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Abstract

The growing reliance on services provided by software applications places a high premium on the reliable

and efficient operation of these applications. A number of these applications follow the event-driven software

architecture style since this style fosters evolvability by separating event handling from event demultiplexing and

dispatching functionality. The event demultiplexing capability, which appears repeatedly across a class of event-

driven applications, can be codified into a reusable pattern, such as the Reactor pattern. In order to enable

performance analysis of event-driven applications at design time, a model is needed that represents the event

demultiplexing and handling functionality that lies at the heart of these applications. In this paper, we present

a model of the Reactor pattern based on the well-established Stochastic Reward Net (SRN) modeling paradigm.

We discuss how the model can be used to obtain several performance measures such as the throughput, loss

probability, and upper and lower bounds on the response time. We illustrate how the model can be used to obtain

the performance metrics of a Virtual Private Network (VPN) service provided by a Virtual Router (VR). We validate

the estimates of the performance measures obtained from the SRN model using simulation.
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1 Introduction

Service oriented computing (SoC), which is made feasible by middleware-based distributed systems, is an

emerging technology to provide the next-generation services to meet societal needs ranging from basic necessities,

such as education, energy, communications and healthcare to emergency and disaster management. For SOC to

be successful in meeting the demands of society, assurance on the performance of these services is necessary.

Since these services are primarily built using communication middleware, the problem reduces to the issue of

performance assurance of the middleware platforms.

Middleware typically comprises a number of building blocks, which are essentially patterns-based reusable

software frameworks. The building blocks are then combined in a variety of ways to provide a complete middle-

ware solution for hosting the services. However, the middleware problem is made more complex due to the large

number of options available for each building block of the middleware. The choice of building blocks and their

configuration options have an impact on the performance of the services provided by the systems.

The current state of the art in middleware performance analysis requires configuring, integrating and composing

the building blocks to form entire middleware solutions, which are then evaluated via empirical benchmarking and

extensive profiling. Any ill desired effects of the choices made in the configuration, composition and integration

can be determined only very late in the lifecycle, which can be detrimental to system development costs and

schedules. In order to enable the right design choices, a systematic methodology to analyze the performance of

these systems at design time is necessary. Such a methodology may consist of models to analyze the performance

of individual building blocks comprising the middleware and the composition of these building blocks.

The performance models may be based upon well-known analytical/numerical modeling paradigms [14, 1, 5]

and simulation techniques [17, 19]. As a first step towards the development of such a methodology, this paper

presents a model of the Reactor pattern [2, 16], which provides important synchronous demultiplexing and dis-

patching capabilities to network services and applications. The model is based on the Stochastic Reward Net

(SRN) modeling paradigm [14]. Our previous efforts [3] have discussed the use of the model to obtain an upper

bound on the response time of a service. In this paper we extend our previous work and describe how the model

can be used to obtain several additional performance measures including throughput and loss probability. We also

demonstrate how the model can be used to obtain the lower bound on the response time. We illustrate how the

model can be used to estimate the performance metrics of a Virtual Private Network (VPN) service provided by a

Virtual Router (VR) [9]. We validate the performance metrics obtained from the model using simulation.
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Paper organization: The paper is organized as follows: Section 2 presents the performance model of the Reactor

pattern. Section 3 illustrates how the performance model of the Reactor pattern can be used to estimate the

performance metrics of a VPN service provided by a VR. Section 4 offers concluding remarks and directions for

future research.

2 Performance Model of the Reactor Pattern

This section provides a context for understanding the contribution of this paper summarizing our earlier work.

We first provide an overview of the Reactor followed by the SRN model of the Reactor pattern.

����� ���	��
���������������	�������������������! "�#���%$�&('����)&*�)�+���,�����-�/.

Figure 1 depicts a typical event demultiplexing and dispatching mechanism documented in the Reactor pattern.

The application registers an event handler with the event demultiplexer and delegates to it the responsibility of

listening for incoming events. On the occurrence of an event, the demultiplexer dispatches the event by making

a callback to its associated application-supplied event handler. This is the idea behind the Reactor pattern, which

provides synchronous event demultiplexing and dispatching capabilities.

Figure 1. Event Demultiplexers in Middleware

The Reactor pattern can be implemented in many different ways depending on the event demultiplexing capa-

bilities provided by the underlying operating system and the concurrency requirements of the applications. For

example, the demultiplexing capabilities of a Reactor could be based on the select () or poll () system

calls provided by POSIX-compliant operating systems, or WaitForMultipleObject () as found in the

different flavors of Win32 operating systems. Moreover, the handling of the event in the event handler could
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be managed by the same thread of control that was listening for events leading to a single-threaded Reactor im-

plementation. Alternatively, the event could be delegated to a pool of threads to handle the events leading to a

thread-pool Reactor.
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We consider a single-threaded, select-based implementation of the Reactor pattern with the following charac-

teristics:

= The Reactor receives two types of input events with one event handler for each type of event registered with

the Reactor.

= Each event type has a separate queue, which holds the incoming events of that type. The buffer capacity for

the queue of type #1 events is denoted >@? and of type #2 events is denoted >BA .
= Event arrivals for both types of events follow a Poisson process with rates C ? and C A , while the service times

of the events are exponentially distributed with rates DE? and D/A .
= In a snapshot, an event of type #1 is serviced with a higher priority over an event of type #2. In other

words, when event handles corresponding to both event types are enabled in a snapshot, the event handle

corresponding to type #1 is serviced with a priority that is higher than the event handle of type #2.

���GF HI�!.������!�J�<�	��8K���5&*���/
!�;�L�!���5�M
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The following performance metrics are of interest for each one of the event types in the reactor pattern described

in Section 2.2:

= Expected throughput – which provides an estimate of the number of events that can be processed by the

single threaded event demultiplexing framework. These estimates are important for many applications, such

as telecommunications call processing.

= Expected queue length – which provides an estimate of the queuing for each of the event handler queues.

These estimates are important to develop appropriate scheduling policies for applications with real-time

requirements.
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= Probability of event loss – which indicates how many events will have to be discarded due to lack of buffer

space. These estimates are important particularly for safety-critical systems, which cannot afford to lose

events. These also provide an estimate on the desired levels of resource provisioning.

= Expected response time – which indicates the time taken to service an event. It is also important to establish

lower and upper bounds on the response time. These estimates, especially, the upper bound can allow us to

determine whether the deadlines for real-time services can be satisfied in the worse case.

���ON PQ��RS�L�Q���)�

For completeness sake we reproduce the SRN model of the Reactor pattern illustrated in our earlier work [3].

A Stochastic Reward Net (SRN) substantially extends the modeling power of Generalized Stochastic Petri Nets

(GSPNs) [14], which are an extension of Petri nets [13]. A SRN is a modeling technique that is concise in its

specification and closer to a designer’s intuition about what a model should look like. SRNs have been extensively

used for performance, reliability and performability analysis of a variety of systems [15, 6, 7, 18, 8, 11]. The

work closest to the proposed research is reported by Ramani et al. [15], where SRNs are used for the performance

analysis of the CORBA event service. A detailed overview of SRNs can be obtained from [14].

N1 N2
A1 A2

B1 B2

Sn1 Sn2

S2S1

Sr1 Sr2

StSnpSht

SnpShtInProg

T_SrvSnpSht T_EndSnpSht

Figure 2. SRN model for the Reactor pattern

Figure 2 shows the SRN model for the Reactor pattern with the characteristics described in Section 2.2. Table 1

summarizes the enabling/guard functions for the transitions in the net. The net on the left-hand side models the

arrival, queuing and service of the two types of events. Transitions TVU and TXW represent the arrival of the events

of type #1 and #2, respectively. Places Y@U and YZW represent the queue for the two types of events. Transitions
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[�\ U and
[�\ W are immediate transitions that are enabled when a snapshot is taken. Places

[ U and
[ W represent the

enabled handles of the two types of events, whereas transitions
[^] U and

[�] W represent the execution of the enabled

event handlers of the two types of events. An inhibitor arc from place Y@U to transition T"U with multiplicity >_U
prevents the firing of transition T"U when there are >_U tokens in place Y@U . The presence of >_U tokens in place Y@U
indicates that the buffer space to hold the incoming input events of the first type is full, and no additional incoming

events can be accepted. The inhibitor arc from place YZW to transition TXW achieves the same purpose for type #2

events. The inhibitor arc from place
[ U to transition

[�] W prevents the firing of transition
[�] W when there is a token

in place
[ U . This models the prioritized service for an event of type #1 over event of type #2 in a given snapshot.

The net on the right of Figure 2 models the process of taking successive snapshots and prioritized service of

the event handle corresponding to type #1 events in each snapshot. Transition
[^\ U is enabled when there is a

token in place
[�`a[�\)b-[dc�`

, at least one token in place Y�U , and no tokens in place
[ U . Similarly, transition

[�\ W
is enabled when there is a token in place

[�`a[�\)b-[dc�`
, at least one token in place YZW , and no tokens in place

[ W .
Transition e [�]5f)[�\)b�[dc,`

is enabled when there is a token in either one of the places
[ U and

[ W , and the firing of

this transition deposits a token in place
[�\)b-[dc�`hg4\Qij]lk�m

.

The presence of a token in the place
[^\)b-[dc,`ng\Qio]5k�m

indicates that the event handles that were enabled in

the current snapshot are being serviced. After these event handles complete execution, the current snapshot is

complete and it is time to take another snapshot. This is accomplished by enabling the transition e p \Qq	[^\)b-[dc,` .
Transition e p \Qq)[�\)b-[dc�` is enabled when there are no tokens in both places

[ U and
[ W . Firing of the transition

e p \Qq	[�\)b-[rc,` deposits a token in place
[�`s[^\)b-[dc,`

, indicating that the service of the enabled handles in the

present snapshot is complete, which marks the initiation of the next snapshot.

Table 1. Enabling/Guard functions
Transition Guard function[^\ U tstvu [�`s[^\)b-[dc�k�`rwow U�xnyoyztvu3Y@Uo{ w U�xnyoyBtvu [ U wow}| xsxs~4Uo� |[^\ W tstvu [�`s[^\)b-[dc�k�`rwow U�xnyoyztvu3YZWZ{ w U�xnyoyBtvu [ W wow}| xsxs~4Uo� |

e [^]�f,[�\)b-[dc�` tstvu [ U w�w U�x6�O��tvu [ W wow U�xsxs~4Uo� |
e p \Qq	[�\)b-[rc,` tstvu [ U w�w}| xnyoyBtvu [ W wow�| xsxs~4Uo� |

We now describe how the process of taking a single snapshot is modeled by the SRN model presented in

Figure 2. We consider a scenario where there is one token in each one of the places Y@U and YZW , and there is a

token in the place
[�`a[�\)b-[dc�`

. Also, there are no tokens in places
[ U and

[ W . In this scenario, transitions
[�\ U and

[�\ W are enabled. Both these transitions are assigned the same priority, and any one of these transitions can fire
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first. Also, since these transitions are immediate, their firing occurs instantaneously. Without loss of generality, it

can be assumed that transition
[^\ U fires before

[�\ W , which deposits a token in place
[ U .

When a token is deposited in place
[ U , transition e [�]5f,[�\)b-[dc�`

is enabled. In addition, transition
[�\ W is

already enabled. If transition e [�]5f)[�\)b-[rc,`
were to fire before transition

[�\ W , it would disable transition
[^\ W ,

and prevent the handle corresponding to the second event type from being enabled. In order to prevent transi-

tion e [�]5f)[^\)b-[dc,`
from firing before transition

[^\ W , transition e [�]5f,[�\)b-[dc�`
is assigned a lower priority than

transition
[�\ W . Because transitions

[�\ U and
[^\ W have the same priority, this also implies that the transition

e [�]5f,[�\)b-[dc�`
has a lower priority than transition

[^\ U . This ensures that in a given snapshot, event handles

corresponding to each event type are enabled when there is at least one event in the queue.

After both event handles are enabled, transition e [�]5f)[�\)b�[dc,`
fires and deposits a token in place

[�\)b�[dc,`ng\Qij]lk�m
.

The presence of a token in the place
[�\)b-[dc�`hg4\Qij]lk�m

indicates that the event handles that were enabled in the cur-

rent snapshot are being serviced. The event handle corresponding to type #1 event is serviced first, which causes

transition
[�] U to fire and the removal of the token from place

[ U . Subsequently, transition
[�] W fires and the event

handle corresponding to the event of type #2 is serviced. This causes the removal of the token from place
[ W .

After both events are serviced and there are no tokens in places
[ U and

[ W , transition e p \Qq)[�\)b-[dc�` fires, which

marks the end of the present snapshot and the beginning of the next one.

The performance measures described in Section 2.3 can be computed by assigning reward rates at the net level

as summarized in Table 2. The throughputs of events of type #1 and #2 denoted e�? and e�A respectively are given

by the rate at which transitions
[�] U and

[�] W fire. The queue lengths of the events denoted �@? and �jA are given

by the number of tokens in places Y@U and Y3W respectively. The total number of events of type #1 denoted p7? is

given by the sum of the number of tokens in places Y@U and
[ U . Similarly, the total number of events of type #2

denoted p A is given by the sum of the number of tokens in places YZW and
[ W . The loss probability of type #1

events denoted �9? is given by the probability of >_U tokens in place Y@U . Similarly, the loss probability of type #2

events denoted � A is given by the probability of >%W tokens in place Y3W .
We obtain the response times of the events using the tagged customer approach [10]. In the tagged customer

approach, an arriving event is tagged and its trajectory through the system is followed from entry to exit. The

response time of the tagged event is then determined conditional to the state in which the system lies when the

event arrives. The unconditional response time can be obtained as the weighted sum of the conditional response

times, with the weights given by the steady state probabilities of being in each one of the states. Typically, the
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response time of an event consists of two pieces; namely, the time taken to service the event hereafter referred to

as the “service time,” and the time that the event must wait in the system before its service commences, hereafter

referred to as “waiting time”. In our case, the average service time of an incoming type #1 and type #2 event is

given by U���Dd? and U���DQA , irrespective of the state in which the system lies when the event arrives. The waiting

time, however, will depend on the system state. Next, we discuss how the conditional waiting time of each event

type is determined.

The conditional waiting time for a tagged event of type #1 will depend on the state of the system, where the state

is given by the number of tokens or markings of places
[ U , [ W , Y@U and YZW . Of these four places, the markings

of the places
[ U and

[ W determine the progress of the current snapshot, whereas, the markings of places Y@U and

Y3W determine the state of the queue. The mean time taken to complete the current snapshot is given by the sum of

two terms, the first term is the product of the number of tokens in place
[ U and U���D ? , and the second term is the

product of the number of tokens in place
[ W and U���D^A . Even if there are no additional events in the queues, the

current snapshot must be completed before the service of an incoming event of type #1 can begin. Hence, the time

taken to complete the current snapshot contributes to the waiting time of the incoming or tagged type #1 event. In

order to obtain the entire waiting time of a tagged type #1 event, the contribution of the queued events of type #1

and type #2 needs to be determined.

Let
\ ? be the number of events of type #1 in the queue, and

\ A be the number of events of type #2 in the

queue, when the tagged event of type #1 arrives. This implies that after
\ ? snapshots the tagged event will be

serviced. The following three possibilities arise between the relative values of
\ ? and

\ A . If
\ ?�� \ A , then only

\ ? of the type #2 events need to be serviced before the service of the tagged type #1 event can commence, and

hence the waiting time is given by
\ ?�tnU���D^?���U���DQA�x . If

\ ? w�\ A , then
\ ? events of type #1 and type #2 need

to be serviced before the service of the incoming type #1 event can commence, and hence the waiting time is

given by
\ ?�tnU���D^?���U���DQA�x . If

\ ?Z{ \ A , then in the optimistic case,
\ ? events of type #1 and

\ A events of type

#2 need to be serviced before the service of the tagged event can commence. The optimistic case assumes that

no additional events of type #2 arrive in the first
\ ? snapshots. In the pessimistic case, however,

\ ?E� \ A events

of type #2 will arrive while the first
\ A events are being serviced. Thus, in the optimistic case, the waiting time

will be
\ ?���D^?�� \ A���DQA , and in the pessimistic case, the waiting time will be

\ ?�tnU���D^?���U���DQA�x . The optimistic

case provides the lower bound and the pessimistic case provides the upper bound of the response times. The

reward rates to obtain the optimistic and the pessimistic response times of the events of type #1 and type #2 are

8



summarized in Table 2. In the table, �Z?s� � and �V?s� � denote the optimistic and pessimistic response times of type #1

events, and �jA�� � and �XA�� � denote the optimistic and pessimistic response times of type #2 events.

Table 2. Reward assignments to obtain performance measures
Performance Reward rate

metric
e:? return rate(

[�] U )
e A return rate(

[�] W )
�"? return ( uZY�U )
�jA return ( uZY3W )
��? return ( uZY�U w�w >(U�~4Uj� | )
� A return ( uZY3W w�w >;W~4Uj� | )
��?s� � if ( uZY�U���>(U )�

if ( uZY�U���u3YZW )
return( tnU���D ?E� tvu [ UE��u3Y@U��}U�xQ�}U���D A�� tvu [ W9��u3Y@U�xsx )
else

return( tnU���D^? � tvu [ UE��u3Y@U��}U�xQ�}U���DQA � tvu [ W���u3YZWxsx )�
else
return(

|)��|
)

� ?s� � if ( uZY�U���>(U )
return( tnU���Dd? � tvu [ UE��u3Y@U��}U�xQ�}U���DQA � tvu [ W9��u3Y@U�xsx )
else
return(

|)��|
)

� A�� � if ( uZY3WB��>;W )�
if ( uZY�U���u3YZW )
return( tnU���Dd? � tvu [ UE��u3Y@U�xQ�}U���DQA � tvu [ W���u3YZW��}U�xsx )
else if ( u3Y@U wow u3YZW )
return( tnU���D ?E� tvu [ UE��u3YZWxQ�}U���D AE� tvu [ W���u3YZW��}U�xsx )
else
return( tnU���Dd? � tvu [ UE��u3YZW��}U�xQ�}U���DQA � tvu [ W9��u3YZW��}U�xsx )�
else
return(

|)��|
)

�XA�� � if ( uZY3WB��>;W )
return( tnU���D/A � tvu [ W���u3YZW��}U�xQ�}U���D^? � tvu [ U���u3YZW��}U�xsx )
else
return(

|)��|
)
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In the model of the reactor pattern described above, the arrival, service and failure distributions are assumed to

be exponential. For certain types of applications, this assumption may not hold. For example, for safety-critical

applications, events may occur at regular intervals, in which case the arrival process is deterministic. In addition to

the deterministic distribution, the arrival, service and failure processes may also follow any other non-exponential

or general distribution. There are two ways to consider non-exponential distributions in the SRN model. In the

first method, a non-exponential distribution can be approximated using a phase-type approximation [14], and the

resulting SRN model can then be solved using SPNP [4]. In the second method, the model can be simulated using

discrete-event simulation incorporated in SPNP.

���G¢ �L�/�:�)��¡o�#���M���,�����-�

In order to inspire confidence in the estimates of the performance measures produced by the model, these mea-

sures must be validated using simulation and experimentation. In this paper we validated the measures using sim-

ulation, leaving the experimental validation for future work. The simulation was implemented using CSIM [17].

3 Case Study: VPN Service using Virtual Router

In this section we describe how the SRN model of the reactor pattern presented in Section 2.4 is used to estimate

the response time of a Virtual Private Network (VPN) service provided by a Virtual Router (VR).

Figure 3 illustrates the architecture of a provider-provisioned virtual private network (PPVPN) ([12]) using a

VR. A VR is a software/hardware component that is part of a physical router called the provider edge (PE) router.

A VR contains the mechanisms to provide highly scalable, differentiated levels of services in VPN architectures.

Multiple VRs can reside on a PE device. VRs can be arranged in a hierarchical fashion within a single PE as shown

in Figure 3. Moreover, an entity acting as a service provider for an end customer might itself be a customer of a

larger service provider. VRs may also use different backbones to improve reliability or to provide differentiated

levels of service to customers.

Customer edge (CE) devices wishing to join a VPN connect to a VR on the PE device. A VR can multiplex

several distinct CEs belonging to the same VPN session. A VR may use tunneling mechanisms to use multiple

routing protocols and link layer protocols, such as IPSec, GRE, and IP-in-IP, to connect with the CEs. A totally
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Figure 3. VPN Architecture using Virtual Routers

different set of protocols and tunneling mechanisms could be used for inter-VR or VR-backbone communication.

These tunneling mechanisms can also be the basis for differentiated levels of service as well as to provide improved

reliability. A VR also comprises firewall capabilities.

We consider a scenario where a VR is used to provide VPN services to two organizations, with each organization

having a customer edge (CE) router connected to the VR. The employees of each organization issue VPN set up

and tear down service requests to the VR via CEs. Also, the VR offers a differentiated level of service, with

organization #1 receiving prioritized service over organization #2. From the point of view of the employees of

the organizations, it is necessary that the service requests be handled in a reasonable amount of time. Also, the

probability of denying the service requests should be minimal. From the point of view of the VPN service provider,

the rate at which the service requests are processed or the throughput is important. The throughput will determine

determine the revenue collected by the provider.

In order to implement the VPN service, a reactor pattern with the characteristics described in Section 2.2 can be

used to demultiplex the events. The SRN model of the reactor pattern can thus be used for the performance analysis

of the VPN service provided by the VR. In order to use the SRN model, we designate the requests originating from

organization #1 as events of type #1 and requests originating from organization #2 as events of type #2.

In the early stages of application development lifecycle, it is necessary to analyze the impact of design choices
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and configuration parameters on the performance metrics. One of the design choices of the reactor pattern and the

VPN service is the buffer space to hold the incoming events of each type. This choice will have a direct impact on

all the performance metrics. Most importantly, from the employees’ perspective, the buffer space will influence

the probability of denying the service requests.

We analyze the impact of the buffer capacities on the performance measures. The values of the remaining

parameters (except for the buffer capacities) are reported in Table 3. We consider two values of buffer capacities

>B? and >"A . In the first case, the buffer capacity is set to U for both types of events, whereas in the second case the

buffer capacity of both types of events is set to £ . The performance metrics for both these cases are summarized

in Table 4. Because the values of the parameters of the service requests from organization #1 ( C ? , D ? and > ? )
are the same as the values of the parameters for the service requests from organization #2 ( C:A , D/A , and >"A ), the

throughputs, queue lengths, and the loss probabilities are the same for both types of service requests for each

one of the buffer capacities as indicated in Table 4. It can be observed that the loss probabilities are significantly

higher when the buffer capacity is U compared to the case when the buffer space is £ . Also, due to the higher loss

probability, the throughput is slightly lower when the buffer capacity is U than when the buffer capacity is £ .
Table 4 also summarizes the estimates of the performance measures obtained using simulation. As indicated in

the table, the estimates of the performance measures obtained using the model match with the estimates obtained

using simulation for both buffer capacities. Further, the average response times of the events obtained using

simulation lie between the upper and lower bounds obtained from the model.

Table 3. Parameter values
Event type Arrival rate Service rate

#1 C-? =
|)�¥¤|l|

/sec. Dd? = W ��|l|l| /sec.
#2 C A =

|)�¥¤|l|
/sec. D A = W ��|l|l| /sec.

In the early stages, it is rarely the case that the values of the input parameters can be estimated with certainty,

which makes it imperative to analyze the sensitivity of the performance metrics to the variations in the input

parameters. Sensitivity analysis will enable the provider to determine the regions of operation during which

service performance is acceptable. The SRN model can be easily used to assess the sensitivity of the performance

measures to the variations in the arrival and service rates. For the sake of illustration, we determine the variations

in the response times as a function of the arrival rates C^? and C#A . Towards this end, we vary the arrival rates of

the events from
|)�¥¤

/sec to U �§¦ /sec one at a time. The highest setting of the arrival rate was chosen to be U �§¦ /sec.
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Table 4. Impact of buffer capacity on performance measures
Performance measure Buffer space

>z? w U , >"A w U >z? w £ , >"A w £
SRN Simulation SRN Simulation

e�? |)�§¨©
/sec.

|)�§¨©
/sec.

|)�§¨lª
/sec.

|)�§¨lª
/sec.

e�A |)�§¨©
/sec.

|)�§¨©
/sec.

|)�§¨lª
/sec.

|)�§¨lª
/sec.

�"? |)��|« |)��|« |)� U�W |)� U�W /sec.
�jA |)��|« |)��|« |)� U�W |)� U�W /sec.
��? |)��|« |)��|« |)��|l|l| W ¤ |)��|l|l| W «
��A |)��|« |)��|« |)��|l|l| W ¤ |)��|l|l| W «
�V?s� � |)�§«l¨

sec.
|)�§«©

sec.
|)�¬©5ª

sec.
|)�§¦5|

sec.
�V?s� � |)�§«l¨

sec.
|)�§¦l¨

sec.
�XA�� � |)�§« £ sec.

|)�¬© W sec.
|)�§¦ W sec.

|)�§¦l«
sec.

� A�� � U � U | sec. U �§¨l¨ sec.

to ensure that the arrival rate of an event is always less than the corresponding service rate of the event. If there

is a possibility that the arrival rate exceeds the service rate, then a redesign to ensure higher service rate may be

necessary. For each setting of the arrival rate, we obtain the lower and the upper bounds of the response times

from the SRN model. We also obtain an estimate of the average response time using simulation.

Figure 4 show the upper and lower bounds of the response time as well as the expected response time for events

of type #1 and type #2 as a function of event arrival rate C^? . Referring to the left plot in the figure, it can be

observed that when the arrival rate C:? is low, the response time of the events of type #1 approaches the lower

bound. As the arrival rate increases, the response time approaches the upper bound. The right plot in Figure 4

indicates that the lower and the upper bounds of the response time of type #2 events are not very different from

each other for the entire range of variation of C:? . Also, the average response time obtained from the simulation are

within the two bounds. The response time (lower and upper bounds, average) of events of type #1 and type #2 as

a function of C�A follow the same trends and are not shown here due to space limitations. The plots also establish

that the average response time estimated using simulation always lies between the bounds of the response times

obtained from the model for the entire range of variation of C^? and C#A . The model can be used to obtain the lower

and the upper bounds of the response times with high confidence. This can facilitate an exploration of the design

space beyond what would otherwise be permitted using cumbersome and lengthy simulations.
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Figure 4. Response time as a function of C�?

4 Conclusions and future research

In this paper we presented a performance model of the Reactor pattern which offers the important synchronous

demultiplexing and dispatching capabilities in middleware. The model was based on the Stochastic Reward Net

(SRN) modeling paradigm. We illustrated how the performance model could be used to obtain an estimate of the

response time of a VPN service provided by a Virtual Router (VR). Our future research consists of empirically

validating the response time estimates obtained from the performance model. Developing and validating the

performance models of other middleware building blocks and the composition of these building blocks is also a

topic of future research.
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