Can Domain-Specific Languages Be Implemented

Shih-Hsi Liu, Adam Cardenas, Xang Xiong

Department of Computer Science
California State University, Fresno, USA
{shliu, alcardenas, xangxiong}@CSUFresno.edu

Domain-Specific Languages

= A Domain-Specific Language (DSL) is a
programming/modeling language that shields
accidental complexity by uplifting the abstraction layer
to a higher level.

%= A DSL introduces domain-specific constructs and
notations to facilitate productivity, reliability,
maintainability and portability.

Decision, analysis, design and implementation
patterns have been identified to assist DSL
developers in when and how to develop a DSL.

= Example DSLs include:

Robot language: An imperative DSL that controls a (Lego®
Mindstorm® NXT) robot to move in different directions and
distances.

PPCea: An imperative DSL that controls parameter settings
to balance an evolution process toward optimization and
convergence.

Feature description language (FDL): A declarative DSL to
configure combinations of features.

Faculty of Electrical Engineering and Computer Science

by Service-Oriented Architecture?

http://zimmer.csufresno.edu/~shliu

Marjan Mernik

University of Maribor, Slovenia
marjan.mernik@uni-mb.si

Current Challenges

% When implementing a DSL, several obstacles have
appeared due to frequent need to represent changes in
domain concepts. These obstacles are especially critical for
DSLs following the interpreter and compiler implementation
patterns.

: Extension/Evolution: When domain concepts change, then the
lexical, syntactical and/or semantic domain constructs need to
evolve. Yet, such evolution is tedious and error-prone. For
example, one new domain statement or one new grammar
production introduced will affect an existing DSL implementation at
the lexical, syntactical, and semantic levels in different magnitudes.

: Interoperability: A DSL is usually implemented by one base
language (e.g., Java). What if it is desired to implement a DSL in
different base languages? How would these base languages
communicate with each other?

SOA approach for PPCea

@ PPCea utilizes if-else, while, assignment and
DSL statements to dynamically control parameters of
Evolutionary Algorithms on-the-fly.

@ WSDL is an automatically generated web service
specification:

@ It comprises lexical and syntactical
semantic specification of a web service.

@ For a SOA-based DSL, WSDL can assist with lexical
analysis and syntax analysis.

@ An XML schema describes the structure and data
types of an XML message.

@ |t is utilized to validate if an XML message consumed by a
web service follows the specified structure and data types.

@ For a SOA-based DSL, XML schema is used to validate if
XML messages acting as a symbol table contain valid data.

information and

+ Tool Support: When a new DSL is introduced,
corresponding DSL tools should be supported.
Otherwise, the DSL will have fewer opportunities
to be adopted. Yet, such a need requires
a great amount of endeavor and promotion.

E WS-BPEL is an executable | genetc
2 Round :=50;

language to specify the
interactions among web services.

3 r=0;
4 while (r<Round) do

5 g:=0;
|t has various programming 3 :;'I‘:’ SEs
constructs to describe the |s whie (g<Maxgen)do
execution flow of a business ?o P"I‘EA“-D/%D 0) +(0.0042/tmp);
callGA;
process. M tmp=tmp*20;
EFor a SOA-based DSL, g AU Epoch

WS-BPEL describes logical and |14
issues that may emerge in a DSL
program.
E W3C defines a web service
as “a software system designed
to support interoperable
machine-to-machine interaction
over a network.”

r=re

15
16 end genetic

An Interpreter-based PPCea program

B For a SOA-based DSL, a web
service describes the semantics
of a DSL statement.

SOA-based PPCea defines
Initialize, Select, Mutate,
Crossover Evaluate, Update and
Entropy web services to

Barrett R. Bryant
Department of Computer and Information Sciences
University of Alabama at Birmingham, USA
bryant@cis.uab.edu

adaptively obtain optimal NQK.,.

WSDL of a “Select” web service for PPCea XML schema for PPCea

solutions of an evolution process. A SOA-based PPCea program
written in WS-BPEL

SOA Approach for FDL

E A Feature Description Language (FDL) is a declarative
language that textually describes feature diagrams for
domain analysis.

The language introduces all-of, one-of, more-of and
optional feature operations to explore all possible
configurations along with requires, excludes, include
and exclude constraints to reduce the possibilities.

1 Car : all (carbody, Transmission, Engine, Horsepower, opt(pullsTrailer))
2 Transmission : one-of (automatic, manual)

3 Engine : more-of (electric, gasoline)

4 Horsepower : one-of (lowPower, mediumPower, highPower)

5 include pullsTrailer

6 pullsTrailer requires highPower

= Similar to the SOA-based PPCea:
= WSDL acts as a lexical analyzer and assist with syntax analysis.
1 XML schema validates XML messages.
= Web services specifies DSL semantics.
1 WS-BPEL describes the execution flow of domain-specific web

services to be consumed.
sorcs | woor | verner []|
am 8]
&

ATransmission XML input for FeatureWs

37 Buldnlorresture

An Interpreter-based PPCea program

A SOA-based FDL language introduces two web

services as DSL statements:

E FeatureWS comprises the aforementioned eight operations,
each of which consumes previously generated and current
XML messages and returns a new combinatory XML
message based on normalization, variability, expansion and
satisfaction rules.

E CompileWS prints out the final combinatory result of all
possible alternatives.

B A preprocessing step is also needed to convert the above
program to XML messages line-by-line.

53 bndnas
1) [Feoturowsronsndna
129 Servicss
G resturewsservics
23 Excansibity Elemants

A SOA-based FDL program

pullstcaler, manwal, Mgkt guclise, electric)
. A1 (cabody, pul¥ailer, ranwl, dighbner, elecric)

A1 (cabody, puailer, ranwal, dighkues, gasolive)

11 (csbady, puletcsile, avtaasic, Kightoms, gsoline, electric)

A1 (cubady, puleicaile, ntaantc, highloms, lectric)
A1 (Cusbady, puletcsile, ntuetic, hightoms, uasline)
)

Brssshesprses

<hocptiaisie>

Output of the FDL program:

(AEEREEE) (Rl e Six constrained car alternatives

THE UNIVERSITY OF

ALABAMA

Jeff Gray

University of Alabama, USA
gray@cs.ua.edu

DSL Implementation Methodologies

There has been no DSL developed using SOA yet.

AMMA is a platform to implement text-based DSLs
using a Model-Driven Engineering approach that is
focused on model transformations.

B The Generic Modeling Environment (GME) is a
metamodeling toolkit for developing graphical
DSLs. MetaEdit also provides similar functionalities.

Six DSL implementation patterns are identified:

E Interpreter/compiler patterns utilize the traditional
compiler/interpreter techniques; (b) Embedding patterns
introduce new DSL constructs from an existing General-
Purpose Language (GPL); (c) Preprocessor patterns
translate DSL constructs into a base language; (d)
Extensible compiler/interpreter patterns add DSL
optimization rules and code generation in the existing
compiler/interpreter of a GPL; (e) Commercial off-the-
shelf patterns utilize existing tools and/or notations for a
specific domain; and (f) A Hybrid pattern is the
combination of all of the above.

B There are many other implementation
methodologies for DSL (e.g., Visual Studio DSL
tools and MetaEdit+).

Discussions

@ Lexical Analysis and Symbol Table:
There is no need to perform lexical analysis: WSDL can be
regarded as the lexical analyzer.
Symbol table functionality cannot be achieved easily. XML
message passing between web services is an alternative.
& Syntactical Analysis
& WS-BPEL specifications have defined grammars.
Reinventing SOA-based DSL grammars and parsers for
PPCea and FDL (and even the Robot language) are not
needed.
& Yet, WS-BPEL's great flexibility may be also misused and
can result in potential pitfalls.
@ Semantics and Type Checking
#® Domain-specific statements are wrapped as one or more
web services.
& Implementation of DSL web services is not much different
except:

& An internal commonly shared symbol table is no longer valid.
Investigation on analyzing the scope of domain-specific parameters
is needed — only those that will be needed by most web services will
be encapsulated in XML messages.

@ There is a need to introduce efficient marshalling and unmarshalling
algorithms to parse the aforementioned XML messages. JAXB is a
more formal approach: an XML schema is used to validate and
convert between objects and XML instances. Conversely, StAX is a
more casual but efficient way that processes XML as a stream and
ignores tree construction.

Conclusion

+SOA-based
advantages:
=SOA addresses the extension and evolution problems at
syntactic and semantic levels: For new, existing extended,
or evolved DSL constructs, syntactic evolution can be done
by automatically generated WSDL files, and semantic
evolution is achieved by introduction and/or composition of
web services.
=SOA offers interoperable communications among Web
services implemented in different languages, which
addresses interoperability concerns of DSL implementation.
=WS-BPEL is a technology-neutral language that has been
adopted by many vendors. It may reduce the effort to
introduce tools for new or existing DSLs.
= SOA offers improved modularization at the lexical,
syntactical and semantic levels.
= Lexical and syntax analyses adopting an interpreter or
compiler-based DSL implementation are no longer needed
in SOA-based DSLs.

DSLs offer five implementation

+SOA-based DSLs may raise potential research
interests to overcome the tradeoffs surrounding the
flexibility of WS-BPEL grammars, WS-BPEL usability,
bottlenecks on XML parsing time, and exposed
domain-specific parameters.

Department of Computer Science

