
The goal of this research is to build a DSL tool generation framework to automatically generate the testing tools from DSL grammars, which assist in debugging, testing, and profiling a program written in a DSL for end-users.

http://http://www.cis.uab.edu/wuh/DDFwww.cis.uab.edu/wuh/DDF

Architecture Overview of DSL Debugger Framework and Debugger Generation ProcessesArchitecture Overview of DSL Debugger Framework and Debugger Generation Processes

Research MotivationResearch Motivation

1. A DSL grammar is specified in ANTLR notation
and the lexer and parser is generated by ANTLR
(step 1)

2. The generated Lexer and Parser takes the Robot
DSL as input (step 2).

3. ANTLR not only translates the Robot DSL into
the corresponding Robot.java, but also
generates the Mapping.java file (step 3).

4. The mapping component interacts and bridges
the differences between the Eclipse debugger
platform and the command line java debugger
(step 4).

5. There are two round-trip mappings and message
passing processes involved (step 5 and step 6)
between the Robot DSL debugging perspective
[8] in Eclipse and jdb.

Key References:
[1] R. E. Faith, “Debugging Programs After Structure-Changing Transformation,” Doctoral Dissertation, Department of Computer Science,

University of North Carolina at Chapel Hill, 1998.

[2] J. Greenfield and K. Short, Software Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools, Wiley Publishing,
Inc, Indianapolis, IN, 2004.

[3] W. Harrison, “The Dangers of End-User Programming,” IEEE Software, vol. 21, no. 4, pp. 5-7, July/August 2005.

[4] P. Klint, R. Lammel, and C. Verhoef, “Towards an Engineering Discipline for Grammarware,” ACM Trans. on Software Engineering and
Methodology, vol. 14, no. 3, pp. 331-380, July 2005.

[5] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop Domain-Specific Languages,” CWI Technical Report, SEN-E0309,
2003.

[6] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers of end users and end user programmers. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing, Dallas, TX, September 2005.

[7] G. Tassey and RTI, “The Economic Impacts of Inadequate Infrastructure for Software Testing,” Final Report, available at
www.nist.gov/director/prog-ofc/report02-3.pdf, May 2002.

[8] D. Wright and B. Freeman-Benson, “How to Write an Eclipse Debugger,” Eclipse Corner, Fall 2004,

[9] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik, “Weaving a Debugging Aspect into Domain-Specific Language Grammars,” ACM
Symposium for Applied Computing (SAC) – PSC Track, Santa Fe, NM, pp. 1370-1374, March 2005.

1. Computer errors cost economy billions of dollars each year:
$60 billion per year in US [7]

2. End-user developers (e.g., scientist, accountant, and
statistician) are increasing in number: 11 to 55 million End-
user programmers compared to 2.75 million professional
programmers in US [6]

3. Manual construction of the testing tools for each new DSL
can be time-consuming, expensive, and problematic.

4. The mismatch of abstraction levels between DSL and GPL
forces the end-user to understand the translated code in the
GPL, rather than the higher-level description contained in the
DSL [1]; e.g., debugging code from a parser generator.

5. The dangers of end-user programming [3]: End-users often
lack knowledge of software development principles;
Inadequate testing and debugging processes; No testing
tools support for end-users (especially for DSL users)

The key contribution of this approach is the transformation of the
grammar itself. The specification of the debug mapping is modularized
in a single place – the DMS transformation function. The approach
has the side benefit of language independence. It does not matter
which GPL serves as the generated target language [9].

Research GoalResearch GoalProblem StatementsProblem Statements Approaches and Methods used in This ResearchApproaches and Methods used in This Research

AspectG Pointcut ModelAspectG Pointcut Model

Grammar-Driven Generation of
Domain-Specific Language Testing Tools

Marjan Mernik
University of Maribor, Slovenia

marjan.mernik@uni-mb.si

Hui Wu, Jeff Gray
University of Alabama at Birmingham

{wuh, gray}@cis.uab.edu

Admin
Assistants

Businessman

Auto Factory
Worker

Scientist

Spreadsheet

Business
Query Systems

Modeling
Language

Textual DSL
for Physics

Categories of End-User ProgrammersCategories of End-User Programmers

Domain Experts program
at DSL level

DSL translated into General
Purpose Language (GPL)

Domain Experts
deal with DSL

Integrated Development
Environment (IDE)

subselect me
begin
 left
 right
 up
 down
end

Translater

subselect me
public class Robot{
 public static void
main(String[] args) {
 Robot robot =new Robot(0,0,0);
 //move left
 robot.move_left();
 //move down
 robot.move_down();robot.x = 5;
 robot.y = 6;

EditorEditor

CompilerCompiler

VisualizerVisualizer

DebuggerDebugger
Domain Experts
deal with GPL

Test EngineTest Engine

ProfilerProfiler

Plug-In Based
Software

Development

Syntax-Directed
Translation

Weaving Aspects
into

DSL Grammars

Design Patterns

Automated
Software

Engineering

Eclipse

Model-View-Controller
Adapter Pattern

AspectG

ANTLR

pointcut count_gpllinenumber():

within(command.*) &&

match (fileio.print("time=time+1;"));

after(): count_gpllinenumber()

{gplbeginline=fileio.getLinenumber();

gplendline=fileio.getLinenumber();}

Mapping and Knowledge Base MethodsMapping and Knowledge Base Methods

DSL
Grammar

ANTLR

Parlanse Functions

Parser’

Lexer’

With Debugging
Aspects Weaved in

DSL Code

Debugging
Mapping

Code

GPL

In Java

DMSDMS

DSL Grammar’
With Debugging

Aspect Weaved In

Debugging Aspect Specification
In AspectG

pointcut productions():
within(command.*);

pointcut count_gpllinenumber():
within(command.*) &&
match (fileio.print("time=time+1;"));

before(): productions()
{ dsllinenumber=dsllinenumber+1;}

after(): count_gpllinenumber()
{gplbeginline=fileio.getLinenumber();
gplendline=fileio.getLinenumber();}

after(): productions()
{filemap.print(" mapping.add(new Map("+
dsllinenumber+", \"Robot.java\","+gplbeginline+
","+gplendline+"));"); }

…
command
:(RIGHT

{dsllinenumber=dsllinenumber+1;
fileio.print("//move right");
fileio.print("x=x+1;");
fileio.print("time=time+1;");
gplbeginline=fileio.getLinenumber();
gplendline=fileio.getLinenumber();
fileio.print(" ");
filemap.print(" mapping.add(new Map("+

dsllinenumber+", \"Robot.java\","+gplbeginline+
","+gplendline+"));");
}
|LEFT
{dsllinenumber=dsllinenumber+1;
fileio.print(" //move left");
fileio.print(" x=x-1;");
fileio.print(" time=time+1;");
gplbeginline=fileio.getLinenumber();
gplendline=fileio.getLinenumber()
fileio.print(" ");
filemap.print(" mapping.add(new Map("+
dsllinenumber+", \"Robot.java\","+gplbeginline+

","+gplendline+"));");
}

…

ANTLR GrammarAspectG

Weaving Aspects into DSL GrammarsWeaving Aspects into DSL Grammars

Expected ContributionsExpected Contributions Research SummaryResearch SummaryResearch Results: Generating DSL debuggersResearch Results: Generating DSL debuggersResearch Results: Generating DSL Unit Test EngineResearch Results: Generating DSL Unit Test Engine

1. Provide a DSL language tool generation framework that will
synthesize tools (e.g., debugger and unit testing engine)
automatically from DSL grammar specifications. For different DSLs,
the modification of certain components of the framework may be
considered necessary, but the architecture and mapping algorithms
of the framework are generic.

2. A new technique for building a set of language tools for DSLs,
especially for debuggers and testing engines. Reusing the existing
GPL language tools and adapting the interfaces of the new IDE will
become a future trend of tool generation. The questions to be
answered are: “What features are needed for each language testing
tool?”; “What is the minimum information about a DSL that is needed
to generate a language tool from the DSL grammar?”

3. Application of the technique for better separation of concerns in
Grammarware, which comprises grammars and all grammar-
dependent software (e.g., lexer, parser) [4]

ApsectG is an aspect language for grammar
specification. The ApsectG pointcut model can specify a
pointcut at the syntax level (e.g., production) and also at
the semantic level (e.g., count_gpllinenumber)

Imperative DSL Debugger
for Robot Language

Declarative DSL Debugger
for Car Feature Definition Language Imperative DSL Unit Test Engine

for Robot Language
All four test cases passed

Imperative DSL Unit Test Engine
for Robot Language

Two test cased failed (testleft and testup)

Evaluation: Various experimental validation efforts are underway to test this framework’s
applicability, scalability, and reliability. In order to provide such assessment, DSLs obtained
from industry and research collaborators will drive the evaluation. The ability of the generated
debugger and test engine to detect errors in the DSL is also an assessment criterion. Complex
grammars will serve as test cases to determine the benefits of grammar weaving.

Future Work: A future work will also investigate the concept of profiling, as applied to DSLs,
using a framework similar to DDF and DUTF.

This research is supported
by an IBM Eclipse

Innovation Grant (EIG).

1. Source Code Mapping:

• One line of DSL code maps to a segment of
generated GPL codes.

2. Data Structure Mapping:

• One Data structure in DSL maps to different Data
Structures in GPL

3. Testing and Debugging Methods Mapping Knowledge
Base

• One unit test case in DSL maps to several unit test
cases in GPL (Unit Test Mapping Algorithm)

• One debugging command maps to a series of GPL
debugging commands (Debugging Mapping
Algorithms)

4. Output messages map back to the DSL level through the
wrapper interface

Although techniques for constructing language tools (e.g., editor
and compiler) have been developed over the years, support for
debuggers and test engines for DSLs have not been
investigated deeply.

The most popular technique for implementing a DSL is to
translate the DSL into a GPL [5].

The research goal is to investigate a generalized method that
will enable construction of a matrix of DSL inspection tools as
a type of software factory [2].

What if one line changes ?

