
Separation of Concerns in Compiler Development
Using Aspect-Orientation

Xiaoqing Wu, Barrett R. Bryant, Jeff Gray
and Suman Roychoudhury

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170, USA

{wuxi, bryant, gray, roychous}@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer

Science
University of Maribor

2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

ABSTRACT
A major difficulty in compiler development regards the proper
modularization of concerns among the various compiler phases.
The traditional object-oriented development paradigm has
difficulty in providing an optimal solution towards modularizing
the analysis phases of compiler development, because
implementation of each phase often crosscuts the class hierarchy
defined by language syntax constructs. Object-oriented design
patterns, such as the Visitor pattern, also cannot solve the
crosscutting problem adequately because an object is not a
natural representation of a collection of operations. This paper
demonstrates the benefits of applying aspect-oriented
programming languages (e.g., AspectJ) and principles to
compiler design and implementation. The experience result
shows that the various language constructs in AspectJ (e.g., inter-
type declaration, pointcut-advice model, static aspect members
and aspect inheritance) fit well with the various computation
needs of compiler development, which results in a compiler
implementation with improved modularity and better separation
of concerns. The ideas utilized in this paper can also be
generalized to other software systems with a tree-like structure.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
patterns, information hiding, and languages; D.3.3
[Programming Languages]: Language Constructs and Features
–patterns, classes and objects

General Terms
Design, Languages.

Keywords
Compiler design, design patterns, aspect-oriented programming.

1. INTRODUCTION

Compiler implementation is often an intricate task due to the
complexity and interconnected nature of various stages within
the compiler. The key challenge is to provide exceptional
modularity that assists in properly separating several crosscutting
concerns, which not only helps the developer to divide-and-
conquer the complexity, but also improves the readability,
reusability and extensibility of the compiler implementation [1].

It is well-known that compiler development is a multi-stage
process (e.g., syntax analysis, tree construction, static checking,
and code generation) [2]. Each phase has a clear goal and some
of them often require an independent traversal of the Abstract
Syntax Tree (AST). Language implementation using traditional
tools tangles these different phases of the implementation
together as one module. There are few mechanisms available to
separate each phase cleanly, which contributes to the difficulty in
hiding the data and methods that are only relevant to specific
phases; as such, the phases of a compiler implementation are
often tightly coupled. The compiler writer is forced to consider
all semantic phases simultaneously and the construction of one
phase always “pollutes” a different phase, which makes a system
hard to develop, maintain and extend. Although recently the
Visitor pattern [3] has provided a way to solve this problem, its
unnatural implementation and restrictions make it difficult to
adopt [4], as detailed in section 2.

Aspect-Oriented Programming (AOP) [5] provides special
language constructs that modularize concerns which crosscut
conventional program structures, in particular the class
hierarchies of object-oriented programs and design patterns [6].
Because semantic analysis in compiler design often involves
traversal of various AST nodes, it is natural to explore the effect
of AOP on compiler construction [7]. Particularly, in object-
oriented compiler implementation, after the node types are
implemented as classes, the AOP approach is an excellent
technique to apply to semantic analysis. This paper describes an
approach to aspect-oriented compiler implementation by applying
AspectJ. Our experience results show that AOP can significantly
improve the separation of concerns in compiler construction.
Various language features provided by AspectJ (e.g., pointcuts,
advice, inter-type declarations and aspect methods/fields) are
well-suited to describe the various analysis needs in compiler
design, which cannot be easily achieved by classical object-
oriented design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

mailto:@cis.uab.edu
mailto:marjan.mernik@uni-mb.si
http://www.fineprint.com.cn

This paper is organized as follows. Section 2 describes the
problems in object-oriented compiler design and briefly
introduces how aspect-oriented development can provide better
modularization. In section 3, a case study is introduced to show
how aspect-orientation offers an improvement to object-
orientation and the Visitor pattern. Section 4 details the aspect-
oriented methodology by exploring the essential features in AOP.
Section 5 discusses related work and we conclude in section 6.

2. OBJECT-ORIENTED VS. ASPECT-
ORIENTED COMPILER DESIGN
In classical object-oriented development, AST nodes are usually
defined as classes with various semantic operations (e.g., type-
checking, symbol table loading, pretty printing, code generation)
embedded as methods. Consequently, AST traversal is achieved
by iteratively executing those semantic operations. However, an
inherent problem in this approach is that each kind of semantic
operation (defined as a method within each node class) crosscuts
the various node class boundaries, thereby leading to a system
that is hard to maintain and add new operations. This problem
actually reflects the drawback of object-oriented programming in
modularizing crosscutting concerns. It would be better if each
semantic function could be specified separately, so that the node
classes were independent of the operations that apply to them.

The Visitor pattern [3] is a current compiler construction
technique that is often used to address the problems introduced
beforehand. In applying this pattern, all the methods pertaining
to one semantic pass are encapsulated inside a visitor class. Each
AST node class has a general accept method associated with it.
An abstract visitor is declared such that the general accept
methods can pass an arbitrary visitor and dispatch to the
appropriate method in the provided visitor object. The upper part
of Figure 1 provides an illustration of the Visitor pattern in
implementing the type-evaluation and pretty-print analysis
phases for an expression language.

However, since object-orientation describes a system by a
collection of objects rather than a collection of operations, it is
clear that object-orientation is not a natural specification of
programs based on the Visitor pattern. The complicated
implementation of this design pattern introduces a lot of extra
code in the element classes and makes the code hard to
understand and maintain [4]. Particularly, if a Visitor pattern has
not been incorporated into the code from the beginning, the
whole AST hierarchy has to be modified to implement it. To
support the double-dispatch mechanism, the abstract visitor
forces the return types, number of parameters and parameter
types of various visiting methods of a certain node to be the same.
This is a very inflexible limitation, because different semantic
operations have different computing needs. This tends to make
the programs difficult to understand and introduces dependencies
that can impede evolution of the compiler.

Current research in AOP and design patterns has indicated that
the visitor has basic AOP characteristics: without it the structure
and behavior characteristics are scattered throughout the code
base instead of being isolated in single separate classes. Aspect-
orientation when applied to semantic implementation can isolate
crosscutting behavior in a more explicit way. Each semantic

phase can be implemented as an individual aspect. Inside each
aspect, the concrete semantic actions of specific nodes can be
implemented as Inter-Type Declarations (ITDs) of AST classes,
from which the tree iteration logic can be specified as join points,
whereas those global fields and utility routines are represented as
static aspect members. Aspect-oriented semantic implementation
is superior to the Visitor pattern because of its unrestricted
parameters and return types for different semantic operations,
with additional benefits coming from the ability to introduce any
field and method into a class, as well as increased flexibility in
phase integration and tree iteration using pointcut-advice models.
As all the semantic actions are introduced to the AST node
classes, there is only one class hierarchy created. Therefore,
during tree iteration, object-oriented polymorphism is sufficient
to determine which node’s processing method should be invoked
at runtime. Explicit double-dispatch is removed and the accept
methods defined in each node class are no longer needed, which
makes the AST nodes totally oblivious to semantic operations. A
visual comparison between operation redirection in the Visitor
pattern and the aspect weaving in AOP implementation is
illustrated in Figure 1. Section 3 will further compare these two
methods with a real example.

NodeVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

Node
Accept(NodeVisitor)

SumNode
Accept(NodeVisitor)

ProductNode
Accept(NodeVisitor)

TypeEvalVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

PrettyPrintVisitor
VisitSum(SumNode)
VisitProduct(ProductNode)

TypeEvalVisitor
Sum.typeEval()
Product.typeEval()

PrettyPrintVisitor
Sum.prettyPrint()
Product.prettyPrint()

Node

SumNode ProductNode

Aspect
Weaving

redirectionredirection

two sets of class
hierarchies

one set of class
hierarchy

Figure 1. Operation redirection in Visitor pattern vs.

aspect weaving in AOP implementation

http://www.fineprint.com.cn

3. CASE STUDY
In order to detail the benefits derived from applying AOP to
compiler implementation, this section presents one of our
previous development practices using this strategy. The case
study is focused on the compiler design of a language called
RelationJava, which provides relations as first-class computation
elements along with Java classes and interfaces. The nature of
the language is irrelevant with the topic, but it can help to
understand how the compiler is built. Essentially, a relation is an
external method owned by multiple interfaces/classes and it can
use fields and methods of those interfaces/classes directly. The
language was implemented by compiling it into regular Java and
the key part was to translate a relation into a static Java method
defined in a default class. The compiler implementation reused
an existing JavaCCTM 1+JJTree2 sample program that can take a
Java program and reproduce its source code by using an unparse
visitor 3 . Consequently, the RelationJava compiler can be
achieved based on this by providing additional AST nodes and
their translation rules for a relation definition.

The implementation of the compiler was a three-step
development process: first, in order to facilitate further aspect-
oriented development, the UnparseVisitor class was
rewritten as an Unparse aspect. Then, the unparse methods
of new nodes were introduced in a Translation aspect
derived from the Unparse aspect to translate each relation
locally into a static Java method, with related class names
converted to method parameters. This translation was achieved
without using any membership information of the related classes,
so the language user was required to specify the class name
explicitly before each referenced class member. To eliminate this
limitation such that class members can be referred to in a
relation directly, it was needed to retrieve ownership information
about related classes with respect to their corresponding fields
and methods. This was realized in the third step by loading
symbol tables with a LoadSymbolTable aspect. The
exploration of developing three aspects is detailed in the
following paragraphs.

1) Unparse aspect. The unparsed visitor by JJTree is an
example of the problems associated with the Visitor pattern. The
JJTree implementation contains 500 lines of handwritten code
for the visiting methods and 90 automatically generated accept
methods inside each AST node. The contents of each visiting
method are identical; i.e., return the call results of a print
method, as illustrated in Lines 9-18 of Figure 2. The reason that
the Visitor pattern has so much redundancy in this case is that
the abstract visitor, which is necessary for double-dispatch,
forces each concrete visitor to implement a visiting method for
every single node, even if their contents are identical. On the
other hand, in the aspect-oriented implementation, since all the
semantic operations can be naturally weaved into the class
hierarchy, there is no need to define the generic abstract visitor.
After rewriting the UnparseVisitor class as an Unparse

1 Java Compiler Compiler - https://javacc.dev.java.net
2 Introduction to JJTree. http://www.j-paine.org/jjtree.html
3 Available at https://javacc.dev.java.net/source/browse/javacc/examples/
VTransformer/UnparseVisitor.java.

aspect, all of those redundancies (500 lines of code) are removed
by a three line ITD in AspectJ (as shown in Line 8-10 of Figure
3). Correspondingly, the print methods, as well as other helper
routines inside UnparseVisitor, are rewritten as static
aspect methods, and the PrintStream field is converted to a
static aspect field (as shown in Lines 2-7 of Figure 3).

1. class UnparseVisitor {
2. protected PrintStream out = System.out;
3. public Object print(SimpleNode node,
4. Object data){
5. // ...
6. }
7. // Other utility routines
8. // ...
9. public Object visit(SimpleNode node,
10. Object data){
11. return print(node, data);
12. }
13. public Object visit(ASTCompilationUnit node,
14. Object data){
15. return print(node, data);
16. }
17. // same visit methods for another 83 nodes.
18. // ...
19. }

Figure 2. The UnparseVisitor class
1. aspect Unparse{
2. protected static PrintStream out = System.out;
3. public static void print(SimpleNode node){
4. // ...
5. }
6. // other utility routines
7. // ...
8. public void SimpleNode.unparse(){
9. Unparse.print(this);
10. }
11. }
12. aspect Translation extends Unparse{
13. public void RelationDefinition.unparse(){
14. // ...
15. }
16. // unparsed ITDs for other new AST nodes
17. }

Figure 3. The ITDs and static members in Unparse aspect
and the inherited Translation aspect

https://javacc.dev.java.net
http://www.j-paine.org/jjtree.html
https://javacc.dev.java.net/source/browse/javacc/examples/
http://www.fineprint.com.cn

2) Translation aspect. The Translation aspect (as shown
in Lines 12-17 of Figure 3), which defines unparse methods
for the new AST node classes, inherits the Unparse aspect to
reuse the helper routines (e.g., Print) defined in it. The new
unparse methods override the unparse method defined in
the SimpleNode so that when a RelationDefinition or
a RelationReference node is processed, its translated Java
methods or statements are generated instead of simply reprinting
its original source code.

3) LoadSymbolTable aspect. The symbol table loading
operation is written as another clearly separated aspect. To avoid
traversing the whole tree for a second time, the methods defined
in the LoadSymbolTable aspect are specified as stand-alone
methods, which are glued together by poincuts with the
Translation aspect that has the traversal logic (specified in
Figure 4). As in Line 6, each symTabLoad method is invoked
before the unparse method to ensure required symbol
information can be obtained during the translation. Therefore,
although there are two aspects, the whole AST is only traversed
once. Moreover, besides invoking symTabLoad methods, the
two advice also invoke pushCurrentSymTab and
popCurrentSymTab methods (as in Line 6 and 9,
respectively) to reserve and reset the current symbol table scope
after traversing each AST node, which is usually specified in an
error-prone fashion in YACC4 actions, or passed back and forth
between AST node classes and visitors as an Object type.

1. aspect LoadSymbolTable{
2. pointcut translate(SimpleNode s):
3. target(s) && call(* *.unparse(..));
4. before(SimpleNode s): translate(s){
5. pushCurrentSymTab(); // reserve SymTab scope
6. s.symTabLoad();
7. }
8. after(SimpleNode s):translate(s){
9. popCurrentSymTab(); // reset SymTab scope
10. }
11. static SymbolTable globalSymTab;
12. static SymbolTable currentSymTab;
13. void pushCurrentSymTab(){
14. // ...
15. }
16. void popCurrentSymTab(){
17. // ...
18. }
19. // symTabLoad() ITDs
20. // ...
21. }

Figure 4. The LoadSymbolTable aspect

4 Yet Another Compiler-Compiler - http://dinosaur.compilertools.net

With these three aspects, the language was fully implemented
without the requirement to specify the class name before each
referenced class member. The compiler can determine which
class each field/method comes from in a relation definition and
generate the Java code. Notice that because the extension to the
compiler is achieved by using aspects, the compiler can always
return to its original state, i.e., simply reprint a Java program, by
not weaving the new aspects. As the language and compiler
evolve, additional semantic functionality may be added as
separated aspects without any change in the existing code.

4. ASPECT-ORIENTED COMPILER
DEVELOPMENT IN ASPECTJ
As illustrated in previous sections, aspect-oriented programming
is an ideal programming technology to solve the separation of
concerns problem in compiler development. By using AOP, all
the operations that belong to one semantic phase can be
encapsulated as a separated aspect, providing much better
modularization and abstraction at the source code level. The
aspects can be composed and selectively weaved into AST node
classes at compile time, without abandoning the desirable
properties of object-orientation such as polymorphism and
overloading. The following sub-sections summarize the aspect-
oriented semantic analysis methodology using AspectJ,
categorized by the language features that help model the
compiler development process.

4.1 Inter-type declarations
In applying AOP to compiler design, each semantic phase is
implemented as an individual aspect. The semantic artifacts that
are represented as methods and fields of each AST node class can
be removed to the specific semantic aspect as ITDs, which can be
freely introduced to the existing AST class hierarchy. As
compared to declaring these operations directly inside the Java
classes, AspectJ ITDs have the following benefits:

1) Aspect-orientation can isolate crosscutting semantic behavior
in an explicit way. As shown in Section 3, each semantic
segment is encapsulated as one physically separated aspect; e.g.,
the LoadSymbolTable aspect contains nothing but the code
related to symbol loading.

2) Each semantic aspect can be freely attached to generate AST
nodes without “polluting” the parser or AST node structure. It is
a common practice to generate node classes automatically in a
number of tree generation systems such as JJTree and JTB5, to
which user-supplied semantic code can be added afterwards.
However, the mixed generated code and handwritten code lead to
a system that is hard to maintain and evolve. There are situations
when the regenerated code can overwrite the user-supplied code,
or the generated code is modified by users accidentally. By using
ITDs, all the hand-written code exists as aspects, and hence is
clearly separated from the generated code that exists as classes,
as we have seen in Section 3.

3) Since each aspect is separated with other aspects, developers
can always come back to the previous phase while developing a

5 JTB: Java Tree Builder. http://www.cs.purdue.edu/jtb/releasenotes.html

http://dinosaur.compilertools.net
http://www.cs.purdue.edu/jtb/releasenotes.html
http://www.fineprint.com.cn

later phase. As compiler design is a multi-stage process, it is
beneficial to have newly added phases independent of existing
phases: if an error occurs, it would be easier to narrow the
problem scope using aspects; the failure of the new phase will
not affect the success of previous phases.

4) Different aspects can be selectively plugged in for different
purposes. For example, the pretty print operation could be either
defined to return a String that has the desired code format or
defined as a void method that prints the formatted code directly.
One of these two operations defined as aspects can be selectively
plugged in by weaving.

4.2 Pointcut-advice model
AspectJ provides language constructs for defining pointcuts and
advice around join points, which can significantly impact the
compiler development process. The following areas are some
sample facets facilitated by the abstraction power of join-points.

1) Phase combination. Using the pointcut-advice model, each
semantic aspect can be glued together with other aspects as one
phase, which eliminates unnecessary passes of the AST. For
example, in the development of the RelationJava compiler, the
LoadSymbolTable aspect was integrated with the
Translation aspect. One key requirement of the gluing is
there should be no traversal conflicts, which means only one
aspect should contain the iteration logic, with others containing
standalone semantic actions attached to it.

1. Dfvisit algorithm:
2. procedure dfvisit(n:node);
3. begin
4. for each child m of n, from left to right
5. do begin
6. evaluate inherited attributes of m;
7. dfvisit(m);
8. end;
9. evaluate synthesized attributes of n
10. end
11. AspectJ implementation:
12. pointcut synAttrCall(Node node):
13. target(node)“&& call (* *. synthesized());
14. before(Node node):synAttrCall (node){
15. Iterator iter = node.getChildren();
16. while(iter.hasNext()){
17. Node child = (Node)iter.next();
18. child.inherited();
19. child.synthesized();
20. }
21. }

Figure 5. The Dfvisit algorithm and its AspectJ
implementation

2) Tree traversal. Inside one semantic aspect, tree traversal
algorithms are easy to implement with pointcuts and advice,

especially for the attribute grammar traversal strategy. For
example, the depth-first evaluation algorithm dfvisit for L-
attributed grammars [2] can be directly implemented in AspectJ
as shown in Figure 5, provided that the method synthesized
handles synthesized attribute computations and the method
inherited handles inherited attribute computations. The main
program simply calls the synthesized method of the root
node to activate whole tree traversal.

3) Tracing. One of the canonical uses of aspects is to facilitate
tracing. For example, it is often required to add print statements
during application development to debug certain functionality.
Using AspectJ, such tracing or debugging statements can be
easily introduced without manually adding them in several places
in the source code. Such a debugging facility is especially useful
in compiler development, as an AST usually contains hundreds
of node types. It would be quite tedious to put tracing
information in every node class to keep track of the node
processing sequence. Using the join point model, the
construction and traversal information of the AST can be easily
specified and displayed. For example, in order to track if the
AST is created as expected, the code shown in Figure 6 prints
the AST node creation sequence.

1. aspect PrintNodeCreation{
2. pointcut construction(Node n): target(n)
3. && execution((Node+ && !Node).new(..));
4. after(Node n) returning():construction(n){
5. System.err.println(
6. thisJoinPointStaticPart.getSignature().
7. getDeclaringType().getName()+"is created");
8. }
9. }

Figure 6. A sample aspect to trace the AST construction
process

4.3 Aspect fields and methods
During one pass of the AST traversal, there are certain fields and
methods that need to be shared by all AST node operations
related to this specific phase. This type of fields includes
constants and accumulated states, such as the PrintStream
object in Figure 2 and the SymbolTable objects in Figure 4.
The methods in this category include utility routines or a
common processing method that can be reused by various nodes
such as the print method in Figure 2 and
popCurrentSymTab and pushCurrentSymTab in Figure
4. Within an aspect, these elements can be directly declared as
its own static fields and methods, which are accessible by all ITD
methods. Without aspects, the fields or methods would be passed
as extra arguments to the semantic operations or they might
appear as global elements in non-visitor implementations.

4.4 Aspect inheritance
Similar to classes in Java, aspects are extendable entities. AOP
allows new functionality to be added to an object-oriented system
without modifying the existing classes, as we have seen in the
Translation aspect. Aspect inheritance further allows new

http://www.fineprint.com.cn

functionality to be added as a separated aspect without modifying
the existing aspects. This improves the reusability of aspects.
Typically, multiple semantic phases may share several common
fields and routines. These constructs can be defined in a parent
aspect that is reusable among other aspects. There are also cases
when the implementations are separated with interfaces, where
an abstract aspect can be implemented by concrete aspects.

In summary, because AOP focuses on modularizing concerns that
crosscut multiple classes, aspects can be helpful in separating the
compiler stages that require traversals on multiple AST nodes.
Although the benefits declared in Section 4.3 and 4.4 can also be
obtained by using the Visitor pattern, none of the object-oriented
implementation can provide same kind of facilities as using ITDs
and pointcuts in aspect-oriented compiler development. Since the
semantics of AspectJ is compatible with Java, any compiler
written in Java (either using or not using the Visitor pattern)
could be reimplemented with AspectJ.

5. RELATED WORK
Applying AOP concepts to compiler design was first proposed by
de Moor et al. [8], at a time when AOP tool support was not
mature and when various definitions of aspects existed.
Essentially, they introduced an aspect-oriented implementation of
an attribute grammar, where each aspect represented a semantic
attribute (e.g., the environment). Their notion of aspect is highly
restrictive and it is a slight deviation from the general notion and
terminology of aspects as described in this paper.
Similarly, TreeCC [9] invented special notations to facilitate
compiler writers to specify semantic computation outside of an
AST node structure. These aspects are translated by a
preprocessor into C functions with those AST nodes as
parameters, whereas our approach is built on object-oriented
AST nodes with each semantic operation implemented as a
method of the node itself. Therefore, the advantages of object-
orientation are utilized in our framework.
JastAdd II [10] is a language implementation tool that supports
the generation of compilers based on Rewritable Reference
Attributed Grammars. In JastAdd II, static aspect-oriented
programming technology was utilized to assist some of the
computation of attributes, which can add features to the AST
classes in a way analogous to the use of ITDs in AspectJ as
described in this paper. The difference is that our approach
regards all semantic actions as concerns crosscutting AST classes
and consequently fully implements them using AspectJ's various
constructs and features, such as ITDs, join point models, aspect
static member and even aspect-inheritance.
Directly using AspectJ’s ITDs in compiler implementation was
also introduced in [11], without fully investigating utilizing other
features of AOP languages. The ITDs are primarily used as a
notation that can be transformed back and forth with object-
oriented functions to support multiple evolution needs, which has
a different focus than this paper.

6. CONCLUSION
This paper emphasizes the difficulties in separating concerns
during compiler construction using purely object-oriented
approaches and illustrates an alternative technique that uses

aspect-orientation to describe semantic phases built on object-
oriented AST nodes. The approach clearly separates each
semantic operation as an aspect and uses various AOP language
features to fulfill the computational needs of tree traversal,
thereby improving the overall modularization of the system and
providing flexibility for future evolution of the compiler. The
approach supersedes the object-oriented Visitor pattern by its
unrestricted method definitions and transparent nature to AST
node classes, as well as the flexibility in phase integration and
tree walking using join points. The benefits have been
experimentally validated in a compiler developed in AspectJ that
translates RelationJava code into regular Java code. A similar
study could be done on any software system that has a tree-like
structure and obtain the same benefits of using AOP.

7. REFERENCES
[1] K.-G. Doh and P. D. Mosses, Composing programming

languages by combining Action-semantics modules, Science
of Computer Programming, Vol. 47, No. 1, pp. 3-36, 2003.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] O. Hachani and D. Bardou. Using Aspect-Oriented
Programming for Design Patterns Implementation. In Proc.
Workshop Reuse in Object-Oriented Information Systems
Design, 2002,
http://www-lsr.imag.fr/OOIS_Reuse_Workshop/Papers/Hachani.pdf.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proc. 11th European Conf. Object-
Oriented Programming (ECOOP), 1997, pp. 220-242.

[6] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ. In Proc. Object
Oriented Programming, Systems, and Applications
(OOPSLA), 2002, pp. 161-173.

[7] M. Mernik, X. Wu, B. R. Bryant. Object-Oriented Language
Specification: Current Status and Future Trends, In Proc.
ECOOP Workshop on Evolution and Reuse of Language
Specifications for DSLs, June 2004.

[8] O. de Moor, S. Peyton-Jones, and E. Van Wyk. Aspect-
oriented Compilers. In Proc. Generative and Component-
Based Software Engineering (GCSE), 2000, pp. 121-133.

[9] R. Weatherley. TreeCC: An Aspect-Oriented Approach to
Writing Compilers.
http://www.southern-storm.com.au/treecc.html.

[10] G. Hedin and E. Magnusson. JastAdd-An Aspect-Oriented
Compiler Construction System. Science of Computer
Programming, Vol. 47, No. 1, pp. 37-58, 2003.

[11] X. Wu, S. Roychoudhury, B. Bryant, J. Gray, and M.
Mernik. A Two-Dimensional Separation of Concerns for
Compiler Construction. In Proc. ACM Symposium on
Applied Computing (SAC), 2005, pp. 1365-1369.

http://www-lsr.imag.fr/OOIS_Reuse_Workshop/Papers/Hachani.pdf
http://www.southern-storm.com.au/treecc.html
http://www.fineprint.com.cn

