
Can DomainCan Domain--Specific Languages Be Implemented Specific Languages Be Implemented
by Serviceby Service--Oriented Architecture?Oriented Architecture?

Can DomainCan Domain--Specific Languages Be Implemented Specific Languages Be Implemented
by Serviceby Service--Oriented Architecture?Oriented Architecture?

http://zimmer.csufresno.edu/~shliu

Shih-Hsi Liu, Adam Cardenas, Xang Xiong Marjan Mernik Barrett R. Bryant Jeff Gray
Department of Computer Science

California State University, Fresno, USA
{shliu, alcardenas, xangxiong}@CSUFresno.edu

Faculty of Electrical Engineering and Computer Science
University of Maribor, Slovenia

marjan.mernik@uni-mb.si

y
Department of Computer and Information Sciences

University of Alabama at Birmingham, USA
bryant@cis.uab.edu

y
Department of Computer Science

University of Alabama, USA
gray@cs.ua.edu

Domain-Specific Languages

A Domain-Specific Language (DSL) is a
programming/modeling language that shields
accidental complexity by uplifting the abstraction layer

When implementing a DSL, several obstacles have
appeared due to frequent need to represent changes in
domain concepts. These obstacles are especially critical for
DSL f ll i th i t t d il i l t ti

Current Challenges DSL Implementation Methodologies

There has been no DSL developed using SOA yet.

AMMA is a platform to implement text-based DSLs
using a Model-Driven Engineering approach that is
f d d l t f tito a higher level.

A DSL introduces domain-specific constructs and
notations to facilitate productivity, reliability,
maintainability and portability.

Decision, analysis, design and implementation
patterns have been identified to assist DSL
developers in when and how to develop a DSL.

Example DSLs include:

Robot language: An imperative DSL that controls a (Lego®
Mindstorm® NXT) robot to move in different directions and
distances.

DSLs following the interpreter and compiler implementation
patterns.

Extension/Evolution: When domain concepts change, then the
lexical, syntactical and/or semantic domain constructs need to
evolve. Yet, such evolution is tedious and error-prone. For
example, one new domain statement or one new grammar
production introduced will affect an existing DSL implementation at
the lexical, syntactical, and semantic levels in different magnitudes.

Interoperability: A DSL is usually implemented by one base
language (e.g., Java). What if it is desired to implement a DSL in
different base languages? How would these base languages
communicate with each other?

Tool Support: When a new DSL is introduced,
corresponding DSL tools should be supported

focused on model transformations.

The Generic Modeling Environment (GME) is a
metamodeling toolkit for developing graphical
DSLs. MetaEdit also provides similar functionalities.

Six DSL implementation patterns are identified:

Interpreter/compiler patterns utilize the traditional
compiler/interpreter techniques; (b) Embedding patterns
introduce new DSL constructs from an existing General-
Purpose Language (GPL); (c) Preprocessor patterns
translate DSL constructs into a base language; (d)
Extensible compiler/interpreter patterns add DSL
optimization rules and code generation in the existing
compiler/interpreter of a GPL; (e) Commercial off-the-

PPCea: An imperative DSL that controls parameter settings
to balance an evolution process toward optimization and
convergence.

Feature description language (FDL): A declarative DSL to
configure combinations of features.

corresponding DSL tools should be supported.
Otherwise, the DSL will have fewer opportunities
to be adopted. Yet, such a need requires
a great amount of endeavor and promotion.

PPCea utilizes if-else, while, assignment and
DSL statements to dynamically control parameters of

SOA approach for PPCea

WS-BPEL is an executable
language to specify the
interactions among web services

Discussions

Lexical Analysis and Symbol Table:
There is no need to perform lexical analysis: WSDL can be

1 genetic
2 Round := 50;
3 r := 0;
4 while (r < Round) do

p p ; ()
shelf patterns utilize existing tools and/or notations for a
specific domain; and (f) A Hybrid pattern is the
combination of all of the above.

There are many other implementation
methodologies for DSL (e.g., Visual Studio DSL
tools and MetaEdit+).

Evolutionary Algorithms on-the-fly.
WSDL is an automatically generated web service
specification:

It comprises lexical and syntactical information and
semantic specification of a web service.
For a SOA-based DSL, WSDL can assist with lexical
analysis and syntax analysis.

An XML schema describes the structure and data
types of an XML message.

It is utilized to validate if an XML message consumed by a
web service follows the specified structure and data types.
For a SOA-based DSL, XML schema is used to validate if
XML messages acting as a symbol table contain valid data.

interactions among web services.
It has various programming
constructs to describe the
execution flow of a business
process.
For a SOA-based DSL,
WS-BPEL describes logical and
issues that may emerge in a DSL
program.

W3C defines a web service
as “a software system designed
to support interoperable
machine-to-machine interaction
over a network.”

For a SOA-based DSL a web

regarded as the lexical analyzer.
Symbol table functionality cannot be achieved easily. XML
message passing between web services is an alternative.

Syntactical Analysis
WS-BPEL specifications have defined grammars.
Reinventing SOA-based DSL grammars and parsers for
PPCea and FDL (and even the Robot language) are not
needed.
Yet, WS-BPEL’s great flexibility may be also misused and
can result in potential pitfalls.

Semantics and Type Checking
Domain-specific statements are wrapped as one or more
web services.
Implementation of DSL web services is not much different
except:

5 g :=0;
6 tmp := 1.0;
7 init;
8 while (g < Maxgen) do
9 pm := (1.0 / 1250.0) + (0.0042 / tmp);
10 callGA;
11 tmp := tmp * 2.0;
12 g := g + Epoch
13 end;
14 r := r + 1
15 end
16 end genetic

An Interpreter-based PPCea program

For a SOA based DSL, a web
service describes the semantics
of a DSL statement.
SOA-based PPCea defines
Initialize, Select, Mutate,
Crossover Evaluate, Update and
Entropy web services to
adaptively obtain optimal
solutions of an evolution process.

WSDL of a “Select” web service for PPCea XML schema for PPCea

A F t D i ti L (FDL) i d l ti

SOA Approach for FDL Conclusion

SOA-based DSLs offer five implementation

except:
An internal commonly shared symbol table is no longer valid.
Investigation on analyzing the scope of domain-specific parameters
is needed – only those that will be needed by most web services will
be encapsulated in XML messages.
There is a need to introduce efficient marshalling and unmarshalling
algorithms to parse the aforementioned XML messages. JAXB is a
more formal approach: an XML schema is used to validate and
convert between objects and XML instances. Conversely, StAX is a
more casual but efficient way that processes XML as a stream and
ignores tree construction.A SOA-based PPCea program

written in WS-BPEL

A Feature Description Language (FDL) is a declarative
language that textually describes feature diagrams for
domain analysis.
The language introduces all-of, one-of, more-of and
optional feature operations to explore all possible
configurations along with requires, excludes, include
and exclude constraints to reduce the possibilities.

Similar to the SOA-based PPCea:
WSDL acts as a lexical analyzer and assist with syntax analysis.
XML schema validates XML messages.
Web services specifies DSL semantics.
WS-BPEL describes the execution flow of domain-specific web

services to be consumed.

p
advantages:

SOA addresses the extension and evolution problems at
syntactic and semantic levels: For new, existing extended,
or evolved DSL constructs, syntactic evolution can be done
by automatically generated WSDL files, and semantic
evolution is achieved by introduction and/or composition of
web services.
SOA offers interoperable communications among Web
services implemented in different languages, which
addresses interoperability concerns of DSL implementation.
WS-BPEL is a technology-neutral language that has been
adopted by many vendors. It may reduce the effort to
introduce tools for new or existing DSLs.
SOA offers improved modularization at the lexical,
syntactical and semantic levels.

A Transmission XML input for FeatureWS

1 Car : all (carbody, Transmission, Engine, Horsepower, opt(pullsTrailer))
2 Transmission : one-of (automatic, manual)
3 Engine : more-of (electric, gasoline)
4 Horsepower : one-of (lowPower, mediumPower, highPower)
5 include pullsTrailer
6 pullsTrailer requires highPower

A SOA-based FDL language introduces two web
services as DSL statements:
FeatureWS comprises the aforementioned eight operations,
each of which consumes previously generated and current
XML messages and returns a new combinatory XML
message based on normalization, variability, expansion and
satisfaction rules.
CompileWS prints out the final combinatory result of all
possible alternatives.
A preprocessing step is also needed to convert the above
program to XML messages line-by-line.

syntactical and semantic levels.
Lexical and syntax analyses adopting an interpreter or
compiler-based DSL implementation are no longer needed
in SOA-based DSLs.

SOA-based DSLs may raise potential research
interests to overcome the tradeoffs surrounding the
flexibility of WS-BPEL grammars, WS-BPEL usability,
bottlenecks on XML parsing time, and exposed
domain-specific parameters.

A SOA-based FDL program
Output of the FDL program:

Six constrained car alternatives

A SOA-based FDL program

An Interpreter-based PPCea program

