
Application
Engineering

http://www.cis.uab.edu/liush

A Software Product Line Architecture for
Distributed Real-time and Embedded Systems:

A Separation of Concerns Approach

A Software Product Line Architecture for A Software Product Line Architecture for
Distributed RealDistributed Real--time and Embedded Systems: time and Embedded Systems:

A Separation of Concerns ApproachA Separation of Concerns Approach
Rajeev R. Raje, Mihran Tuceryan, Andrew M. Olson

Indiana University-Purdue University Indianapolis
{rraje, tuceryan, aolson}@cs.iupui.edu

Shih-Hsi “Alex” Liu, Barrett R. Bryant, Jeff Gray
University of Alabama at Birmingham

{liush, bryant, gray}@cis.uab.edu

Mikhail Auguston
Naval Postgraduate School

maugusto@nps.navy.mil

Project ObjectiveProject Objective

This project presents a novel software product line architecture for component-based
Distributed Real-time and Embedded (DRE) systems. The project concentrates on the phases
of domain engineering and application engineering to achieve the following objectives:

Every member of a software product line satisfies its functional and QoS requirements
synergistically

Every member possesses an architectural design

All members of a software product line share a number of common features. Members
possessing various margins of QoS satisfaction are differentiated by variable features

DRE components The project Requirements
Validation

A DRE software
product line

Key ChallengesKey Challenges

Challenge 1: QoS sensitive
DRE systems are sensitive to the availability of system resources, which directly or indirectly
affect the QoS properties of the system. The magnitudes of such properties influence the
feasibility and performance of a DRE system. More precise and less subjective QoS
property measurements are required

Challenge 2: Component Composition
Evaluation after composition: As hundreds of QoS properties require satisfaction, it is difficult
for the QoS tuning approach to balance and obtain the optimal solution after system composition.
In addition, effort is wasted on many infeasible design alternatives after composition
Evaluation during composition: Composition perspective changes between components and
QoS properties (i.e., functional and nonfunctional requirements) are tedious and error prone

Challenge 3: Abundant alternatives
Abundant design alternatives generated from the combination and permutation of selected
components are infeasible in terms of functional and nonfunctional requirements

Challenge 4: Costly DRE systems
Many DRE systems are costly and hard to modify. A software product line, which consists of
a set of software products sharing common features, will solve the problem

Key ContributionsKey Contributions

The DRE software product line
constructed by the project possesses
three major contributions:

The advantages of applying
component based software
engineering and software product
lines are preserved

The infeasible design alternatives
are pruned off, which reduces the
extra workload stated

Each member satisfies its
functional and nonfunctional
requirements at requirements and
design workflows

Productivity

C
ha

ng
ea

bi
lit

y

Reusability

Expeditiousness

Elimination Satisfaction
Key

Contributions
on a

DRE software
product line

BackgroundBackground

Two-Level Grammar++ (TLG++)

An object-oriented formal specification language which consists of two
Context Free Grammars (CFGs)

The first CFG defines a set of parameters

The second CFG defines a set of function definitions

TLG++ has been applied to define programming languages

The first CFG defines syntax by production rules
The second CFG defines semantics of the production rules

An example

query :: Boolean.
Syntax :: Sensor Comm1 Comp Comm2 Present.
semantics of QoSSum :

query := semantics of queryComponent with Sensor, Comm1, Comp,
Comm2, and Present;

if query then semantics of sum with Sensor, Comm1, Comp, Comm2,
and Present;

Timed Colored Petri Nets (TCPNs)

A formalism beneficial in modeling concurrent and asynchronous systems

t2AA

C0 C1 C2 C3

C4 C5 C6 C7

t1 BB CC

A Petri Net Graph

AA

t1

Transition: determine what,
when and how QoS parameters
are to be processed with
associated predicates and
functions for time, priorities, and
event triggers

Arc: control the flowing
direction of QoS parameters

QoS parameter: consists of
identity, type and range

Event: triggers transition

Time: transition is triggered at
a specific time

Place: represents a component
in a DRE system

Quality of Service (QoS)

Functional Path: flows of application-specific and functionality-
determined information between components*
QoS Systemic Path: determines how well a functional path behaves
in terms of a specific QoS property*

QoS Classification

Static: parameters are design-related
Dynamic: parameters are influenced by the deployment environment
Strict: parameters must satisfy requirements
Non-strict: parameters allow margins of error when meeting
requirements
Orthogonal: two parameters have no mutual effects regarding a
specific resource
Non-orthogonal: two parameters have mutual influence regarding
a specific resource

* N. Wang et al., “QoS-enabled Middleware,” in Middleware for Communications, Wiley
and Sons, 2003.

The Separation of Concerns ApproachThe Separation of Concerns Approach

Domain Engineering
TLG++ syntactically and semantically expresses QoS systemic paths

The first CFG utilizes Extended Backus-Naur Form (EBNF) to define
the components and direction of a QoS systemic path

EBNF represents mandatory, alternative, optional, and OR features

Symbol tables are utilized for analyzing the commonality and variability
of QoS systemic path families

The second CFG defines component dependencies, composition
rules, and QoS satisfaction formula

Component dependencies: the relationships between components in
terms of function-determined and application-specific tasks

Composition rules: verify interface consistency between components and
pre- and post-conditions of composition by inferences

QoS satisfaction formula: quantitatively estimate the satisfaction of the
QoS property of a QoS systemic path

TLG++, as an Architecture Description Language (ADL), describes
the reference architecture

Application Engineering
QoS-UniFrame: utilizes the Generic Modeling Environment (GME), a
metaconfigurable modeling tool for expressing TCPNs

Objective: simulates the flows of the QoS systemic
paths using time, event and/or priorities of TCPNs

Depict state and behavior views of a software system

TCPNs: represents a set of software systems by
collections of QoS systemic paths

Reachability tree: explores design alternatives
based on different design decisions and permutations

QoS requirements: eliminate infeasible and less
probable alternatives on the reachability tree by the
evaluation of QoS requirements (i.e., the utility
functions the corresponding constraints)

Consequence: a set of software products that share
common features and possess different satisfaction
of QoS properties

TCPN
model

in GME

The TCPN
reachability
tree traced
by the GME
interpreter

A DRE
software
product

line

An Overview

Select DRE
components by
functional and
nonfunctional

requirements (not
the core procedure

in the poster)

Analyze the
commonality,
variability, and

satisfaction of QoS
systemic path
families by the

grammatical QoS-
driven approach

Construct a set
of software

products that
share common

features by
QoS-UniFrame,
a Colored Petri

Net- based
modeling
approach

Domain
Engineering

Component
Selection

The Jess Rule
Engine and

Knowledge Base

The Jess Rule Engine and
Knowledge Base consists of facts,

queries and rules for inferring
component composition

Stores the functional
and nonfunctional

requirements of each
existing component,

component
dependencies, and
composition rules

A Case Study: The Battlefield Training SystemA Case Study: The Battlefield Training System

Mobile Augmented Reality Systems
A DRE system concentrating on enriching the user environment by
merging real and virtual objects

Six subsystems:
Computation: performs specific functionalities for the application
Presentation: exhibits virtual multimedia objects
Tracking and registration: tracks user’s position and orientation and

registers virtual objects
Environment model: store the geometrical and detailed hierarchical

3D information
Interaction: a user friendly interface for input and output
Wireless communication: provides mobile communications

Examples:
A battlefield training system (shown at right)

Battlefield Training System
The Battlefield Training System (BTS) assists in training
soldiers in different scenarios, strategies, and battlefields

The BTS consists of:
Real objects: buildings and obstacles in the battlefield
Virtual objects: enemies and a hostage displayed on a
Head Mounted Display (HMD)
Sensors/Trackers: fetch the position and orientation of the
soldiers
Scenario: rescue the hostage from the enemies

The advantages of BTS
Adaptable scenarios: trains soldier to react and respond
properly in different scenarios
Less cost: simulates highly cost battlefield devices (e.g.,
tanks and aircrafts)
Less wounded: reduces the possibilities that soldiers being

wounded in the real battlefield

GPS

Interaction

BattlefieldStore
Environment

Data

Wireless
Device

Computation Environmental
Model

Trackers
Soldier

HMD

Rifle Hand
Tracker

GPS
PDA

Assign
Strategies War Strategist

Application
Engineering

