
SubSub--clone Refactoring in clone Refactoring in OpenOpen
Source Source Software ArtifactsSoftware Artifacts

Robert Robert TairasTairas
Software Software Composition and Modeling LaboratoryComposition and Modeling Laboratory

Department of Computer and Information SciencesDepartment of Computer and Information Sciences
University of Alabama at University of Alabama at Birmingham, USABirmingham, USA

tairasr@cis.uab.edutairasr@cis.uab.edu

Jeff GrayJeff Gray
Department Department of Computer of Computer ScienceScience

University of University of Alabama, USAAlabama, USA
gray@cs.ua.edugray@cs.ua.edu

• We studied how clones reported by clone detection tools would have been
refactored by observing actual refactorings associated with the clones.

• The actual refactorings were found by evaluating code changes between two

Artifact Versions Exact
Coverage

Sub-clone
Coverage

ArgoUML 0.10.1–0.26 17 9

Derby (Apache) 10.1.1–10.5.3 12 15

JBoss 2.2.0 – 4.2.3 19 14

• Code clones represent duplicate sections of code
found in a program. Clones representing the same
duplication are grouped into clone groups.

• Clone detection tools provide automated support for
discovering duplicated sections of code, the results
of which can inform the process of clone removal
through refactoring activities.

• Clone-related refactorings
were observed for ArgoUML,
Apache Derby, and JBoss
using the Deckard clone
detection tool, as Deckard
gave the best results from the
previous study (Table 1).

• In Table 2, the total instances of sub-clone refactoring were comparable to the instances of
clones representing the exact coverage of the refactored code.

Table 2. Coverage of Refactorings of Deckard Clones

g y g g
versions of the source code of open source software artifacts.

File 1 File 2 File 3 File 1 File 2 File 3

Step 2 – Observe changes in code in Version 2
that is associated with clones from Version 1

• Refactorings related to the “Sub-clone Coverage” instances in Table 2 were further
evaluated to determine characteristics that may have influenced sub-clone refactoring.

Property` JBoss ArgoUML Derby

Coverage
Levels

Same level 4 4 6

1 level above 9 2 8

> 1 level above 1 3 1

Clone
Differences

Refactorable 7 4 8

Not Refactorable 7 5 7

Table 3. Sub-clone Refactoring Properties

…

Clone Group 2

Clone
Detection

Tool
Version 2

Version 1

Clone Group 1

Clone 1 Clone 2 Clone 3

Not Refactorable 7 5 7

if (edge instanceof MTransition) {
MTransition tr = (MTransition) edge;

- FigTrans trFig = new FigTrans(tr);
- // set source and dest
- // set any arrowheads, labels, or colors
- MStateVertex sourceSV = tr.getSource();
- MStateVertex destSV = tr.getTarget();
- FigNode sourceFN = (FigNode) lay...
- FigNode destFN = (FigNode) lay...

t Fi tS P tFi (FN)

• Excluded statements – In Table 3 (Coverage
Levels), JBoss and ArgoUML consisted of four
instances of clones being at the same level as
the refactored code. Apache Derby consisted of
six instances.

• In these cases, some statements were not
i l d d t f th f t i A l

• Deckard results – Deckard includes smaller clone groups of the maximal sized groups
allowing more exact ranges to be found.

• Table 3 (Coverage Levels) shows that in most cases in JBoss and Derby refactoring was
still performed under the syntactic level of the reported clone.

• The figure below shows an example of the clone ranges reported by five tools (i.e.,
CCFinder, CloneDR, Deckard, Simian, and SimScan) for statements refactored
between versions 4.0.5 and 4.2.0 of JBoss in the EjbJarDDObjectFactory class.

• The clone range detected by each tool is marked by the number assigned in Table 1.

• The refactoring is represented by the sequence of deleted lines (i e identified with ‘-‘)

Step 1 – Detect clones in Version 1
with clone detection tool

- trFig.setSourcePortFig(sourceFN);
- trFig.setSourceFigNode(sourceFN);
- trFig.setDestPortFig(destFN);
- trFig.setDestFigNode(destFN);
+ FigTrans trFig = new FigTrans(tr, lay);

return trFig;
}

included as part of the refactoring. An example
can be seen on the left, where the first and last
statements in the If-block were not refactored
although they were part of the clone.

• Clone Differences – We consider the scenario of selecting the entire clone for refactoring
rather than the sub-clone to determine if the entire clone could have been refactored.

• In Table 3 (Clone Differences), approximately half of instances showed that the entire clone
could have been refactored, but the programmer still decided to refactor only the sub-clone.

1 2 4 5 protected String getValue(String name, String value) {
1 2 4 5 if (value.startsWith("${") && value.endsWith("}")) {
1 2 3 4 5 - try {
1 2 3 4 5 - String propertyName = value.substring(2, value.length()-1);
1 2 3 4 5 - ObjectName propertyServiceON = new ObjectName(“...");
1 2 3 4 5 - KernelAbstraction kernelAbstraction = KernelAbstractionFactory.getInstance();
1 2 3 4 5 - String propertyValue = (String)kernelAbstraction.invoke(...);
1 2 3 5 - log.debug("Replaced ejb-jar.xml element " + name + " with value " + propertyValue);
1 2 3 5 - return propertyValue;
1 2 3 5 - } catch (Exception e) {
1 2 3 5 - log.warn("Unable to look up property service for ejb-jar.xml element " + ...);
1 2 3 5 - }

+ String replacement = StringPropertyReplacer.replaceProperties(value);
+ if (replacement != null)
+ value = replacement;

1 2 5 } Red text represent deleted code

The refactoring is represented by the sequence of deleted lines (i.e., identified with -)
being replaced by the sequence of added lines (i.e., identified with ‘+‘).

• This poster has described an analysis of code clone refactoring by considering the scenario
where a clone detection tool was used to automatically identify the clones.

• Based on our evaluation, the refactoring of parts of clones (i.e., sub-clones) is evident and
we conclude that there is a need to consider instances of sub-clone refactoring.

• Based on the evaluation of sub-clones and their related refactorings, a mechanism that can
select sub-clones for refactorings should allow a programmer to:

• Select a sub-clone that is one or more syntactic levels below the main clone.

• Be able to include/exclude bordering statements.

• We are incorporating sub-clone refactoring support in our Eclipse plug-in called CeDAR
(Clone Detection Analysis and Refactoring) shown below

• Table 1 documents clone range coverages by the five tools for 21 Extract Method-type
refactorings in JBoss (ver 2 2 0 4 2 3) related to clones originally detected by Simian

1 2 5 }
1 2 5 return value;
1 2 5 }

SimScan
Simian
Deckard
CloneDR
CCFinder

Three tools (CCFinder, CloneDR, and SimScan) reported
the entire method. Simian reported the method’s signature
and its first six lines. Only Deckard reported the exact code
range that was actually refactored.

Red text represent deleted code

Green text represent added code
(Clone Detection, Analysis, and Refactoring), shown below.

A sub-clone can be selected
inside of the originally

Clone group can be
refactored at the same time.

refactorings in JBoss (ver. 2.2.0–4.2.3) related to clones originally detected by Simian.

Tool Exact
Coverage

Larger
Coverage

1. CCFinder 4 8

2. CloneDR 6 9

3. Deckard 8 3

4. Simian 2 0

5. Simscan 6 12

• Clone ranges that exactly covered the
refactored code ranges account for less
than half of the instances for each tool.

• Clone ranges that represent a larger
coverage of the actual refactored code
range occurred several times.

• These observations suggest refactoring
on only part of the reported clone, what
we call sub-clone refactoring.

Table 1. Coverage of Refactorings

Clones obtained from clone
detection tool results.

inside of the originally
reported clone range.

This material is based upon work
supported by the National Science
Foundation under Grant No. 0702764.

S o f t C o m

