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Abstract. Synthesis of source code from models typically proceeds as a direct mapping 
from each modeling element to the generation of a set of intentionally equivalent source 
code statements. When a library of components is available, the model interpreter can 
leverage a larger granularity of reuse by generating configurations of the available 
components. However, it is difficult to synthesize certain properties described in a model 
(e.g., those related to Quality of Service) due to the closed nature of the components, as 
available during generation-time. An aspect-oriented solution can provide the ability to 
instrument components with features that are specified in the model. This paper presents 
an idea, and example, for generating AspectJ code from domain-specific models. 

 
1 Introduction 
 
The traditional approach for generating artifacts from a domain-specific model involves the 
construction of an interpreter, or generator, which walks a tree-like representation of the model. 
The actions performed at each visited node result in the synthesis of a new representation of the 
model. Often, the generated artifact is represented as source code in a programming language. In 
such cases, the interpreter has built-in knowledge of the semantics of the domain and the 
programming language to which it is being mapped. The interpreter may also be aware of a 
library, or set of components, from which the synthesized implementation instantiates. 
 
When an interpreter produces a source code artifact that relies on pre-existing libraries of 
components (i.e., the libraries are static and not a part of the generated artifact), it can be difficult 
to map properties of the model into the component. This is typically true even if the component 
library is available in source form (unless there is provision within the interpreter to parse and 
transform the component library itself during the model synthesis). The reason is that the 
component, during generation-time, is often treated as closed to modification – the granularity of 
the component representation is typically at the interface level, not the individual statements 
within the component implementation. 
 
An aspect-oriented approach can assist in the generation of component customizations that extend 
the component with properties declared in the model. The focus of this position paper is to 
introduce a generation technique that relies on an aspect-oriented language to encode the 
extended features that are to be added to a component. In the next section, we introduce a 
modeling domain and an example that will motivate the problem. Section 3 presents an aspect-
oriented solution, with the final section offering some concluding remarks. 



2 Modeling BoldStroke Components in the GME 
 
Boeing’s BoldStroke is a product-line framework for avionics navigation software [Sharp, 1998]. 
There have been efforts within the DARPA MoBIES and PCES programs to model the structure, 
behavior, and interactions of subsets of applications built from BoldStroke components. A 
modeling effort for a subset of BoldStroke components has been conducted with the Generic 
Modeling Environment (GME) – a metaconfigurable CASE tool that supports the construction of 
domain-specific modeling environments [Lédeczi et al., 2001]. 

 
Figure 1 represents a simple model that contains five components. All of these components have 
specified parameters (e.g., frequency, latency, worst-case execution times) that affect Quality of 
Service (QoS) requirements. The first component is an inertial sensor. This sensor outputs the 
position and velocity deltas of an aircraft. A second component is a position integrator. It 
computes the absolute position of the aircraft given the deltas received from the sensor. It must at 
least match the sensor rate such that there is no data loss. The weapon release component uses the 
absolute position to determine the time at which a weapon is to be deployed. A mapping 
component is responsible for obtaining visual location information based on the absolute position. 
A map must be constructed such that the current absolute position is at the center of the map. A 
fifth component is responsible for displaying the map on an output device. The specific values of 
component properties will likely differ depending on the type of aircraft represented by the model 
(e.g., the latencies and WCETs for an F-18 would most likely be lower than a helicopter). The 
core modeling components describe a product family with the values for each property indicating 
the specific characteristics of a member of the family. 

 

 
Figure 1: A GME Model of the Component Interactions 



The internals of the components in Figure 1 permit the representation of CORBA Component 
Models (CCM) [Siegel, 2000]. The CCM provides capabilities that offer a greater level of reuse 
and flexibility for developers who need to deploy standardized components [Wang et al., 2001]. 
Each of the components in Figure 1 has internal details, in support of the CCM, that also are 
modeled. For instance, the contents of the Compute Position component are rendered in Figure 2.  
 
 

 
Figure 2: The Internals of Compute Position 

 
 
Eager/Lazy Evaluation 
 
In the interactions among the various components in the above example, there is a defined 
protocol for computing a value and notifying other components of a completed computation. 
These interactions are the result of a publish/subscribe model that uses an event channel. The 
typical scenario for these interactions is: 

 
1. One component (C) receives an event from another component (S), indicating that a 

new value is available from S. 
2. At some point in time, C invokes the get_data function of S in order to retrieve the 

most up to data value from S. C then performs a computation based upon the newly 
retrieved value. 

3. At some point in time, component C notifies all of the other components that have 
subscribed to the event published by C. 

 



There are situations where early acquisition and computation of data can waste resources. The 
determination concerning how often a computation should be made is an optimization decision. 
In an eager evaluation, all of the steps to perform the computation for a component are done at 
once. An eager evaluation would follow the three steps above in a strict sequential order each 
time an event is received from a supplier component. A lazy evaluation is less aggressive in 
computing the most up to date value. The second step, from above, is performed late. That is, the 
value from the supplier, and the actual computation, are only performed when a client component 
requests a data value. The computation is performed only when needed, not during each reception 
of an event from a supplier. 
 
The determination of whether an eager/lazy strategy is to be used can be specified by properties 
in the model. The model interpreter can evaluate these properties during synthesis to generate the 
appropriate implementation constructs. As mentioned earlier, however, modifications to existing 
components may not be feasible during generation. The next section presents a brief example that 
demonstrates the use of an aspect-oriented language to implement a lazy strategy on one of the 
components in Figure 1. 
 
3 Synthesizing Aspects 
 
One of our goals is to demonstrate the capability for generating the configuration of BoldStroke 
components from domain-specific models in such a way that specific parts of each component are 
weaved together as an aspect. This goal fits well with the OMG’s Model Driven Architecture 
(MDA) [Bézivin, 2001], [Burt et al., 2001] and also the idea of “fluid AOP” [Kiczales, 2001]. 
 
A possibility for realizing this objective would be the generation of AspectJ [Kiczales et al., 
2001] code from models, as shown in Figure 3. In this figure, the model (top-left of figure) and 
specification aspects (top-right of figure) are sent through a weaver that constrains the model. 
Here, specification aspects represent the description of crosscutting concerns that are to be 
weaved into the model [Gray et al., 2001]. The constrained model (bottom-left of figure) can then 
be sent to a GME interpreter (bottom-right of figure) that generates the aspect code. This figure 
illustrates that there are two stages of weaving that are performed. A higher level of weaving is 
done on the model itself. This weaving instruments a base model with specific concerns (often 
represented as model constraints) that typically crosscut the model. The second type of weaving 
occurs from the aspect code that is synthesized and later processed by the AspectJ compiler. 
Thus, weaving at both the modeling level and the implementation level is achieved. 
 
The amount of generated code produced from the aspect generator would actually be quite small. 
The assumption is that the core of the available components would already exist. Another 
assumption would be the existence of several different aspects of concern. These assumptions are 
in line with the work that other researchers are doing toward the goal of making a library of 
components and aspects available for a subset of the CORBA event-channel [Hunleth et al., 
2001] in Java. As an alternative, the AspectC++ weaver could be used on the original C++ 
BoldStroke components [Mahrenholz et al., 2002]. For other languages, adaptations to a program 
transformation system (like the Design Maintenance System [DMS, 2002]) could be integrated 
within the model interpreter. 
 
 



Figure 3: An MDA View of Aspect Code Generation 
 
An example of a core library of components can be found in the Java code in Figure 4. This 
figure represents an abstract Component (a), and a LocDisplay component (b). The abstract 
component defines the required methods for the domain – the same methods that can be found in 
models like Figure 2. The LocDisplay subclass, for clarity, simply provides stubs for each of 
the method implementations. 

 
 
public abstract class Component 
{ 
 
  public abstract void call_back(); 
  public abstract int get_data(); 
  public abstract void init(); 
 
  public abstract void data_retrieve(); 
  public abstract void compute(); 
  public abstract void notify_availability(); 
 
  Protected int _data; 
 
} 

 
a) Component.java (from component library) 

Figure 4: Base Class Java Components 
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public class LocDisplay extends Component 
{ 
 
  public void call_back() {  
    System.out.println("This was LocDisplay.call_back"); }; 
 
  public int get_data() { return _data; }; 
 
  public void init() { }; 
 
  public void data_retrieve() {  
    System.out.println("This is LocDisplay.data_retrieve!"); 
    UpdateMap map = new UpdateMap(); 
    map.get_data(); 
  }; 
 
  public void compute() {  
    System.out.println("This is LocDisplay.compute!"); }; 
 
  public void notify_availability() {  
   System.out.println("This is LocDisplay.notify_availability!"); 
 
}; 
 

 
b) LocDisplay.java (from component library) 
Figure 4 (cont.): Base Class Java Components 

 
Example aspects are coded in Figure 5. The Lazy aspect contains abstract pointcuts. Other 
aspects (e.g., various other forms of Eager/Lazy, etc.) will refine the definition of the pointcuts 
through extension. It is assumed that the Lazy aspect would exist in a library of reusable 
aspectual components. This abstract aspect captures the model of lazy evaluation, as described 
earlier. The call_back “after” advice simply forwards all notifications on to client components 
without making any effort to retrieve data and compute the intention of the component. 
 
The LocDisplayLazy aspect, from the figure below, manifests the type of code that is 
expected to be actually generated by the model interpreter. This code is very easy to generate. In 
fact, to synthesize the LocDisplayLazy aspect, all that is needed is the name of the class and 
the type of eager/lazy evaluation to weave. The code generator produces the concretized pointcuts 
that are needed to accomplish the weaving of the lazy evaluation concern with the LocDisplay 
component. 

 
To summarize the idea, the assumption is that the code in Figures 4a, 4b, and 5a already 
exist. The synthesis step is to produce code, like that of Figure 5b, which represents the 
weaving of a particular concern as a result of some model property. 



 
 
abstract aspect Lazy { 
 
    abstract pointcut call_back(Component c); 
    abstract pointcut get_data(Component c); 
 
    after(Component c): call_back(c) 
    { 
      System.out.println("after:call_back (Lazy)!"); 
      c.notify_availability(); 
    } 
 
    Before(Component c): get_data(c) 
    { 
      System.out.println("before:get_data (Lazy)!"); 
      c.data_retrieve(); 
      c.compute(); 
    } 
 
} 

 
a) Lazy Aspect (from aspect library) 

 
 
aspect LocDisplayLazy extends Lazy { 
 
    pointcut call_back(Component c) : this(c) && 
                       executions(void LocDisplay.call_back(..));  
 
    pointcut get_data(Component c) : this(c) && 
                        Executions(int LocDisplay.get_data(..)); 
 
} 

 
b) Concretization of Lazy Aspect with LocDisplay (generated) 
Figure 5: Sample Strategies and Specification Aspects 

 
4 Conclusion 
 
Our position is that an aspect-oriented generative approach can be beneficial within the context of 
the MDA. We have already demonstrated in our previous work that AO techniques are beneficial 
when applied to the modeling process itself. Our future work will explore the possibilities for 
some of the ideas presented in this paper, with respect to the generation of AspectJ code to assist 
in the weaving of features into pre-existing components. 
 
The assumptions of the ideas presented here are that the components are written in a language 
that has an associated aspect weaver. It is also necessary (for the approach to reach a mature 
status) to have an extensive library of reusable aspects. Much research is still needed, within the 
AO community in general, regarding the idea of large scale aspect reuse and composition. 
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