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ABSTRACT 
A major difficulty in compiler development regards the proper 
modularization of concerns among the various compiler phases. 
The traditional object-oriented development paradigm has 
difficulty in providing an optimal solution towards modularizing 
the analysis phases of compiler development, because 
implementation of each phase often crosscuts the class hierarchy 
defined by language syntax constructs. Object-oriented design 
patterns, such as the Visitor pattern, also cannot solve the 
crosscutting problem adequately because an object is not a 
natural representation of a collection of operations. This paper 
demonstrates the benefits of applying aspect-oriented 
programming languages (e.g., AspectJ) and principles to 
compiler design and implementation. The experience result 
shows that the various language constructs in AspectJ (e.g., inter-
type declaration, pointcut-advice model, static aspect members 
and aspect inheritance) fit well with the various computation 
needs of compiler development, which results in a compiler 
implementation with improved modularity and better separation 
of concerns. The ideas utilized in this paper can also be 
generalized to other software systems with a tree-like structure.  

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures –
patterns, information hiding, and languages; D.3.3 
[Programming Languages]: Language Constructs and Features 
–patterns, classes and objects 

General Terms 
Design, Languages. 

Keywords 
Compiler design, design patterns, aspect-oriented programming. 

1. INTRODUCTION 

Compiler implementation is often an intricate task due to the 
complexity and interconnected nature of various stages within 
the compiler. The key challenge is to provide exceptional 
modularity that assists in properly separating several crosscutting 
concerns, which not only helps the developer to divide-and-
conquer the complexity, but also improves the readability, 
reusability and extensibility of the compiler implementation [1].  

It is well-known that compiler development is a multi-stage 
process (e.g., syntax analysis, tree construction, static checking, 
and code generation) [2]. Each phase has a clear goal and some 
of them often require an independent traversal of the Abstract 
Syntax Tree (AST). Language implementation using traditional 
tools tangles these different phases of the implementation 
together as one module. There are few mechanisms available to 
separate each phase cleanly, which contributes to the difficulty in 
hiding the data and methods that are only relevant to specific 
phases; as such, the phases of a compiler implementation are 
often tightly coupled. The compiler writer is forced to consider 
all semantic phases simultaneously and the construction of one 
phase always “pollutes” a different phase, which makes a system 
hard to develop, maintain and extend. Although recently the 
Visitor pattern [3] has provided a way to solve this problem, its 
unnatural implementation and restrictions make it difficult to 
adopt [4], as detailed in section 2. 

Aspect-Oriented Programming (AOP) [5] provides special 
language constructs that modularize concerns which crosscut 
conventional program structures, in particular the class 
hierarchies of object-oriented programs and design patterns [6]. 
Because semantic analysis in compiler design often involves 
traversal of various AST nodes, it is natural to explore the effect 
of AOP on compiler construction [7]. Particularly, in object-
oriented compiler implementation, after the node types are 
implemented as classes, the AOP approach is an excellent 
technique to apply to semantic analysis. This paper describes an 
approach to aspect-oriented compiler implementation by applying 
AspectJ. Our experience results show that AOP can significantly 
improve the separation of concerns in compiler construction. 
Various language features provided by AspectJ (e.g., pointcuts, 
advice, inter-type declarations and aspect methods/fields) are 
well-suited to describe the various analysis needs in compiler 
design, which cannot be easily achieved by classical object-
oriented design.  
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This paper is organized as follows. Section 2 describes the 
problems in object-oriented compiler design and briefly 
introduces how aspect-oriented development can provide better 
modularization. In section 3, a case study is introduced to show 
how aspect-orientation offers an improvement to object-
orientation and the Visitor pattern. Section 4 details the aspect-
oriented methodology by exploring the essential features in AOP. 
Section 5 discusses related work and we conclude in section 6. 

2. OBJECT-ORIENTED VS. ASPECT-
ORIENTED COMPILER DESIGN 
In classical object-oriented development, AST nodes are usually 
defined as classes with various semantic operations (e.g., type-
checking, symbol table loading, pretty printing, code generation) 
embedded as methods. Consequently, AST traversal is achieved 
by iteratively executing those semantic operations. However, an 
inherent problem in this approach is that each kind of semantic 
operation (defined as a method within each node class) crosscuts 
the various node class boundaries, thereby leading to a system 
that is hard to maintain and add new operations. This problem 
actually reflects the drawback of object-oriented programming in 
modularizing crosscutting concerns. It would be better if each 
semantic function could be specified separately, so that the node 
classes were independent of the operations that apply to them. 

The Visitor pattern [3] is a current compiler construction 
technique that is often used to address the problems introduced 
beforehand. In applying this pattern, all the methods pertaining 
to one semantic pass are encapsulated inside a visitor class. Each 
AST node class has a general accept method associated with it. 
An abstract visitor is declared such that the general accept 
methods can pass an arbitrary visitor and dispatch to the 
appropriate method in the provided visitor object. The upper part 
of Figure 1 provides an illustration of the Visitor pattern in 
implementing the type-evaluation and pretty-print analysis 
phases for an expression language. 

However, since object-orientation describes a system by a 
collection of objects rather than a collection of operations, it is 
clear that object-orientation is not a natural specification of 
programs based on the Visitor pattern. The complicated 
implementation of this design pattern introduces a lot of extra 
code in the element classes and makes the code hard to 
understand and maintain [4]. Particularly, if a Visitor pattern has 
not been incorporated into the code from the beginning, the 
whole AST hierarchy has to be modified to implement it. To 
support the double-dispatch mechanism, the abstract visitor 
forces the return types, number of parameters and parameter 
types of various visiting methods of a certain node to be the same. 
This is a very inflexible limitation, because different semantic 
operations have different computing needs. This tends to make 
the programs difficult to understand and introduces dependencies 
that can impede evolution of the compiler. 

Current research in AOP and design patterns has indicated that 
the visitor has basic AOP characteristics: without it the structure 
and behavior characteristics are scattered throughout the code 
base instead of being isolated in single separate classes. Aspect-
orientation when applied to semantic implementation can isolate 
crosscutting behavior in a more explicit way. Each semantic 

phase can be implemented as an individual aspect. Inside each 
aspect, the concrete semantic actions of specific nodes can be 
implemented as Inter-Type Declarations (ITDs) of AST classes, 
from which the tree iteration logic can be specified as join points, 
whereas those global fields and utility routines are represented as 
static aspect members. Aspect-oriented semantic implementation 
is superior to the Visitor pattern because of its unrestricted 
parameters and return types for different semantic operations, 
with additional benefits coming from the ability to introduce any 
field and method into a class, as well as increased flexibility in 
phase integration and tree iteration using pointcut-advice models. 
As all the semantic actions are introduced to the AST node 
classes, there is only one class hierarchy created. Therefore, 
during tree iteration, object-oriented polymorphism is sufficient 
to determine which node’s processing method should be invoked 
at runtime. Explicit double-dispatch is removed and the accept 
methods defined in each node class are no longer needed, which 
makes the AST nodes totally oblivious to semantic operations. A 
visual comparison between operation redirection in the Visitor 
pattern and the aspect weaving in AOP implementation is 
illustrated in Figure 1. Section 3 will further compare these two 
methods with a real example.  

NodeVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

Node
Accept(NodeVisitor)

SumNode
Accept(NodeVisitor)

ProductNode
Accept(NodeVisitor)

TypeEvalVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

PrettyPrintVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

TypeEvalVisitor
Sum.typeEval()
Product.typeEval()

PrettyPrintVisitor
Sum.prettyPrint()
Product.prettyPrint()
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Figure 1. Operation redirection in Visitor pattern vs. 

aspect weaving in AOP implementation 
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3. CASE STUDY 
In order to detail the benefits derived from applying AOP to 
compiler implementation, this section presents one of our 
previous development practices using this strategy. The case 
study is focused on the compiler design of a language called 
RelationJava, which provides relations as first-class computation 
elements along with Java classes and interfaces. The nature of 
the language is irrelevant with the topic, but it can help to 
understand how the compiler is built. Essentially, a relation is an 
external method owned by multiple interfaces/classes and it can 
use fields and methods of those interfaces/classes directly. The 
language was implemented by compiling it into regular Java and 
the key part was to translate a relation into a static Java method 
defined in a default class. The compiler implementation reused 
an existing JavaCCTM 1+JJTree2 sample program that can take a 
Java program and reproduce its source code by using an unparse 
visitor 3 . Consequently, the RelationJava compiler can be 
achieved based on this by providing additional AST nodes and 
their translation rules for a relation definition.  

The implementation of the compiler was a three-step 
development process: first, in order to facilitate further aspect-
oriented development, the UnparseVisitor class was 
rewritten as an Unparse aspect. Then, the unparse methods 
of new nodes were introduced in a Translation aspect 
derived from the Unparse aspect to translate each relation 
locally into a static Java method, with related class names 
converted to method parameters. This translation was achieved 
without using any membership information of the related classes, 
so the language user was required to specify the class name 
explicitly before each referenced class member. To eliminate this 
limitation such that class members can be referred to in a 
relation directly, it was needed to retrieve ownership information 
about related classes with respect to their corresponding fields 
and methods. This was realized in the third step by loading 
symbol tables with a LoadSymbolTable aspect. The 
exploration of developing three aspects is detailed in the 
following paragraphs. 

1) Unparse aspect. The unparsed visitor by JJTree is an 
example of the problems associated with the Visitor pattern. The 
JJTree implementation contains 500 lines of handwritten code 
for the visiting methods and 90 automatically generated accept 
methods inside each AST node. The contents of each visiting 
method are identical; i.e., return the call results of a print 
method, as illustrated in Lines 9-18 of Figure 2. The reason that 
the Visitor pattern has so much redundancy in this case is that 
the abstract visitor, which is necessary for double-dispatch, 
forces each concrete visitor to implement a visiting method for 
every single node, even if their contents are identical. On the 
other hand, in the aspect-oriented implementation, since all the 
semantic operations can be naturally weaved into the class 
hierarchy, there is no need to define the generic abstract visitor. 
After rewriting the UnparseVisitor class as an Unparse 

                                                             
1 Java Compiler Compiler - https://javacc.dev.java.net 
2 Introduction to JJTree. http://www.j-paine.org/jjtree.html 
3 Available at https://javacc.dev.java.net/source/browse/javacc/examples/ 
VTransformer/UnparseVisitor.java. 

aspect, all of those redundancies (500 lines of code) are removed 
by a three line ITD in AspectJ (as shown in Line 8-10 of Figure 
3). Correspondingly, the print methods, as well as other helper 
routines inside UnparseVisitor, are rewritten as static 
aspect methods, and the PrintStream field is converted to a 
static aspect field (as shown in Lines 2-7 of Figure 3). 

1. class UnparseVisitor { 
2.   protected PrintStream out = System.out; 
3.   public Object print(SimpleNode node, 
4.                       Object data){ 
5.     // ... 
6.   } 
7.   // Other utility routines 
8.   // ... 
9.   public Object visit(SimpleNode node, 
10.                       Object data){ 
11.     return print(node, data); 
12.   } 
13.   public Object visit(ASTCompilationUnit node,  
14.                       Object data){ 
15.     return print(node, data);  
16.   } 
17.   // same visit methods for another 83 nodes.   
18.   // ...      
19. }          

Figure 2. The UnparseVisitor class 
1. aspect Unparse{ 
2.   protected static PrintStream out = System.out; 
3.   public static void print(SimpleNode node){ 
4.     // ... 
5.   } 
6.   // other utility routines 
7.   // ... 
8.   public void SimpleNode.unparse(){ 
9.     Unparse.print(this); 
10.   } 
11. } 
12. aspect Translation extends Unparse{ 
13.   public void RelationDefinition.unparse(){ 
14.     // ... 
15.   } 
16.   // unparsed ITDs for other new AST nodes 
17. } 

Figure 3. The ITDs and static members in Unparse aspect 
and the inherited Translation aspect 
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2) Translation aspect. The Translation aspect (as shown 
in Lines 12-17 of Figure 3), which defines unparse methods 
for the new AST node classes, inherits the Unparse aspect to 
reuse the helper routines (e.g., Print) defined in it. The new 
unparse methods override the unparse method defined in 
the SimpleNode so that when a RelationDefinition or 
a RelationReference node is processed, its translated Java 
methods or statements are generated instead of simply reprinting 
its original source code. 

3) LoadSymbolTable aspect. The symbol table loading 
operation is written as another clearly separated aspect. To avoid 
traversing the whole tree for a second time, the methods defined 
in the LoadSymbolTable aspect are specified as stand-alone 
methods, which are glued together by poincuts with the 
Translation aspect that has the traversal logic (specified in 
Figure 4). As in Line 6, each symTabLoad method is invoked 
before the unparse method to ensure required symbol 
information can be obtained during the translation. Therefore, 
although there are two aspects, the whole AST is only traversed 
once. Moreover, besides invoking symTabLoad methods, the 
two advice also invoke pushCurrentSymTab and 
popCurrentSymTab methods (as in Line 6 and 9, 
respectively) to reserve and reset the current symbol table scope 
after traversing each AST node, which is usually specified in an 
error-prone fashion in YACC4 actions, or passed back and forth 
between AST node classes and visitors as an Object type.  

1. aspect LoadSymbolTable{ 
2.   pointcut translate(SimpleNode s): 
3.     target(s) && call(* *.unparse(..)); 
4.   before(SimpleNode s): translate(s){ 
5.     pushCurrentSymTab(); // reserve SymTab scope 
6.     s.symTabLoad();   
7.   }   
8.   after(SimpleNode s):translate(s){ 
9.     popCurrentSymTab(); // reset SymTab scope   
10.   } 
11.   static SymbolTable globalSymTab; 
12.   static SymbolTable currentSymTab; 
13.   void pushCurrentSymTab(){ 
14.     // ... 
15.   }  
16.   void popCurrentSymTab(){ 
17.     // ... 
18.   } 
19.   // symTabLoad() ITDs 
20.   // ... 
21. } 

Figure 4. The LoadSymbolTable aspect 
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With these three aspects, the language was fully implemented 
without the requirement to specify the class name before each 
referenced class member. The compiler can determine which 
class each field/method comes from in a relation definition and 
generate the Java code. Notice that because the extension to the 
compiler is achieved by using aspects, the compiler can always 
return to its original state, i.e., simply reprint a Java program, by 
not weaving the new aspects. As the language and compiler 
evolve, additional semantic functionality may be added as 
separated aspects without any change in the existing code.  

4. ASPECT-ORIENTED COMPILER 
DEVELOPMENT IN ASPECTJ 
As illustrated in previous sections, aspect-oriented programming 
is an ideal programming technology to solve the separation of 
concerns problem in compiler development. By using AOP, all 
the operations that belong to one semantic phase can be 
encapsulated as a separated aspect, providing much better 
modularization and abstraction at the source code level. The 
aspects can be composed and selectively weaved into AST node 
classes at compile time, without abandoning the desirable 
properties of object-orientation such as polymorphism and 
overloading. The following sub-sections summarize the aspect-
oriented semantic analysis methodology using AspectJ, 
categorized by the language features that help model the 
compiler development process. 

4.1 Inter-type declarations 
In applying AOP to compiler design, each semantic phase is 
implemented as an individual aspect. The semantic artifacts that 
are represented as methods and fields of each AST node class can 
be removed to the specific semantic aspect as ITDs, which can be 
freely introduced to the existing AST class hierarchy. As 
compared to declaring these operations directly inside the Java 
classes, AspectJ ITDs have the following benefits: 

1) Aspect-orientation can isolate crosscutting semantic behavior 
in an explicit way. As shown in Section 3, each semantic 
segment is encapsulated as one physically separated aspect; e.g., 
the LoadSymbolTable aspect contains nothing but the code 
related to symbol loading. 

2) Each semantic aspect can be freely attached to generate AST 
nodes without “polluting” the parser or AST node structure. It is 
a common practice to generate node classes automatically in a 
number of tree generation systems such as JJTree and JTB5, to 
which user-supplied semantic code can be added afterwards. 
However, the mixed generated code and handwritten code lead to 
a system that is hard to maintain and evolve. There are situations 
when the regenerated code can overwrite the user-supplied code, 
or the generated code is modified by users accidentally. By using 
ITDs, all the hand-written code exists as aspects, and hence is 
clearly separated from the generated code that exists as classes, 
as we have seen in Section 3. 

3) Since each aspect is separated with other aspects, developers 
can always come back to the previous phase while developing a 
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later phase. As compiler design is a multi-stage process, it is 
beneficial to have newly added phases independent of existing 
phases: if an error occurs, it would be easier to narrow the 
problem scope using aspects; the failure of the new phase will 
not affect the success of previous phases.  

4) Different aspects can be selectively plugged in for different 
purposes. For example, the pretty print operation could be either 
defined to return a String that has the desired code format or 
defined as a void method that prints the formatted code directly. 
One of these two operations defined as aspects can be selectively 
plugged in by weaving. 

4.2 Pointcut-advice model 
AspectJ provides language constructs for defining pointcuts and 
advice around join points, which can significantly impact the 
compiler development process. The following areas are some 
sample facets facilitated by the abstraction power of join-points. 

1) Phase combination. Using the pointcut-advice model, each 
semantic aspect can be glued together with other aspects as one 
phase, which eliminates unnecessary passes of the AST. For 
example, in the development of the RelationJava compiler, the 
LoadSymbolTable aspect was integrated with the 
Translation aspect. One key requirement of the gluing is 
there should be no traversal conflicts, which means only one 
aspect should contain the iteration logic, with others containing 
standalone semantic actions attached to it. 

1. Dfvisit algorithm:  
2. procedure dfvisit(n:node); 
3. begin  
4.   for each child m of n, from left to right 
5.   do begin 
6.     evaluate inherited attributes of m; 
7.     dfvisit(m);    
8.   end; 
9.   evaluate synthesized attributes of n 
10. end 
11. AspectJ implementation: 
12. pointcut synAttrCall(Node node): 
13.   target(node)“&& call (* *. synthesized()); 
14.   before(Node node):synAttrCall (node){ 
15.     Iterator iter = node.getChildren(); 
16.     while(iter.hasNext()){ 
17.     Node child = (Node)iter.next(); 
18.     child.inherited(); 
19.     child.synthesized(); 
20.   } 
21. } 

Figure 5. The Dfvisit algorithm and its AspectJ 
implementation 

2) Tree traversal. Inside one semantic aspect, tree traversal 
algorithms are easy to implement with pointcuts and advice, 

especially for the attribute grammar traversal strategy. For 
example, the depth-first evaluation algorithm dfvisit for L-
attributed grammars [2] can be directly implemented in AspectJ 
as shown in Figure 5, provided that the method synthesized 
handles synthesized attribute computations and the method 
inherited handles inherited attribute computations. The main 
program simply calls the synthesized method of the root 
node to activate whole tree traversal. 

3) Tracing. One of the canonical uses of aspects is to facilitate 
tracing. For example, it is often required to add print statements 
during application development to debug certain functionality. 
Using AspectJ, such tracing or debugging statements can be 
easily introduced without manually adding them in several places 
in the source code. Such a debugging facility is especially useful 
in compiler development, as an AST usually contains hundreds 
of node types. It would be quite tedious to put tracing 
information in every node class to keep track of the node 
processing sequence. Using the join point model, the 
construction and traversal information of the AST can be easily 
specified and displayed. For example, in order to track if the 
AST is created as expected, the code shown in Figure 6 prints 
the AST node creation sequence. 

1. aspect PrintNodeCreation{ 
2.   pointcut construction(Node n): target(n) 
3.     && execution((Node+ && !Node).new(..)); 
4.   after(Node n) returning():construction(n){ 
5.     System.err.println( 
6.      thisJoinPointStaticPart.getSignature(). 
7.      getDeclaringType().getName()+"is created"); 
8.   } 
9. } 

Figure 6. A sample aspect to trace the AST construction 
process 

4.3 Aspect fields and methods 
During one pass of the AST traversal, there are certain fields and 
methods that need to be shared by all AST node operations 
related to this specific phase. This type of fields includes 
constants and accumulated states, such as the PrintStream 
object in Figure 2 and the SymbolTable objects in Figure 4. 
The methods in this category include utility routines or a 
common processing method that can be reused by various nodes 
such as the print method in Figure 2 and 
popCurrentSymTab and pushCurrentSymTab in Figure 
4. Within an aspect, these elements can be directly declared as 
its own static fields and methods, which are accessible by all ITD 
methods. Without aspects, the fields or methods would be passed 
as extra arguments to the semantic operations or they might 
appear as global elements in non-visitor implementations. 

4.4 Aspect inheritance 
Similar to classes in Java, aspects are extendable entities. AOP 
allows new functionality to be added to an object-oriented system 
without modifying the existing classes, as we have seen in the 
Translation aspect. Aspect inheritance further allows new 
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functionality to be added as a separated aspect without modifying 
the existing aspects. This improves the reusability of aspects. 
Typically, multiple semantic phases may share several common 
fields and routines. These constructs can be defined in a parent 
aspect that is reusable among other aspects. There are also cases 
when the implementations are separated with interfaces, where 
an abstract aspect can be implemented by concrete aspects. 

In summary, because AOP focuses on modularizing concerns that 
crosscut multiple classes, aspects can be helpful in separating the 
compiler stages that require traversals on multiple AST nodes. 
Although the benefits declared in Section 4.3 and 4.4 can also be 
obtained by using the Visitor pattern, none of the object-oriented 
implementation can provide same kind of facilities as using ITDs 
and pointcuts in aspect-oriented compiler development. Since the 
semantics of AspectJ is compatible with Java, any compiler 
written in Java (either using or not using the Visitor pattern) 
could be reimplemented with AspectJ.  

5. RELATED WORK 
Applying AOP concepts to compiler design was first proposed by 
de Moor et al. [8], at a time when AOP tool support was not 
mature and when various definitions of aspects existed. 
Essentially, they introduced an aspect-oriented implementation of 
an attribute grammar, where each aspect represented a semantic 
attribute (e.g., the environment). Their notion of aspect is highly 
restrictive and it is a slight deviation from the general notion and 
terminology of aspects as described in this paper. 
Similarly, TreeCC [9] invented special notations to facilitate 
compiler writers to specify semantic computation outside of an 
AST node structure. These aspects are translated by a 
preprocessor into C functions with those AST nodes as 
parameters, whereas our approach is built on object-oriented 
AST nodes with each semantic operation implemented as a 
method of the node itself. Therefore, the advantages of object-
orientation are utilized in our framework. 
JastAdd II [10] is a language implementation tool that supports 
the generation of compilers based on Rewritable Reference 
Attributed Grammars. In JastAdd II, static aspect-oriented 
programming technology was utilized to assist some of the 
computation of attributes, which can add features to the AST 
classes in a way analogous to the use of ITDs in AspectJ as 
described in this paper. The difference is that our approach 
regards all semantic actions as concerns crosscutting AST classes 
and consequently fully implements them using AspectJ's various 
constructs and features, such as ITDs, join point models, aspect 
static member and even aspect-inheritance. 
Directly using AspectJ’s ITDs in compiler implementation was 
also introduced in [11], without fully investigating utilizing other 
features of AOP languages. The ITDs are primarily used as a 
notation that can be transformed back and forth with object-
oriented functions to support multiple evolution needs, which has 
a different focus than this paper.  

6. CONCLUSION 
This paper emphasizes the difficulties in separating concerns 
during compiler construction using purely object-oriented 
approaches and illustrates an alternative technique that uses 

aspect-orientation to describe semantic phases built on object-
oriented AST nodes. The approach clearly separates each 
semantic operation as an aspect and uses various AOP language 
features to fulfill the computational needs of tree traversal, 
thereby improving the overall modularization of the system and 
providing flexibility for future evolution of the compiler. The 
approach supersedes the object-oriented Visitor pattern by its 
unrestricted method definitions and transparent nature to AST 
node classes, as well as the flexibility in phase integration and 
tree walking using join points. The benefits have been 
experimentally validated in a compiler developed in AspectJ that 
translates RelationJava code into regular Java code. A similar 
study could be done on any software system that has a tree-like 
structure and obtain the same benefits of using AOP. 
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