
CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embedded Component Middleware and Applications

Douglas C. Schmidt Aniruddha Gokhale, Balachandran Natarajan
Sandeep Neema, Ted Bapty, Jeff Parsons

schmidt@uci.edu {gokhale, bala, neemask, bapty, parsons}
@isis-server.vuse.vanderbilt.edu

Dept. of Electrical Institute for Software Integrated Systems

and Computer Engineering

University of California Vanderbilt University

616E Engineering Tower Box 1829, Station B

Irvine, CA 92697, USA Nashville, TN 37203, USA

Jeff Gray Andrey Nechypurenko Nanbor Wang
gray@cis.uab.edu andrey.nechypurenko@siemens.com nanbor@cse.wustl.edu

Dept. of Computer and Siemens AG, CT SE2 Dept. of Computer Science

Information Sciences and Engineering

115A Campbell Hall Campus Box 1045

1300 University Blvd Otto-Hahn-Ring 6 One Brookings Drive

Univ of Alabama at Birmingham Washington University

Birmingham, AL 35294, USA Munich, 81739, Germany St. Louis, MO 63130, USA

Abstract

This paper presents three contributions to the challenges of ap-
plying the OMG Model Driven Architecture (MDA) to develop
and deploy distributed real-time and embedded (DRE) appli-
cations. First, we motivate our MDA tool called CoSMIC,
which is based on the Model Integrated Computing (MIC)
paradigm that provides the intellectual foundation for MDA.
Second, we describe how CoSMIC’s generative abilities can
be used to configure and assemble DRE component middle-
ware required to deploy DRE applications. Third, we delin-
eate the challenges involved in developing CoSMIC. Based on
our collective experience developing MIC tools and DRE mid-
dleware, we are confident that combining these two paradigms
will yield significant advantages in developing model based
DRE applications.

1 Introduction

Well over 95 percent of all microprocessors are now used
for real-time and embedded systems. These systems are in-
creasingly being networked together to form distributed real-
time and embedded (DRE) systems. Many DRE systems are
both mission-critical and constrained by the physical world.

We therefore need principled methods for specifying, pro-
gramming, composing, integrating, and validating software
for these systems that can enforce the physical constraints,
as well as satisfy stringent quality of service (QoS) and func-
tional requirements.

Due to constraints on weight, power consumption, memory
footprint, and performance, development techniques for DRE
application software have lagged those used for mainstream
desktop and enterprise software. In particular, DRE applica-
tions have historically been manually programmed and cus-
tomized from scratch to implement their required QoS proper-
ties, making them expensive to build and maintain. Moreover,
they are often so specialized that they cannot adapt readily to
meet new functional or QoS requirements, hardware/software
technology innovations, or market opportunities.

To address the problems with manually developing and cus-
tomizing DRE systems from scratch, there is growing interest
in composing these types of systems using commercial off-
the-shelf (COTS) hardware (such as COTS DSPs and CPUs)
and software (such as real-time operating systems and QoS-
enabled component middleware services). One of the key
challenges in using COTS software in DRE systems is deter-
mining, assembling, and deploying a right mix of QoS-enabled
COTS middleware components that can satisfy the stringent

1



QoS requirements of DRE systems.Ad hoctechniques, such
as manually choosing the right mix of middleware compo-
nents, do not scale well as the application size and require-
ments increase. Moreover,ad hoc techniques are often te-
dious, error-prone, and lack a solid verification and validation
foundation.

To address these problems, we require tools that allow de-
velopers to specify application requirements at higher lev-
els of abstraction than that provided by lower-level mech-
anisms, such as conventional general-purpose programming
languages. These tools must be able to analyze the require-
ments and generate the required directives that will compose
applications from the right set of COTS middleware compo-
nents. A promising example of such tools are those based on
Model-Integrated Computing(MIC) [1].

Model-Integrated Computing (MIC) is a development
paradigm that applies domain-specific modeling languages
systematically to engineer DRE computing systems. Pop-
ular examples of MIC toolsuites in use today include the
Generic Modeling Environment (GME) [2] and Ptolemy [3].
These toolsuites provide rich, domain-specific modeling envi-
ronments, including model analysis and model-based program
synthesis tools. Work on MIC in the DARPA Model-based In-
tegration of Embedded Systems (MoBIES) program [4] also
provides the intellectual foundations of the OMG’s MDA ap-
proach for DRE systems.

In the MIC paradigm, application developers model an inte-
grated, end-to-end view of the entire application, including the
interdependencies of its components. Rather than focusing on
a single, custom application, MIC models capture the essence
of a class of applications, similar to the goals of product-line
architectures. MIC also allows the modeling languages and
environments themselves to be modeled by so-calledmeta-
models[5], which help to synthesize domain-specific model-
ing languages that can capture the nuances of domains they are
designed to model.

Recent advances in QoS-enabled component middleware,
such as the Component-Integrated ACE ORB (CIAO) [6]
real-time CORBA Component Model (CCM) [7] middleware,
make them amenable to composition of DRE applications
from COTS component middleware. To use MIC for this
composition requires the creation of domain-specific model-
ing languages that model the behavior and interaction of com-
ponent middleware, such as CIAO. Moreover, MIC generative
tools must be developed that understand these models and au-
tomatically configure and customize the middleware for DRE
applications.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of CoSMIC, which is an MDA
toolsuite we have designed to integrate MIC and component
middleware for DRE systems; Section 3 describes the chal-
lenges involved in developing CoSMIC tools that use genera-

tive techniques; and Section 5 presents concluding remarks.

2 Overview of CoSMIC

TheComponent Synthesis using Model Integrated Computing
(CoSMIC) project at Vanderbilt University’s Institute for Soft-
ware Integrated Systems (ISIS) is developing domain-specific
tools for composing and deploying DRE middleware-based
applications. The initial set of CoSMIC tools are targeting a
DRE component middleware suite that consists of the follow-
ing frameworks:

• The Component Integrated ACE ORB (CIAO) [8, 6],
which is a QoS-enabled CORBA Component Model
(CCM) [7] middleware framework developed at Wash-
ington University, St. Louis, and

• The Quality Objects (QuO) [9] framework, which is an
adaptive middleware developed by BBN Technologies.

The CoSMIC toolsuite is designed to (1)model and analyze
DRE application functionality and QoS requirements and (2)
synthesizeCCM-specific deployment metadata for CIAO and
QuO required to provision and enforce end-to-end QoS both
statically and dynamically [6]. Figure 1 illustrates the key el-
ements in the CoSMIC-based DRE application development
process. The CoSMIC tools can be used to model the require-
ments and adaptation policies needed to manage the QoS of
DRE applications. Figure 2 illustrates seven points at which
CoSMIC can be integrated into the integrated CIAO and QuO
component middleware and applied to DRE applications. The
seven points of integration shown in Figure 2 include

1. Configuring and deploying application services end-
to-end, which involves generating and provisioning the
policies for partitioning and distributing application ser-
vices and resources.

2. Composing components into component servers,
which involves generating the directives to assemble
semantically compatible application components from
reuse repositories and determining the interconnections
between these selected components.

3. Configuring application component containers, which
comprises generating QoS policies, such as threading
policies or levels of security and fault tolerance, for the
containers hosting the components.

4. Synthesizing application component implementa-
tions, which consists of generating application compo-
nents tailored to satisfying specific requirements, such as
worst-case execution time of tasks.

5. Synthesizing dynamic QoS provisioning and adapta-
tion logic, which includes generating the QoS provision-
ing and adaptation logic understood by adaptive frame-
works, such as QuO.

2



Integrated

Model


CoSMIC

Model Interpreter &

Code Synthesizer


System

Constraints


Executable

specifications


CIAO Component

Repository


CoSMIC

Component


Assembly/Code

Generator


CIAO Plugins


CIAO

CCM


 Assembly


Integrate &

Generate


S
e
l
e
c
t

C
o
m
p
o
n
e
n
t
s


synthesize &

assemble


CIAO

Application


Server


Deploy

CIAO


Package

Deployment


Tools


Figure 1:Developing Component Middleware-based DRE
Applications Using the CoSMIC Process

6. Synthesizing middleware-specific configurations,
which involves generating the directives to configure
the middleware, such as choice of transport protocols,
threading models, and demultiplexing strategies.

7. Synthesizing middleware implementations, which
comprises generating custom middleware components,
such as components for memory constrained systems.

Additional information on these steps appears in [6].

3 The Design and Implementation
Challenges of CoSMIC Generative
Tools

This section outlines the challenges we have faced when de-
veloping the CoSMIC generative toolset.

Generative techniques for component middleware config-
uration metadata. The QoS requirements of DRE applica-
tions can be assured when the middleware they are based on
are highly optimized and tailored to the application’s QoS re-
quirements. One way to achieve this is by generating the
configuration metadata for parametrizing the middleware from

Component

Repository


Compose
 Deploy


Middleware Bus


Central

Data

Store


1


System Development


Field Radar

Control

System


Chicago

Data


Center


Component

Assembly


Flight

Scheduling


2


1


2


3


4


6


Configuring and deploying an application services end-to-end


Synthesizing application component implementations


Configuring application component containers


Composing components into application server components


Synthesizing middleware-specific configurations


7
 Synthesizing middleware implementations


CoSMIC

Model


Interpreter &

Synthesizer


UML Model


select

components


CIAO


Container

CORBA


Component


Component

Home


POA


QoS Property

Adaptor


QoS Policies


R

e


f
l
e

c
t




4


CCM Component Library


1


ORB


ORB QoS Interfaces

(Scheduling,


Timeliness,Priority,...)


ORB Plugins


ORB

Metadata


6


7


3


5


5
 Synthesizing dynamic QoS provisioning and adaptation logic


Airport

Traffic

Control


Figure 2:Incorporating Model-Integrated Computing with
Component Middleware

high-level models. Figure 3 illustrates the different meta-
data that needs to be generated to configure QoS-enabled
component middleware. In particular, CoSMIC provides a
CIAO/QuO metadata modeling language to generate meta-
data, such as XML descriptors that provide directives on as-
sembling and packaging CORBA components along with the
adaptation logic. The challenges also include modeling inter-
nal behavior of CIAO/QuO.
Generative techniques for component middleware con-
tainer policies. Figure 4 illustrates the need to model
and synthesize CCM container policies using aspect model
weavers. This task involves refactoring and modeling cross-
cutting DRE middleware QoS concerns, such as levels of
fault tolerance, security, and persistence. The CoSMIC as-
pect model weaver tools [10] are designed to synthesize the
appropriate CIAO container QoS policies [11]. For exam-
ple, cross cutting concerns, such as security, are refactored
from the models for CCM containers. CoSMIC aspect model

3



CCM Container


Object

(Servant)


ORB

Interfaces


Client


Client-side

meta-object


(Stub)


Server-side

meta-object

(Skeleton,


DSI)


ORB Core


in args


out args + return

value


Operation ()


POA
Object store

meta-object


Transport protocol

meta-object


Transport protocol

meta-object


Smart Proxy

Client


Request

Interceptor


Server

Request


Interceptor


Servant

Manager Impl


Custom

Transport


DII


Interface Repository


Meta-

information

descriptions


Instantiates
 Interacts


Cross-Domain Protocol


GIOP
GIOP


Service-Side

Bridge


Client-Side

Bridge


Figure 3:CIAO Metadata Configuration

Container

CORBA


Component


Component

Home


Real-time POA


QoS Property

Adaptor


Client


ORB QoS Interfaces

(Scheduling, Timeliness, Priority,...)


QoS Policies


R

e
f


l
e

c
t




Figure 4:CIAO Container Policy Configuration

weavers generate specialized models of container policies by
weaving in the security-related cross-cutting concerns into the
original container models.
Generative techniques for synthesizing aspectized compo-
nent middleware. Figure 5 illustrates the need to model and
synthesize application component logic using aspect model
weavers. Similar to the previous point, this task involves
abstracting out and modeling separately all the cross-cutting
DRE application QoS concerns, such as priorities of tasks,
worst case execution times, and bandwidth requirements, in
addition to application behavior and component interactions.
The CoSMIC aspect model weaver tools are used to gener-
ate specialized models of application components by weav-
ing in these cross-cutting concerns into the original models.
CoSMIC’s assembly generator tools then use these special-
ized models to synthesize components and their assembly, as

Application Server


Containers
 Containers


Trading

Component


Logging

Component


Deployment

&


Configuration

Mechanism


Deployment

&


Configuration

Metadata


Reserve bandwidth

Do not share the connection


Run at client priority

Require highest priority


Reserve 30% processor cycles


Figure 5:CIAO Component QoS Aspect Weaving

described before.

End-to-end QoS assurance. Assuring end-to-end applica-
tion QoS involves QoS assurance at different levels of middle-
ware, operating systems, and networks. End-to-end QoS can
be attained in the following two ways:

• By aggregating the QoS offered at each layer, since each
layer guarantees certain levels of QoS, or

• By each layer adapting their offered QoS based on of-
fered QoS of adjacent layers.

Figure 6 illustrates the adaptive approach taken by QuO.
Figure 6 illustrates one way of decoupling (1) the application’s

Client

Object


(Servant)


IDL

Stubs


IDL

Skeletons


ORB Core


Object Adapter


operation ()


ORB Core


in args


out args + return value


OBJ

REF


Contract

Delegate
 Delegate


SysCond


Network


Mechanism/property

Manager


IIOP
 IIOP


SysCond

SysCond


SysCond


Contract


Callback

Callback


Figure 6:Qos Assurance via Adaptation in QuO

functional path, which consists of information flows between
client and remote server applications, from (2) the QoS sys-
temic paths, which are responsible for determining how well
the functional interactions behave end-to-end with respect to
key DRE QoS properties. In QuO, the QoS systemic prop-
erties are specified using the Quality Description Language
(QDL) and the negotiated QoS contract between the applica-
tion and middleware is specified in the Contract Description
Language (CDL). The QuO framework monitors the resource
usage whose values are stored in thesyscondobjects. De-
pending on the current values of thesyscondobjects, the QuO
framework consults the CDL contracts to achieve runtime QoS
adaptation.

4



CoSMIC modeling and generative tools are addressing both
scenarios by modeling the offered QoS of individual layers
and/or modeling the adaptive policies required by each layer.

4 Future Directions in Generative Pro-
gramming and the Role of MDA

In generative programming, the set of requirements that de-
scribes the interface and semantic behavior is referred to as
a concept[12]. A concept is a set of features that one soft-
ware component expects from another. The implementation
(or a model) of a particular concept makes it possible to plug
the component to an existing infrastructure that knows how to
deal with a specific concept,e.g., the set of STL algorithms
and theiteratorsconcepts.

The idea of component containers could be also interpreted
in a similar way, where a component must satisfy requirements
exposed by its container to be plugged into a container frame-
work, e.g., the POA/ServantBase relationships in CORBA.
The same argument is valid for component-based applications
where a component can be substituted by another component
that models the same concept. As an example of such a substi-
tution, the CCM component description hasexpectedandpro-
videdsections to enable automatic composability checking.

The concept technique alone, however, is not sufficient
to achieve the goals of MDA, where platform indepen-
dence, component composability, and interoperability issues
are paramount. The problem lies in the existence of various
mechanisms provided by containers and operating systems to
achieve the same goals. For example, although both CCM and
Enterprise Java Beans (EJB) containers provide access to the
current execution context of the component they use different
interfaces. The same is true for concurrency, IPC, and other
mechanisms provided by different operating systems [13, 14].

A promising way to solve this problem ison-demand re-
modularization[15], which is the ability to identify and en-
capsulate new dimensions of concern at any time without in-
vasive changes, thereby allowing manual or automatic (adap-
tive) selection of the best modularization based on any or all
of the concerns of the development task. On-demand remod-
ularization could be used to convert functionality provided by
infrastructural software to support concepts expected by the
collaborative parties. After such a conversion, for example, the
collaborative components in CCM and EJB can use generative
techniques for adapting the component callback interfaces to
satisfy the container requirements. Moreover, on-demand re-
modularization enables high degree of adaptivity.

Adding remodularizaton support to CoSMIC MDA genera-
tors and support for on-demand adaptive remodularization to
CIAO container is a subject for future research. For exam-

ple, the CoSMIC modeling languages could be extended to al-
low modeling of on-demand remodularization. Based on these
models, the CoSMIC generative tools can synthesize the ap-
propriate adapters within the collaborative components.

5 Concluding Remarks

The Model Driven Architecture (MDA) is an ambitious
standards-based effort that aims to codify the patterns and de-
velopment techniques evolved over years of R&D efforts on
component middleware, Model-Integrated Computing (MIC),
and related generative software technologies. Achieving the
MDA vision is essential to reduce the lifecyle costs of complex
DRE applications that encompass a wide range of application
domains, including defense, telecommunications, medicine,
process control, automotive, and manufacturing.

This paper describes our work on the CoSMIC project,
which is an MDA toolsuite we are developing to integrate
MIC and component middleware for DRE systems. The ini-
tial focus of CoSMIC is modeling and generating code that can
statically provision key QoS properties of CIAO and QuO. In
the future, we will focus on analyzing and generating model
driven solutions for systems that operate in dynamic environ-
ments and hence need runtime QoS provisioning via adapta-
tion.

In the context of the DARPA MoBIES and PCES pro-
grams, we are applying CoSMIC to several application do-
mains, including aerospace, telecommunications, medicine,
process control, automotive, and manufacturing. For exam-
ple, CoSMIC is being used to model and provision adaptive
QoS for a Unmanned Aerial Vehicle (UAV) application [11].
Over time, our CoSMIC toolsuite will evolve to target exist-
ing and emerging QoS-enabled middleware, such as Real-time
Java and XML/HTTP-based web services.

References
[1] Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,”

IEEE Computer, vol. 30, no. 4, pp. 110–112, Apr. 1997.

[2] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg
Nordstrom, Jonathan Sprinkle, and Gabor Karsai, “Composing
Domain-Specific Design Environments,”IEEE Computer, Nov. 2001.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,”
International Journal of Computer Simulation, Special Issue on
Simulation Software Development Component Development Strategies,
vol. 4, Apr. 1994.

[4] John Bay, “Recent Advances in the Design of Distributed Embedded
Systems,” inProceedings of SPIE, Volume 47: Battlespace Digitization
and Network Centric Warfare, Apr. 2002.

[5] Jonathan M. Sprinkle, Gabor Karsai, Akos Ledeczi, and Greg G.
Nordstrom, “The New Metamodeling Generation,” inIEEE
Engineering of Computer Based Systems, Washington, DC, Apr. 2001,
IEEE.

5



[6] Nanbor Wang and Douglas C. Schmidt and Aniruddha Gokhale and
Christopher D. Gill and Balachandran Natarajan and Craig Rodrigues
and Joseph P. Loyall and Richard E. Schantz, “Total Quality of Service
Provisioning in Middleware and Applications,”Microprocessors and
Microsystems, vol. 26, no. 9-10, jan 2003.

[7] BEA Systems, et al.,CORBA Component Model Joint Revised
Submission, Object Management Group, OMG Document
orbos/99-07-01 edition, July 1999.

[8] Nanbor Wang, Krishnakumar Balasubramanian, and Chris Gill,
“Towards a real-time corba component model,” inOMG Workshop On
Embedded & Real-Time Distributed Object Systems, Washington, D.C.,
July 2002, Object Management Group.

[9] Rodrigo Vanegas, John A. Zinky, Joseph P. Loyall, David Karr,
Richard E. Schantz, and David E. Bakken, “QuO’s Runtime Support
for Quality of Service in Distributed Objects,”Proceedings of
Middleware 98, the IFIP International Conference on Distributed
Systems Platform and Open Distributed Processing, September 1998.

[10] Jeffery Gray, Ted Bapty, and Sandeep Neema, “Handling Crosscutting
Constraints in Domain-Specific Modeling,”Communications of the
ACM, pp. 87–93, Oct. 2001.

[11] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale,
“Generators for Synthesis of QoS Adaptation in Distributed Real-Time
Embedded Systems,” inProceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering
(GPCE’02), Pittsburgh, PA, Oct. 2002.

[12] Krzysztof Czarnecki and Ulrich W. Eisenecker, “Components and
Generative Programming,” inProceedings of the 7th European
Engineering Conference held jointly with the 7th ACM SIGSOFT
Symposium on Foundations of Software Engineering, Toulouse, France,
1999, ACM, pp. 2–19.

[13] Douglas C. Schmidt and Stephen D. Huston,C++ Network
Programming, Volume 1: Mastering Complexity with ACE and
Patterns, Addison-Wesley, Boston, 2002.

[14] Douglas C. Schmidt and Stephen D. Huston,C++ Network
Programming, Volume 2: Systematic Reuse with ACE and Frameworks,
Addison-Wesley, Reading, Massachusetts, 2002.

[15] Mira Mezini and Klaus Ostermann, “Integrating Independent
Components with On-demand Remodularization,” inTo appear in the
Proceedings of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’02),
Seattle, Washington, USA, November 2002, ACM.

6


