Although Domain-Specific Modeling Languages (DSMLs) have been applied successfully to various areas (e.g., finance, combat simulation, and image manipulation) and have shown improvements to productivity and quality, development of a new DSML is challenging for either computer scientists or end-users because it requires profound knowledge of the domain and deep experience in modeling language development. To address the challenges of DSML development, we propose a new approach for building DSMLs that represents a demonstration-based technique for specifying the details of a new modeling language.

Challenges in DSML Development

• **Domain-Specific Modeling Languages (DSMLs)**
 ✓ Languages designed and implemented for specific domain requirements
 ✓ Support encapsulation and abstraction of a particular domain
 ✓ Provide notations tailored to the domain

• **Benefits of DSMLs**
 ✓ Provide rich expressiveness
 ✓ Minimize miscommunication
 ✓ Shorten learning curve to use the language
 ✓ Improve the quality

• **Barriers of DSML Development**
 ✓ Domain knowledge and language development expertise are required when developing DSMLs, but few experts have such expertise
 ✓ Lack of methods and guidelines to develop and manage quality DSMLs
 ✓ Developed by iterating over complex language development tasks

Goal of the Research

• Provide automated and systematic approach to domain experts who do not have language development expertise in developing their own DSMLs
 ✓ Capture concrete syntax of DSML automatically
 ✓ Infer abstract syntax (or metamodel) from concrete syntax and demonstrated model examples
 ✓ Associate semantics to abstract syntax

Current Status and Future Works

• **Development prototype of the approach**
 ✓ Development Environment: MS Visio SDK, Visual Basic Script, C++
 ✓ Implemented functionality
 • Identification of concrete syntax
 • Automatic creation of MS Visio template
 ➔ Correspond to abstract syntax inference
 • Identification and association of rules
 ➔ Correspond to static semantics inference

A Demonstration-Based Approach for Designing Domain-Specific Modeling Languages

Technical Challenges and Solutions

• **Support for free-form or sketch-level shapes**
 ✓ Preference of domain experts to work in more unconstrained environments (i.e., whiteboard and paper-based sketch)
 ✓ Advances in pen-based input devices
 ➔ **Shape recognition** ➔ Start with shape authoring tool and then embody free-form recognition functionality

• Capturing concrete syntax
 ✓ Concrete syntax represents the visual representation of a DSML
 ✓ Designed to avoid ambiguity and assist readability by domain experts
 ➔ **Apply By-Demonstration technique**
 • Similar to Program-By-Example or Query-By-Example
 • Hook domain expert’s actions when they demonstrate (or model) domain
 ➔ **Maintaining the optimized user action sequences without violating user’s concerns** ➔ Design user action sequence management algorithm

• **Inferring abstract syntax**
 ✓ Special case of inductive learning
 ➔ Infer abstract syntax from a small number of model instance ➔ Introduce the notion of metamodel design pattern and devise new inference algorithm to utilize metamodel design pattern instead of a large set of training model instances

• **Inferring semantics**
 ✓ Most challenging research area and under investigation

• **Development plan for the general framework**
 ✓ Phase 1: Preprocessor Development
 • Implement generic By-Demonstration functionality using Plug-in technology
 • Devise efficient algorithm to maintain the optimized user action sequences
 ✓ Phase 2: Abstract Syntax Inference Engine Development
 • Using metamodel design pattern and Graph theory
 • Measure the success in terms of accuracy and performance
 ✓ Phase 3: Semantics Inference Engine Development
 • Currently under development