
Centralizing Clone Group Representation and Maintenance
Robert Tairas  tairasr@cis.uab.edu  http://www.cis.uab.edu/tairasr/

VariableDeclarationStatement

SimpleType VariableDeclarationFragment

SimpleName SimpleName InfixExpression

StringLiteral MethodInvocation

SimpleName SimpleName

VariableDeclarationStatement

SimpleType VariableDeclarationFragment

SimpleName SimpleName InfixExpression

StringLiteral MethodInvocation

SimpleName SimpleName

VariableDeclarationStatement

SimpleType VariableDeclarationFragment

SimpleName SimpleName InfixExpression

StringLiteral MethodInvocation

SimpleName SimpleName

VariableDeclarationStatement

SimpleType VariableDeclarationFragment

SimpleName SimpleName InfixExpression

StringLiteral MethodInvocation

SimpleName SimpleName

SimpleName

• Four clones detected in Apache-Ant version 1.6.5.
• Clones differ in string values and variable names (i.e., parameterized clones).

Sample Clone Group

if (!delete(file)) {
String message = "Unable to delete file "

+ file.getAbsolutePath();
if (failonerror) {

throw new BuildException(message);
} else {

log(message, quiet ? Project.MSG_VERBOSE
: Project.MSG_WARN);

}
}

if (!delete(f)) {
String message = "Unable to delete file "

+ f.getAbsolutePath();
if (failonerror) {

throw new BuildException(message);
} else {

log(message, quiet ? Project.MSG_VERBOSE
: Project.MSG_WARN);

}
}

if (!delete(f)) {
String message = "Unable to delete file "

+ f.getAbsolutePath();
if (failonerror) {

throw new BuildException(message);
} else {

log(message, quiet ? Project.MSG_VERBOSE
: Project.MSG_WARN);

}
}

if (!delete(dir)) {
String message = "Unable to delete directory "

+ dir.getAbsolutePath();
if (failonerror) {

throw new BuildException(message);
} else {

log(message, quiet ? Project.MSG_VERBOSE
: Project.MSG_WARN);

}
}Clone 1 Clone 2 Clone 3 Clone 4

Clone 2
f

Clone 1
file

Clone 4
dir

Clone 3
f

StringLiteral

Clone 4
"Unable to delete directory "

Clone 1
"Unable to delete file "

In this example, elements in
the default clone (Clone 1)
are mapped pairwise to
corresponding elements in
the other clones.

• Detection is performed on a clone group selected by
the user.

• AST nodes of one “default” clone are compared with
the AST nodes of the remaining clones in the group.

• Differing nodes between the default clone and
compared clone are stored as pair-wise relationships.

Detecting
Parameterized

Elements

• The detected parameterized elements
serve as input to the display of the
differences among the clones.

• Parameterized elements are
highlighted and alternative values are
displayed when moused over.

Clone Group
Representation

• Clone information of a selected clone group is passed to the
refactoring engine through CeDAR.

• The IDE’s internal detection of renamed variables is replaced
by the results from a clone detection tool.

Clone Group
Maintenance

Parameterized elements highlighted

Hovering over variable file Hovering over string “Unable to delete file ”

• CeDAR can parse reports from several clone
detection tools.

• General clone information from these tools forms the
input of the plug-in (i.e., clone location and clone
groupings).

CeDAR
Plug-in

Eclipse plug-in view

CloneDR Deckard SimScan

Clone detection tools

• IDE’s such as Eclipse provide mechanisms
to perform refactoring, but support for
refactoring all clones at once is still limited.

• This motivates the need to extend the
refactoring capabilities where clones are
maintained together in a centralized process.

Motivation

• This poster introduces an Eclipse plug-in
called CeDAR (Clone Detection, Analysis,
and Refactoring) to demonstrate the benefits
of centralizing clone groups for
representation and maintenance.

Poster 
Overview

• Clone representation is centralized in one location, which allows the programmer to learn about
the clones without the need to open every occurrence of the clone in the file or class system.

• As it relates to removing the duplication, the representation can provide a quick summary of the
complexity of the parts of the clones that differ.

Contribution

• Can detect nodes of the same type, but with different
properties (e.g., variable name or string difference).

• Can detect uses of simple and complex identifiers
(e.g., one clone uses a simple variable, another clone
uses a method call).

• Clones containing differences in statements are
currently not supported, which will require more
complex refactoring techniques.

Current
Capabilities

Source file

Source file

Source file

Clone
Detection

Tool

Clone 3

Clone 2

Clone 1

Clone 4

Clone 
Group

• After clone detection, a programmer must
observe each clone, which can be scattered
in multiple files.

• This motivates the need to provide a
centralized representation of the clones that
displays the properties of each clone and the
relationships among them.

Clone
Detection

Tool

Clone 
Group

Refactoring
Engine

Manual /

Individualized
Process

Clone
Detection

Tool

Clone 
Group

Refactoring
Engine

CeDAR
Plug-in

SimpleName

Clone 2
f

Clone 1
file

Clone 4
dir

Clone 3
f

The AST nodes
representing the
clones are passed to
identify the sections of
code for refactoring.

The detected parameterized
elements are utilized to
determine, for example in
Extract Method, what to pass
to the newly created method.

Clones replaced by calls to new method New extracted method

• By connecting the results of clone detection tools and
extending the refactoring capabilities of Eclipse, maintenance
on a group of clones can be done simultaneously in a
centralized way.

Contribution

Software Composition and Modeling Laboratory
Department of Computer and Information Sciences

University of Alabama at Birmingham

This material is based upon work 
supported by the National Science 
Foundation under Grant No. 0702764.


	Slide Number 1

