
Weaving a Debugging Aspect into
Domain-Specific Language Grammars

Hui Wu, Jeff Gray, and Suman Roychoudhury

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL, USA 35294-1170
Phone: 01-205-934-2213

{wuh, gray, roychous}@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer Science

University of Maribor
2000 Maribor, Slovenia
Phone: 386-2-220-7455

marjan.mernik@uni-mb.si

ABSTRACT
A common trend in programming language specification is to
generate various tools (e.g., compiler, editor, profiler, and
debugger) from a grammar. In such a generative approach, it is
desirable to have the definition of a programming language be
modularized according to specific concerns specified in the
grammar. However, it is often the case that the corresponding
properties of the generated tools are scattered and tangled across
the language specification. In this paper, separation of concerns
within a programming language specification is demonstrated by
considering debugging support within a domain-specific
language (DSL). The paper first describes the use of AspectJ to
weave the debugging semantics into the code created by a parser
generator. The paper outlines several situations when the use of
AspectJ is infeasible at separating language specification
properties. To accommodate such situations, a second approach
is presented that weaves the debugging support directly into a
grammar specification using a program transformation engine. A
case study for a simple DSL is presented to highlight the benefits
of weaving across language specifications defined by grammars.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory-Syntax, Semantics. D.2.6 [Software Engineering]:
Program Environments-Integrated environments. F.4.2
[Mathematical Logic and Formal Languages]: Grammars and
Other Rewriting Systems-Parsing.

Keywords
AOSD, debugging, DSLs, Grammarware

1. INTRODUCTION
A domain-specific language (DSL) is a programming language
with concise syntax and rich semantics designed to solve
problems in a particular domain. A DSL is usually smaller and

easier to use than a general purpose language (GPL), such as Java
or C+. Efforts to design, program, and maintain programs written
in a DSL are often hindered by the lack of support for an
integrated development environment (IDE), which unites an
editor, compiler, and debugger in a common toolsuite. Manual
construction of the IDE for each new DSL can be time-consuming,
expensive, and error-prone. An approach to generate
automatically the IDE as a whole, or in part, from the DSL
grammar specification preserves all the advantages of using a DSL
and reduces the implementation costs of DSL tools.

A source-level debugger is a critical tool to assist a programmer,
at any level of abstraction, in discovering the location of a
program fault. Most modern IDEs (e.g., Eclipse, JBuilder,
and .Net) include detailed support for debugging. A debugger is
difficult to build because it depends heavily on the underlying
operating system’s capabilities and lower-level native code
functionality [4]. Although techniques for constructing a
debugger for a GPL have been developed over the years, debug
support for DSLs has not been investigated deeply.

The DSL Debugging Framework (DDF) [8] is a set of Eclipse
plug-ins providing core support for DSL debugging. In the DDF,
a language specification is written in ANTLR (ANother Tool for
Language Recognition), which is a lexer and parser generator [2].
ANTLR can be used to construct recognizers, compilers, and
translators from grammatical descriptions containing Java, C++,
or C# actions. A DSL is usually translated into a GPL that can be
compiled and executed. From a DSL grammar, the DDF generates
GPL code representing the intention of the DSL program (i.e., the
DSL is translated to a GPL and the GPL tools are used to generate
an executable program). The DDF also generates the mapping
information that integrates with the host GPL debugger (e.g., the
stand alone command line Java debugger – jdb). The generated
mapping code re-interprets the DSL program, and the debugger
state, into a sequence of commands that query the GPL debugger
server. The responses from the GPL debugger server are mapped
back into the DSL debugger perspective. Thus, the end user
performs debugging actions at the level of abstraction specified by
the DSL, not at the lower-level abstraction provided by the GPL.

Using the DDF, a DSL debugger can be generated automatically
from the DSL grammar provided that an explicit mapping is
specified between the DSL and the translated GPL. To define this
mapping, additional semantic actions inside each grammar
production are defined. A crosscutting concern emerges from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00

addition of the explicit mapping in each of the grammar
productions. The manual addition of the same code in each
grammar production results in much redundancy that can be better
modularized using an aspect-oriented approach applied to
grammars. The primary contribution of the paper is a technique
for better separation of concerns in Grammarware, which
comprises grammars and all grammar-dependent software (e.g.,
lexer, parser, and compiler) [6].

The outline of the rest of the paper is as follows. In Section 2, an
overview is presented of two different approaches for weaving
debugging support into a language specification. A small case
study is introduced in Section 3 to serve as an illustration of the
two approaches. Related work and a conclusion represent the final
sections of the paper.

2. GRAMMAR WEAVING APPROACHES
This section outlines two different approaches for weaving a
debugging concern into a DSL programming environment.
Section 3 provides more detailed examples of each approach
applied to a simple DSL case study. Each approach assumes that
an ANTLR grammar is used to specify the syntax and semantics
of a DSL. ANTLR permits semantic action code written in a GPL
to be attached to each grammar production.

The first approach to modularizing a debugging concern in a DSL
assumes the existence of an aspect weaver for the generated GPL.
For example, AspectJ is an aspect-oriented extension to Java that
assists in modular implementation of numerous crosscutting
concerns [1]. In Figure 1, ANTLR automatically generates the
lexer and parser from the DSL grammar. Assuming the generated
parser is in Java, AspectJ can be used to define a debugging
aspect that weaves the debug mapping code to generate a new
lexer and parser (Lexer’ and Parser’). After the debug concern is
weaved into the lexer and parser, DDF uses the transformed GPL
and mapping code to generate the DSL debugger [8].

Figure 1. Post-ANTLR Processing (AspectJ Approach)

The lack of mature aspect weavers for many languages (e.g.,
Object Pascal, C, or Ada) is a serious disadvantage of the first
approach. That is, the first approach requires an aspect weaver for
the generated GPL as the mechanism for modularizing the debug
concern. Another disadvantage of the first approach is that it

requires the developer of the DSL to have detailed knowledge of
the code generator within ANTLR in order to construct the
appropriate pointcuts. In some cases, the translation is done by a
legacy parser, which creates a difficulty because the generated
parser code can be messy and generally unreadable by a human.
One line in a DSL can translate into dozens of lines of GPL code.

In the second approach toward modularizing concerns in a
grammar, the Design Maintenance System (DMS) [3] is used to
weave the debugging concern directly into the grammar itself,
rather than the generated GPL source. DMS is a program
transformation engine and re-engineering toolkit developed by
Semantic Designs (www.semdesigns.com). It facilitates the
transformation of one program representation into a new
representation and provides lower-level transformation functions
such as parsing, abstract syntax tree (AST)
generation/manipulation, pretty printing, powerful pattern
matching, and source translation capabilities [3]. DMS provides
pre-constructed domains for several dozen languages such as Java,
C++, and Object Pascal. In addition to the available parsers, the
underlying rewriting engine of DMS provides the machinery
needed to perform invasive software transformations on legacy
code [5]. For the requirements of this project, a DMS domain was
created that is capable of parsing and transforming grammars
specified in ANTLR.

Figure 2. Pre-ANTLR Processing (DMS Approach)

In Figure 2, a debugging aspect is specified as a DMS function
written in the PARLANSE language, which provides
transformation functionality using pattern matching and rewrite
specifications on the AST of a source program (in this case, the
source is actually a grammar file). PARLANSE ("Parallel
Language for Symbolic Expression") is a parallel programming
language designed by Semantic Designs, intended to allow
software engineers to develop programs that manipulate symbolic
values in an efficient manner on conventional scalar
multiprocessors inside DMS [3]. In Figure 2, before the grammar
is even processed by ANTLR, it is first pre-processed by DMS in
order to weave the debugging aspect into the original grammar
productions. The transformed grammar is then submitted to
ANTLR in order to generate the parser and lexer for a specific
GPL. The key contribution of this approach is the transformation
of the grammar itself. The specification of the debug mapping is
modularized in a single place – the DMS transformation function.

DSL Grammar
Specification

Antlr

Lexer'

Parser'

In Java In Java

GPL

Debugging
Mapping Code

DSL CodeDMS

Debugging Aspect
Specification

(PARLANSE Function)

To generate
DSL Debugger

DSL Grammar
Specification'

With Debugging
Aspects weaved in

DSL Grammar
Specification

Antlr

Lexer

Parser

In Java

In Java

GPL

Debugging
Mapping Code

AspectJ
Compiler

Debugging Aspect
Specification

(AspectJ)

To generate
DSL DebuggerLexer'

Parser'

With Debugging
Aspects weaved in

DSL Code

The second approach has the side benefit of language
independence. It does not matter which GPL serves as the
generated target. The DMS ANTLR domain is capable of parsing
the grammar and adding the needed debug transformations for a
large set of programming languages. An example of each of the
two approaches is provided in the next section, which introduces a
simple DSL.

3. A CASE STUDY
This section presents a very simple DSL that will be used to
illustrate the concept of an aspect to support debugging in DSLs.
The Robot DSL consists of four commands that control robot
movement: up, down, right, and down. Every command will
increase or decrease the position of the robot along the x or y
coordinates. As a side effect, each command will also increase the
timer by one. Additional Robot DSL statements are: initial
statement, set statement, and print statement. Figure 3 is sample
code written in the Robot DSL - line 2 initialize the robot’s
beginning position as (0, 0); line 5 forces (5, 6) as the robot’s new
current position; line 8 prints the robot’s current position.

1 begin
2 init Position(0,0)
3 left
4 down
5 set Position(5,6)
6 up
7 right
8 print Position
9 end

Figure 3. Robot DSL Sample Code

Figure 4 is part of the Robot DSL grammar specification that
translates the Robot DSL to Java. From this grammar, ANTLR
will generate a lexer and parser for the Robot DSL. Lines 10, 11,
and 14 represent the syntax of the Robot DSL in BNF format.
Lines 12 and 13 are semantic actions (in Java) for the “right”
Robot command; lines 15 and 16 specify the semantic action for
the “left” command.

…
10 command
11 :(RIGHT {
12 fileio.print("x=x+1;// move right");
13 fileio.print("time=time+1;");}
14 |LEFT {
15 fileio.print("x=x-1;// move left");
16 fileio.print("time=time+1;");}
…

Figure 4. Robot DSL Grammar Specification

3.1 Weaving at the Generated Code Level
The debug mapping for the DSL debugger was originally
specified manually at the DSL grammar level (see Figure 6). For
example, line 11 to line 18 represents the semantic action of the
“right” command. Line 12 keeps track of the Robot DSL line
number; line 14 records the first line of the translated GPL code
segment; line 16 marks the last line of the translated GPL code
segment; line 17 and line 18 generate the mapping code statement
used by the DDF.

These semantic actions are repeated in every terminal production;
the same mapping statements for the “left” command appear in

lines 20, 22, and 24 to 26. Although the Robot DSL is simple
(due to space limitations), it is not uncommon to have grammars
with hundreds of production rules. In such cases, much
redundancy will exist because the debug mapping code is
replicated across each production. Of course, because the debug
mapping concern is not properly modularized, changing any part
of the debug mapping has a rippling effect across the entire
grammar. An aspect-oriented approach can offer much benefit in
such a case, even though the main concern emerges at the
grammar level.

…
6 after(int commandname):
7 call(void antlr.Parser.match(int))
8 && args(commandname)
9 { match(commandname); }
10 pointcut count_dsllinenumber():
11 call (void P.command());
12 after(): count_dsllinenumber(){
13 { dsllinenumber=dsllinenumber+1;}
…

Figure 5. Debugging Aspects in AspectJ Notation

An aspect for capturing the debug mapping (using AspectJ) is
specified in Figure 5. The pointcut count_dsllinenumber is
a command method called by class “P,” which is a parser class
that is automatically generated by ANTLR. This aspect executes
dsllinenumber=dsllinenumber+1; after all calls to void
P.command(), regardless of the specific command method
returned. This aspect counts the DSL line number at the DSL
source code level. Whenever there is a DSL command or
statement, the counter will increase by one. During the design
phase of the Robot grammar, the “begin” and “end” statements
were not defined as commands, which force these two statements
to be handled differently as specified in line 6 to line 9 of Figure 5.
The method match(commandname) only picks up “begin” and
“end” statements.

The aspect of Figure 5 handles the increment of the DSL line
number that is weaved at the beginning of each production.
Several other aspects are needed to specify the complete debug
mapping. Although space does not permit all to be shown, another
aspect is to locate the first and last line number of the translated
segment of GPL code. This aspect is difficult to define using the
AspectJ notation. After the weaving process is accomplished by
AspectJ, the Parser of Figure 1 becomes Parser’, which not only
translates the DSL to the GPL, but also generates the necessary
mapping code needed by DDF for automatically generating the
DSL debugger.

3.2 Weaving at the DSL Grammar Level
Although the Post-ANTLR processing approach using AspectJ
can solve the crosscutting problems in the DSL grammar, this
method is infeasible when an aspect weaver does not exist for the
generated GPL. The results of the previous section were favorable
because the generated code was Java, which allowed AspectJ to
be used to do the post-ANTLR weaving. A different technique is
needed when the parser generates a GPL that does not have an
aspect weaver. As mentioned in Section 2, a program
transformation system (e.g., DMS) can be used to weave
crosscutting concerns into the actual grammar definition. After
weaving the aspects into the grammar using DMS, the changes in

Figure 6. Robot DSL Grammar Specifications in ANTLR Notation

terms of aspects will automatically propagate into the generated
parser through the grammar productions. Unlike the first approach
described in Section 3.1, it is not necessary to weave into the
generated parser because the debugging concern is weaved at an
earlier stage in the grammar itself.

In Figure 6, the Robot DSL grammar contains an ANTLR
specification of BNF syntax (e.g., line 10, 11, and 19). The
semantic action is specified using Java by separating the action
code with a pair of curly braces. Note that the Java domain is
embedded within ANTLR, which makes it difficult to parse two
different syntactic constructs (i.e., ANTLR and Java) using any
one particular parser. A naïve solution would be to include all the
tokens and productions from both domains to form a combined
grammar and then generate the parser using the DMS parser
generator. However, this approach does not make use of the
existing DMS Java grammar/parser. A better approach would be
to reuse the existing DMS Java tools and separate the ANTLR
grammar productions from the Java grammar productions, but still
parse the input source containing tokens from both languages.
This requires a minor extension of the DMS ANTLR grammar. To
parse the embedded semantic action (i.e., essentially Java code)
within the ANTLR domain, a special string token called
ANTLR_ACTION is used. The regular expression associated with
this token is as follows:

#token ANTLR_ACTION [STRING] “{ (\\[{}\]|[\{}])* \}”

ANTLR_ACTION is a token that describes a string pattern
beginning with a left curly brace, ending with a right curly brace,
and containing any characters in between. Having specified each
grammar production’s semantic action as a single
ANTLR_ACTION node, DMS can parse the ANTLR grammar
specification (combined with Java semantic actions) to construct
an AST for that grammar instance. Note that the semantic actions
are stored as string expressions at the ANTLR_ACTION nodes of
the syntax tree.

The next step involves retrieving the associated string expressions
from the specific ANTLR_ACTION nodes and parsing them with
the DMS Java parser. However, an inherent difficulty in using a
regular Java parser is that the string expressions linked to an
ANTLR_ACTION node are not complete Java programs, only
fragments (i.e., statement blocks). Therefore, to avoid exceptions
thrown by the predefined DMS Java parser, minor modifications
are made to the root node (i.e., starting production in the Java

grammar specification file) and the parser is regenerated to allow
partial parsing. Because the approach specifically targets the
translation from a DSL to a GPL, the semantic actions in an
ANTLR grammar specification are primarily method call
statements (with one string parameter, see Figure 4 line 12, 13, 15,
and 16).

After the parse tree for the ANTLR_ACTION nodes are retrieved
using the modified Java parser, new debugging aspects are
weaved using the ASTInterface API provided by DMS. The API
provides methods for modifying a given syntax tree to regenerate
a new tree structure. The steps describing the above process are
shown in Figure 7. Due to lack of space, the aspect source code
and the complete PARLANSE source code presenting these steps
is not shown here, but is available at the project website
(http://www.cis.uab.edu/wuh/DDF).

1. Specify ANTLR grammar specification

2. Specify Java semantic actions using DMS regular expression

3. Generate ANTLR Parser

4. Generate abstract syntax tree with ANTLR_ACTION nodes

5. Search ANTLR_ACTION nodes from the generated AST

6. Retrieve ANTLR_ACTION nodes and store them in a hash map

7. Retrieve associated string expression from each
ANTLR_ACTION node

8. Modify the regular Java parser by changing the starting
production

9. Parse the associated string expressions as regular Java
statement lists

10.Transform the statement lists using the ASTInterface API

11.Regenerate the ANTLR_ACTION nodes with debugging aspects
weaved in

12.Output the complete ANTLR AST (with modified action nodes)

Figure 7. Steps to Weave Debugging Aspects into a Grammar

4. RELATED WORK
There is little related work in the area of aspect weaving at the
grammar level. This section provides a brief overview of known
work in the area. The Aspect-Oriented Compiler, proposed by
Oege de Moor et al., is a technique for making compiler ‘aspects’
first-class objects that can be stored, manipulated and combined.
The examples demonstrate a weaving process that is purely name-

…
10 command
11 :(RIGHT {
12 dsllinenumber=dsllinenumber+1;
13 fileio.print(" x=x+1;// move right");
14 gplbeginline=fileio.getLinenumber();
15 fileio.print(" time=time+1;");
16 gplendline=fileio.getLinenumber();
17 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," +
18 gplbeginline + "," + gplendline + "));");}
19 |LEFT {
20 dsllinenumber=dsllinenumber+1;
21 fileio.print(" x=x-1;// move left");
22 gplbeginline=fileio.getLinenumber();
23 fileio.print(" time=time+1;");
24 gplendline=fileio.getLinenumber();
25 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," +
26 gplbeginline + "," + gplendline + "));");}
…

based and not dependent on sophisticated program analyses. They
parameterize the name analysis and type analysis modules and
applied them to different attribute grammars within a functional
language framework [9].

The Language Implementation System on Attribute Grammars
(LISA) tool is a grammar-based system to generate a compiler,
interpreter, and other language-based tools (e.g., finite state
automata visualization editor) [7]. Using templates, LISA is able
to describe the semantic rules that are independent of grammar
production rules. LISA achieves better modularization than
ANTLR by templates and inheritance formalism.

JastAdd is a Java based compiler construction system for AST
transformation using JavaCC and tree-building using JJTree. The
behaviors of a compiler (e.g., name analysis, type checking, code
generation, and unparsing) can be modularized into different
aspects in JastAdd which then weaves the behaviors together into
classes using AOP techniques, providing a safer and more
powerful way to construct a compiler system [10].

5. CONCLUSION
A DSL offers end users a notation for specifying the intent of a
software system using idioms appropriate to the domain of interest.
This paper presented an approach that generates the tools needed
(e.g., editor, compiler, and debugger) to use a DSL from a
language specification captured in a grammar. Specifically, the
paper focused on issues regarding the topic of debugging support
for a DSL development environment.

The difficulty of manual implementation of a DSL debugger as
part of an IDE led to the idea of generating the debugger from a
language specification. Yet, the decomposition of a language
specification along the dimension of grammar productions forces
some concerns to be scattered and tangled within the grammar.
The specific contribution of this paper is the illustrated
modularization of the debugging concern within the DSL
grammar using AOP principles. The paper presented two
approaches for weaving the debugger concern in conjunction with
the DDF plug-in.

The first approach may be applicable in those cases when an
aspect weaver is available for the generated GPL (i.e., AspectJ can
be used when the GPL is Java). However, weaving into the
generated GPL requires detailed knowledge of the parser
generator such that appropriate pointcuts can be identified in the
generated source. In those situations where an aspect weaver is
not readily available for the generated GPL, the DMS approach
for transforming the representative grammar is more suitable. The
DMS transformation has more accidental complexities in terms of
implementation, but does not require detailed knowledge of the
GPL code generator. The effort required to adopt the DMS
approach can be reduced when the transformation library of
debugging aspects is further refined. The debugging aspect
semantics is tied to a specific underlying GPL, but the weaving
mechanism can be reused.

With respect to ongoing and future work, the grammar
transformation approach using DMS is being applied to larger
grammars obtained from several research projects. Because
writing the PARLANSE functions to handle low-level program
transformation is also tedious, we are developing a domain-
specific aspect language for weaving the aspects into grammars to
generate the PARLANSE functions. A long-term goal of the
project is to investigate and construct a Domain-Specific
Language Unit Test Framework (DUTF) to complement the DDF.
The purpose of the DUTF will be to assist in the construction of
test cases for DSL programs, much in the sense that JUnit is used
to assist in automated unit testing of Java programs [11]. Failed
test cases reported within the DUTF will reveal the presence of a
program fault, and the DDF can then be used to identify the fault
location. It is our intuition that the DUTF will represent another
crosscutting concern that will need to be modularized within the
DSL language specification as a grammar aspect.

6. REFERENCES
[1] The AspectJ web site (http://aspectj.org).

[2] ANTLR - ANother Tool for Language Recognition, available
from http://www.antlr.org/.

[3] Ira Baxter, Christopher Pidgeon, and Michael Mehlich,
“DMS: Program Transformation for Practical Scalable
Software Evolution,” International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004, pp.
625-634.

[4] Jonathan B. Rosenberg, How Debuggers Work- Algorithms,
Data Structures, and Architecture, John Wiley & Sons. Inc,
New York, NY, 1996.

[5] Uwe Aßmann, Invasive Software Composition, Springer-
Verlag, 2003.

[6] Paul Klint, Ralf Lammel, and Chris Verhoef, “Towards an
Engineering Discipline for Grammarware,”
http://www.cs.vu.nl/grammarware/.

[7] Marjan Mernik, Matej Crepinsek, Tomaz Kosar, Damijan
Rebernak, and Viljem Zumer, “Grammar-Based Systems:
Definition and Examples,” Journal of Informatica, accepted
for publication - 2004.

[8] Hui Wu, Jeff Gray, and Marjan Mernik, “Debugging
Domain-Specific Languages in Eclipse,” OOPSLA Eclipse
Technology Exchange Poster Session, Vancouver, BC,
October 2004.

[9] Oege de Moor, Simon Peyton-Jones, and Eric Van Wyk,
“Aspect-Oriented Compilers,” Generative and Component-
Based Software Engineering, Springer-Verlag LNCS 1799,
September 1999, pp. 121-133.

[10] Görel Hedin and Eva Magnusson, “JastAdd-an Aspect-
Oriented Compiler Construction System,” Science of
Computer Programming, April 2003, pp. 37-58.

[11] The JUnit web site (http://www.junit.org).

