code after a
statement acting as a self-identifying probe for the
statement.

In this case study, we mainly illustrate how to use
SPOT to implement a coverage tool that supports both
statement coverage and branch coverage for C programs,
and then to slightly adapt the SPOT code to make it work
for Fortran programs. It is not trivial to implement a code
coverage tool because it requires that the target program
is parsed and analyzed semantically for locating target
statements and the source code is then instrumented to
insert probe code. This usually involves manipulation of
complicated data structures such as an AST. However, by
raising the abstraction of program transformation, our
approach can be used to deal with such a complicated
task through only a few lines of code written in SPOT.

We have tested the coverage library on several
applications, one of which is an algorithm for Fast
Fourier Transform (FFT) [14]. The FFT algorithm can be
used to rapidly compute the Fourier analysis that converts
time or space to frequency and vice versa [15]. It has
been widely used for many applications in mathematics
and engineering. Figure 5 (at the end of the paper) shows
a code snippet from the algorithm, which has been
instrumented with probe code to realize statement
coverage.

Before each executable statement, a function call to an
auxiliary function Visited (int lineNumber, string
fileName) is added. Within function Visited, a unique

identifying number is generated and associated with each
line number within each source file involved, which is
necessary for testing an entire software system comprised
of multiple source files. ROSE is a transformation engine
with industrial strength and it is able to read thousands of
files in a single session, perform transformations, and
then produce the complete set of modified files.
Supporting code is responsible for resetting all the visited
flags, setting them after running the program with test
cases, while other code accumulates the results of the
visited array across multiple tests. Figure 6 demonstrates
the transformer that enables code translation indicated by
Figure 5.

To implement decision coverage is a little more
complicated than statement coverage, but the transformer
can still be implemented with a few lines of code in
SPOT. Instead of inserting a probe for each executable
statement, we only need to focus on statements that
contain control structures; for example, condition
statements (if-else and switch) and loop statements (for
and while). A control statement is usually a scope
statement (i.e., a block that may include a set of
statements). In the transformer that implements branch
coverage as indicated in Figure 7, we are only interested
in those statements whose type is StatementIF,
StatementELSEIF, StatementELSE, StatementFOR,
StatementWHILE, StatementSWITCHCASE, or
StatementSWITCHDefault. In lines 7 and 8, we locate
such a statement and insert a line of code calling Visited
before the first statement that is included in its following
block. In addition, we also add the same function call at
the very beginning of each function definition as in line 5.
The instrumented example code is omitted due to page
limits.

To implement a similar tool that supports both
statement coverage and branch coverage for applications
written in Fortran, we can reuse most of the SPOT
programs introduced in the previous subsection. The two
SPOT programs for instrumenting C applications have to
be modified in order to be applicable to Fortran. For the

1. Transformer branchCoverage {
2. Within(File %file){
3. AddIncludeStatement(CodeCoverage.h);
4. FORALL(Function %fun){
5. AddCallStatement(Before, $fun.firstStatement,
 Visited, $fun.lineNum, $file.fileName);
6. FORALL(Statement %stmt){
7. IF($stmt.type==StatementIF
 OR $stmt.type==StatementELSEIF
 OR $stmt.type==StatementELSE
 OR $stmt.type==StatementFOR
 OR $stmt.type==StatementWHILE
 OR $stmt.type==StatementSWITCHCASE
 OR $stmt.type==StatementSWITCHDefault){
8. AddCallStatement(Before,
 $stmt.firstStatement, Visited,
 $stmt.lineNum, $file.fileName);
9. }
10. }
11. }
12. }
13. }

Figure 7: SPOT code implementing branch coverage

1.Transformer branchCoverage {
2. Within(File %file){
3. FORALL(Function %fun){
4. AddUseStatement(CodeCoverage);
5. AddCallStatement(Before, $fun.firstStatement,
 Visited,$fun.lineNum, $file.fileName);
6. FORALL(Statement %stmt){
7. IF($stmt.type==StatementIF
 OR $stmt.type==StatementTHEN
 OR $stmt.type==StatementELSE
 OR $stmt.type==StatementWHILE){
8. AddCallStatement(Before,
 $stmt.firstStatement,
 Visited, $stmt.lineNum,
 $file.fileName);
9. }
10. }
11. }
12. }
13. }

Figure 8: SPOT code implementing
branch coverage for Fortran

SPOT code in Figure 6 which achieves statement
coverage, AddIncludeStatement is specific to C++ and
needs to be replaced by AddUseStatement(ModuleName)
that is used for giving a Fortran program unit
accessibility to public entities in a module specified with
ModuleName, where all auxiliary Fortran code resides.
Also, the use statement should be inserted at the
beginning of each procedure (program, function, or
subroutine). The rest of the SPOT code remains the same.
Figure 8 shows the adjusted SPOT code for Fortran from
that in Figure 7 which implements branch coverage for C.
Besides replacing AddIncludeStatement with
AddUseStatement, we also removed C statement types
and added corresponding Fortran statement types as
shown in line 7 of Figure 8.

4 Related Work

In the context of automating source-to-source code
translation, DSLs have already been used in many
approaches, where the research goal with regard to
raising the level of abstraction is the same. Hi-PaL [16] is
a DSL that can be used to automate the process of
parallelization with MPI. Liszt [17] is a DSL that is
designed particularly to address the problem of mesh-
based partial differential equations on heterogeneous
architectures. These two DSLs are designed to solve only
a particular type of problems while SPOT has the
potential to address different types of problems in
software maintenance and evolution.

Another similar work is POET [18], a scripting
language, originally developed to perform compiler
optimizations for performance tuning. POET can be used
to parameterize program transformations so that system
performance can be empirically tuned. Compared with
POET’s parameterization scheme, our approach raises
the abstraction for program transformation and thus more
aligns with developers’ understanding of program
transformations by allowing direct manipulation of
language constructs.

5 Conclusion

The work described in this paper is mainly focused on
SPOT, a DSL providing a higher level of abstraction for
expressing program transformations. The design focus of
SPOT is to automate source-to-source program
transformations through techniques of code generation,
so that developers only need to specify desired
transformations using building constructs and built-in
functions provided while being delivered from knowing
the details about how the transformations are performed.

The paper provides a detailed description for the design
and implementation of SPOT. We provided a case study
to illustrate how SPOT can be used to perform program
transformations for applications written in different
programming languages.

 References
[1] Meir M. Lehman, Juan F. Ramil, Paul D. Wernick,

Dewayne E. Perry, and Wladyslaw M. Turski. Metrics
and laws of software evolution-the nineties view. In
Proceedings of the Fourth International Software Metrics
Symposium, pp. 20-32, 1997.

[2] Keith H. Bennett and Václav T. Rajlich. Software
maintenance and evolution: a roadmap. In Proceedings of
the Conference on the Future of Software Engineering,
pp. 73-87, 2000.

[3] Eelco Visser. A survey of strategies in rule-based program
transformation systems. Journal of Symbolic Computation
40(1), 831-873, 2005

[4] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-
Specific Languages: An Annotated Bibliography. Sigplan
Notices 35(6), 26-36, 2000.

[5] Jeff Gray and Karsai Gábor. An examination of DSLs for
concisely representing model traversals and
transformations. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pp.
10-pp. 2003.

[6] Songqing Yue and Jeff Gray. SPOT: A DSL for
Extending FORTRAN Programs With Meta-
Programming. Advances in Software Engineering,
Volume 2014, pp. 1-23, 2014.

[7] Miryung Kim, Vibha Sazawal, David Notkin, and Gail
Murphy. An empirical study of code clone genealogies."
In ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 5, pp. 187-196, 2005.

[8] Terence Parr. The definitive ANTLR reference: building
domain-specific languages. 2007.

[9] Dan J. Quinlan. ROSE compiler project. 2012.
[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik

Kersten, Jeffrey Palm, and William Griswold. Getting
started with AspectJ. Communications of the ACM,
44(10), 59-65, 2001.

[11] Kevin Dowd. High performance computing. O'Reilly,
1993.

[12] Jason Henderson and Manish Garg. Code coverage
analysis. Bullseye Testing Technology, 2002.

[13] Glenford J. Myers, Corey Sandler, and Tom Badgett. The
art of software testing. John Wiley & Sons, 2011.

[14] Fast Fourier Transform example source code
http://people.sc.fsu.edu/~jburkardt/c_src/fft_serial

[15] Charles Van Loan. Computational frameworks for the fast
Fourier transform. Vol. 10. Siam, 1992.

[16] Ritu Arora, Purushotham Bangalore, and Marjan Mernik.
A technique for non-invasive application-level
checkpointing. The Journal of Supercomputing, 57(3,)
227-255, 2011

[17] Zachary DeVito, Niels Joubert et al. Liszt: a domain
specific language for building portable mesh-based PDE
solvers." In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, p. 9. 2011.

[18] Qing Yi. POET: a scripting language for applying
parameterized source ‐ to ‐ source program
transformations. Software: Practice and Experience 42,
no. 6 (2012): 675-706.

