
Handling Crosscutting Constraints in DomainHandling Crosscutting Constraints in Domain--Specific ModelingSpecific Modeling
Institute for Software Integrated Systems (ISIS) Institute for Software Integrated Systems (ISIS) –– Vanderbilt UniversityVanderbilt University

http://http://www.isis.vanderbilt.eduwww.isis.vanderbilt.edu

This representation and analysis project is investigating the combination of Model Integrated Computing (MIC) and
Aspect-Oriented Programming (AOP) composition technologies. In particular, the concepts of aspect-orientation will be
applied at a higher level of abstraction - at the modeling level. An additional goal is to develop a framework for building
domain-specific weavers. The specific goals of the project are to develop:

This project will help produce domain-specific and even application-specific modeling tools that will enable systems
engineers to configure, analyze, and validate complex real-time embedded systems in a more intuitive manner.

PROJECT OBJECTIVE

• A domain-specific, graphical language that captures the functional design of real-time embedded systems,
• A weaving process that maps high-level invariant properties and system requirements to design constraints

affecting specific model regions, and
• A generation process that customizes components and composes real-time embedded systems.

This work is supported by the DARPA Information Technology Office
(DARPA/ITO), under the Program Composition for Embedded Systems (PCES)
program, Contract Number: F33615-00-C-1695.

CHALLENGES: CROSSCUTTING CONSTRAINTS

A

B

c
1

F

d
e

3

4

B

c

1’

d

2’
e

3’

Replicated
Structures

2

B

c

1’’

d

2’’
e

3’’2

Context Sensitive
Constraints

2

Observation

• A real-time system’s requirements, algorithms, resources, and behavior is captured as a
“design-space,” representing a multitude of alternative system implementations.

• Navigation of the design space is assisted by the specification of design constraints as
components within a set of hierarchical, multiple-view models.

• These constraints are scattered across the hierarchy of a model.
• Therefore, constraints represent a type of crosscutting concern within domain-specific

modeling.

Consequences

• The crosscutting nature makes it difficult to maintain and reason about the effect and purpose
of each constraint.

• Managing these distributed constraints becomes extremely difficult as system size increases.
• Experimenting with different architectures, synchronization methods, network protocols, etc.,

becomes error-prone and labor intensive.

Strategy
Code

Generator

Strategies
(C++)

Strategy Specifications

Specification

Aspects
XML

(Model Hierarchy)

strategy ApplyConstraint(constraintName: string, expression : string)

{

addAtom("OCLConstraint", "Constraint", constraintName).addAttribute("Expression", expression);

}

strategy RemoveConstraint(constraintName: string)
{

findAtom(constraintName).removeChild() ;

}

strategy ReplaceConstraint(constraintName: string, expression : string)
{

RemoveConstraint(constraintName) ;

ApplyConstraint(constraintName, expression);

}

META-WEAVER FRAMEWORK

Creating New Weavers

• Each specific GME metamodeling paradigm
introduces different types of modeling elements,
syntax, and semantics. Therefore, different weavers
are needed for different paradigms.

• Strategies are used to aid in the rapid construction of
new domain-specific weavers. ECL constraints can
succinctly capture the specification of these
strategies.

• A code generator translates the strategies into C++
code that is then compiled within the weaver
framework. Each domain can then be considered as
being componetized within the weaver.

EMBEDDED CONSTRAINT LANGUAGE (ECL)

Operations on Model Objects

• Traditional OCL has been strictly a declarative
query language

• New uses require an imperative procedural style
• Addition of side effects into model

• Examples:
• addAtom(…), findAtom(…)
• addAttribute(…), findAttribute(…)
• removeNode(…)

• Support for recursion
• Chaining of strategies (procedure calls)
• Inlined C++ code

Properties of ECL

• ECL is an extension of the Object Constraint
Language (OCL)

• Arithmetic operators
• +, -, *, /, =, <, >, <=, >=, <>

• Logical operators
• and, or, xor, not, implies, if/then/else

• Collection operator (->), Property operator (.)
• Operations on collections:

• collection->size() : integer
• collection ->forAll(x | f(x)) : Boolean
• collection ->exists(x | f(x)) : Boolean
• collection ->select(x | f(x)) : collection

constraint FOOB2
{

// apply a specific constraint to "B2" only

in Structural models("ProcessingCompound") ->

select(p | p.name() == "B*") ->PowerStrategy(1, 100);

}

<?xml version="1.0" encoding="UTF- 8"?>
<!DOCTYPE project SYSTEM "mga.dtd">

<project guid="{00000000- 0000- 0000- 0000-
000000000000}" cdate="Thu Nov 30
14:15:40 2000" mdate="Thu Nov 30
14:15:40 2000" metaguid="{00000000- 0000-
0000- 0000- 000000000000}"
metaname ="PCES">
<name>bit1</name>
<comment></comment>
<author></author>
<folder id

<?xml version="1.0" encoding="UTF- 8"?>
<!DOCTYPE project SYSTEM "mga.dtd">

<project guid="{00000000- 0000- 0000- 0000-
000000000000}" cdate="Thu Nov 30
14:15:40 2000" mdate="Thu Nov 30
14:15:40 2000" metaguid="{00000000- 0000-
0000- 0000- 000000000000}"
metaname ="PCES">
<name>bit1</name>
<comment></comment>
<author></author>

A Graphical Modeling
Environment

FOO.XML

Specification
Aspects

Enhanced
FOO.XML

Domain-Specific
Weaver

TECHNICAL APPROACH: DOMAIN-SPECIFIC WEAVER

A Constraint Weaver

• A solution that isolates the constraints as a separate area of concern will improve the
manageability of our models. This can be accomplished with a constraint weaver.

• The input to the domain-specific constraint weaver consists of:
• The XML representation of the model, as exported from the GME. This model is most

likely void of any constraints.
• A set of specification aspects provided by the modeler. These are used to specify the

locations in the model where constraints are to be added by strategies.
• The output of the weaving process is a new description of the model in XML that contains

new constraints that have been integrated throughout the model by the weaver.

How Constraints are Weaved
• Specification aspects describe specific points in the model where a strategy is to be applied. This ability

to quantify over the model space is similar to a pointcut descriptor in AspectJ.
• Strategies are domain-specific rules for specifying elements of computation, propagation, or application

of specific properties to the model nodes.
• Strategies are generic in the sense that they are not bound to specific nodes in the model.

Benefits
• Because constraints are modularized apart from the models, different sets of specification aspects can

be weaved into the same model for experimental “what if” scenarios.
• Because much of the redundancy of constraint application is removed, the effect of each constraint on

the global system can be better understood. This localization of constraints improves modular reasoning.

Specification Aspects
for a specific model instanceModel instance Strategies for a specific domain

…
select(p | p.name() == “Model*” &&

p.kind() == “StateFlow”)->Strategy3();
…

Strategy1

Strategy2

Strategy3

StrategyN

EXAMPLE: PROCESSOR ASSIGNMENT
strategy ApplyConstraint(constraintName : string, expression : string)
{

addAtom("OCLConstraint", "Constraint", constraintName).addAttribute("Expression", expression);

}

strategy Assign(limit : int)
{

<<static int accumulateWCET = 0; static int processNum = 1; int currentWCET; >>

findAtom("compute").findAttributeNode("WCET").getInt(currentWCET);

<<accumulateWCET = accumulateWCET + currentWCET; >>

if (limit < accumulateWCET) then

<<accumulateWCET = currentWCET; processNum++; >>
ReportNewProcessor();

endif;

<<CComBSTR aConstraint = "self.assignTo() = processor" + XMLParser::itos(processNum); >>
ApplyConstraint("ProcessConstraint", aConstraint);

}

strategy ProcessorAssignment(limit : int)
{

models("Component")->forAll(Assign(limit));

}
WCET=150ms

Latency < 20ms

Sensor

Update

Map

MapDB

S
(x,y,z)

(x,y,z)
Display

(x,y,z)

100 Hz WCET=10ms WCET=1ms

Latency < 5ms

WCET=2ms

WCET=4ms

Weapon Release

Description

Given 5 components for a weapons deployment system,
this example demonstrates the weaving of constraints
that represent the processor assignment for each
component. The strategy is based upon the worst-case
execution time (WCET) for each component.

BACKGROUND: DOMAIN-SPECIFIC MODELING

Key Characteristics of MIC

• Metamodeling is used to define a domain modeling
language and the constraints within that domain.

• From the metamodel, a modeling environment is created
for a specific domain.

• Domain experts work within the generated environment
to create specific instances of domain models.

• Domain models can then be interpreted. This can result
in an analysis of a model, or even synthesis into an
application.

Generic Modeling Environment (GME)

• Extendable/modular component-based architecture that
supports MIC

• Consists of a metaprogrammable graphical editor, a model
constraint checker, and metamodeling environment

• Key features:
• Type inheritance
• Model persistence (bi-directional XML, database)
• Open API through COM

• Used in numerous industrial domains:
• Automotive, avionics, electrical utilities, digital signal

processing, chemical plants

Model
Interpretation

Model Interpreters

Models

Modeling
Environment

Application
Domain

App
1

App
2

App
3

Application
Evolution

Environment
Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Builder

Model Integrated Computing (MIC)

