Grammar-Driven Generation of N—

i- 'lfmﬂlim Fabpratory

Domain-Specific Language Testing Tools $¢E¥ Com

& Uriversity of Alabama at Birmingham

Departmant of Computer & Information Sciences - rofe

This research is supported Hui Wu, Jeff Gray Marjan Mernik
by an IBM Eclipse
Innovation Grant (EIG). University of Alabama at Birmingham University of Maribor, Slovenia http://www.cis.uab.edu/wuh/DDF
{wuh, gray}@cis.uab.edu marjan.mernik@uni-mb.si
Categories of End-User Programmers Problem Statements Research Motivation Research Goal Approaches and Methods used in This Research
1. Computer errors cost economy billions of dollars each year: p——
$60 billion per year in US [7] m Imperative DSLU—; ‘ Dedlarative DSLU—; ‘ Hybrid DSL U
Al Debugger bugger Debugger
=== Spreadsheet 2. End-user developers (e.g., scientist, accountant, and

Admin
Assistants

L
Domain Experts program

statistician) are increasing in number: 11 to 55 million End- at DSL level -
user programmers compared to 2.75 million professional \isualizey

Plug-In Based
Software
Development

Domain Experts

Hybrid DSL
Debugg deal with GPL Unit Test Engmeﬂ
Manual construction of the testing tools for each new DSL

i Pro |Ier ‘
can be time-consuming, expensive, and problematic. D::rg::es\f:.;‘una‘;i?:g\ Tesl Engine \mperative DSL | | wem | Declarative DSL ‘ Hybrid DSL H — == Design Patterns
. The mismatch of abstraction levels between DSL and GPL Profiler Profiler Profiler — -
Domain Experts

Declarative DSL U

Imperative DSL
Unit Test Engmeﬂ Unit Test Engine

programmers in US [6]

Business
Query Systems

w

Businessman

Modeling) Integrated Development / |
Am‘; Fakcmry \ == |anguage forces the end-user to understand the translated code in the Environment (IDE) ‘deal with DSL Future Work = Automated = |
orkel L ‘
' GPL, rather than the higher-level description contained in the . » . So_ftwar_e pointcut count_gpllinenumber():

- DSL [1]; e.g., debugging code from a parser generator. Although \9chnlques for constructing language tools (e.g., editor oy Procuc) E— Engineering vas

TrIGED and compiler) have been developed over the years, support for y Produ Model-View-Controller et (o prinCimetime+ 17):
G —_— for Physics — 5. The dangers of end-user programming [3]: End-users often qebug_gers and test engines for DSLs have not been Adapter Pattern tler(: count gplinenomber)

lack knowledge of software development principles; nvestigated deeply. The research goal is to investigate a generalized method that » {gplbeginline=fileio getLinenumber();
Inadequate testing and debugging processes; No testing The most popular technique for implementing a DSL is to will enable construction of a matrix of DSL inspection tools as gplendline=fileio getLinenumber();}

tools support for end-users (especially for DSL users) translate the DSL into a GPL [5]. a type of software factory [2]. AspectG

Architecture Overview of DSL Debugger Framework and Debugger Generation Processes Mapping and Knowledge Base Methods AspectG Pointcut Model Weaving Aspects into DSL Grammars

1 s Code M . AspectG ANTLR Grammar

1. A DSL grammar is specified in ANTLR notation ebeh et 00 MepPInG 2t - Source Code Mapping: pontesproguctornst' < || commana Debugging Aspect Specification
and the lexer and parser is generated by ANTLR + One line of DSL code maps to a segment of [. .- - [(RIGHT In AspectG
(step 1) generated GPL codes. e Conn e S e

match (flfo.printC time=time+ leio print(x-x 11)
[fileio.print("time=time+1;"); DsL

2. The generated Lexer and Parser takes the Robot 2. Data Structure Mapping: before(): productions() apbegine ESEl Sl Grammar
DSL as input (step 2). ') \\ et : i (new Map(P —

. * One Data structure in DSL maps to different Data eI AN e e \ l

3. ANTLR not only translates the Robot DSL into y Structures in GPL P! Con Tars i) T SR e W ode
the corresponding Robotjava, but also by ANTLR atter(): productions) \ LEFr ‘ ‘
generates the Mapping.java file (step 3). bot DSL Grammar In ANTLR Notation 3. Testing and Debugging Methods Mapping Knowledge e et prini: Tmaes it

. . . i gplendlines):"): } fileio print(” x=x-1") . Le)

4. The mapping component interacts and bridges) Base aplendines o B tmesimer1) L G —»M-’ . Debugging
the differences between the Eclipse debugger o °E + One unit test case in DSL maps to several unit test e o el e e 0 e Mapping
platform and the command line java debugger e cases in GPL (Unit Test Mapping Algorithm) m oo e en) Nemapprit® magpiogadoey MoCe T &

(step 4). - atif one line changes sinenimber Vot ovar - “gpbeanines 4 s
h gt . d Component ¢=> « One debugging command maps to a series of GPL — 3 L . . .

5. There are two round-trip mappings and message = debugging commands (Debugging Mapping) The key _conmbutlon of_t_hls_approach is the lran_sfor_matlon of_the
passing processes involved (step 5 and step 6) 5 Algorithms) ApsectG is an aspect language for grammar grammar itself. The specification of the debug mapping is modularized
between the Robot DSL debugging perspective . . v S Cormnd Los Deososy specification. The ApsectG pointcut model can specify a in a single place — the DMS transformation function. The approach
[8] in Eclipse and jdb. Roet e el erraciie |t st 4. Output messages map back to the DSL level through the pointcut at the syntax level (e.g., production) and also at has the side benefit of language independence. It does not matter

wrapper interface the semantic level (e.g., count_gpllinenumber) which GPL serves as the generated target language [9].
Expected Contributions Research Results: Generating DSL Unit Test Engine Research Results: Generating DSL debuggers Research Summary
. . . - 5 Evaluatlun Various experimental validation efforts are y to test this

1 P"OVlde' a DSL language tool generation f'_‘amewo_rk that _W|" ility, and reliability. In order to provide such assessment, DSLs obtained
synthesize tools (e.g., debugger and unit testing engine) from |ndustry and research collaborators will drive the evaluation. The ability of the generated
automatically from DSL grammar specifications. For different DSLs, debugger and test engine to detect errors in the DSL is also an assessment criterion. Complex
the modification of certain components of the framework may be grammars will serve as test cases to determine the benefits of grammar weaving.
considered necessary, but the architecture and mapping algorithms Future Work: A future work will also investigate the concept of profiling, as applied to DSLs,
of the framework are generic. using a framework similar to DDF and DUTF.

2. A new technique for building a set of language tools for DSLs, ey Refieteness:

" . . " o 1] R.E.Faith, Debugging Programs Afer Structure-Changing Transformation,” Doctoral Dissertation, Department of Computer Science,
especially for debuggers and testing engines. Reusing the existing University of North Carolina at Chapel Hill, 1998.
GPL language tools and adapting the interfaces of the new IDE will [2] 3. Greenfield and K. Short, Software Factories: Assembiing Applications with Patterns, Models, Frameworks, and Tools, Wiley Publishing,
become a future trend of tool generation. The questions to be LRI IR .

4] el TR s A meedn) (6] Cor e uEsD (e | [3] W. Harrison, “The Dangers of End-User Programming,” IEEE Software, vol. 21, no. 4, pp. 5-7, July/August 2005.
ENSLEIS 5 o > - g g 9 e . [4] P. Kiint, R. Lammel, and C. Veerhoef, “Towards an Engineering Discipline for Grammarware,” ACM Trans. on Software Engineering and
tool?”; “What is the minimum information about a DSL that is needed] o, Methodology. vol. 14, no. 3, pp. 331-380, July 2005,
to generate a language tool from the DSL grammar?" Imperative DSL Unit Test Engine Imperative DSL Unit Test Engine =~ O Fea it DerTiiar o e (51 B Heerna: A M Sloane, hen and o o Deveip D Spectc Larguages” CH eyl Rort SEN-E030%
el N 3 . for Robot Language for Robot Language ; 6] C. Scaffidi, M. Shaw, and B, Myers. E: BT o In Proceedings of the IEEE

3. Application of the Fecmlque for better separation of concerns in All four test cases passed Two test cased failed (testleft and testup) Im;:g:aélt\)lsoli)i:"DE:jbaugeger “ Sym:ism‘.‘nunv\::;\aLanguagy:srsanasa'f:z?c‘ei‘xrgoﬁ:u:; S‘;;ﬁar"lepﬁ;gg%'gg mers:n Proceedngs of the
Grammarware, which comprises grammars and all grammar- guag [7] G. Tassey and RTI, “The Economic Impacts of Inadequate Infrastructure for Software Testing,” Final Report, available at
dependent SOftWaI'e (e g |e><el' parser) [4] www.nist.gov/director/prog-ofc/report02-3.pdf, May 2002.

o ' [8] D.Wright and B. Freeman-Benson, "How to Write an Eclipse Debugger,” Eclipse Comer, Fall 2004,
[9] H.Wu, J. Gray, S. Roychoudhury, and M. Mernik, “Weaving a Debugging Aspect into Domain-Specific Language Grammars,” ACM
Symposium for Applied Computing (SAC) — PSC Track, Santa Fe, NM, pp. 1370-1374, March 2005.

