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Abstract

The software reuse practices of many organizations could be described as “ad
hoc,” at best. Some reuse efforts do not consider even basic concepts such as
completely specifying or correctly verifying reusable code. Those organizations
that do attempt to specify formally their reusable assets often do so at the expense
of neglecting issues concerned with performance. The area of Software
Performance Engineering (SPE) provides various measures for determining the
responsiveness of the software aspects of a computing system. Applying SPE
methods to reusable software would aid future clients in assuring that
performance objectives are met. This paper presents some of the basic issues
associated with the need for characterizing the performance of reusable
components.

I. Introduction

Historically, traditional methods of software development have focused primarily on the
functionality of a software system. For example, throughout most life-cycle models, the
successful completion of a particular stage is based upon the culmination of a deliverable which
describes the functionality of the system at that phase. Verification and validation are carried out
at the completion of each stage to ensure that the desired functionality is preserved as
development proceeds.

Performance considerations, on the other hand, are often ignored within the general context of
software development. Software engineering textbooks, such as [Pressman 90], [Sommerville 92],
and [Schach 96], devote less than a handful of pages to an overview of performance concerns.
Object-oriented gurus have stated that “Changes in the system architecture to improve
performance should as a rule be postponed until the system is being (partly) built” [Jacobson 92,
pg. 197]. Furthermore, some have forwarded “principles” of software engineering which
encourage one to postpone performance issues until after the initial coding is complete; e.g.,
“Principle 10” in [Davis 94]. It is this attitude of viewing performance as an afterthought that has
contributed to the labeling of performance analysis as being a “fix-it-later” approach [Smith 90].

Various forms of this paper were presented at:

e The Carnegie Mellon University/Software Engineering Institute Second Annual Disciplined
Engineering Workshop, Pittsburgh, PA, June 1995.

e  QOPSLA '95: Workshop on the Design and Construction of Large-Scale Components, Austin, TX,
October 1995.



The problems of the “fix-it-later” approach are at the heart of why performance issues deem
further consideration in the reuse community. The following paragraph offers a poignant, but
occasionally true, scenario that is a consequence of ignoring performance issues:

During the requirements engineering phase, the client and developer determine the proposed
functionality of a particular system'. Regrettably, the requirements document is signed off and the
remaining stages of the development process are explored (i.e., specification, planning, design,
implementation, and testing) without heeding the complete instructions found in the requirements
document; that is, both functional and performance requirements. As the process moves along
and when implementation and integration testing are complete, the developers then enter into
product testing. It is at this point when severe problems are sometimes discovered with respect to
performance. Stress and volume testing will often reveal the fact that degraded performance
occurs during peak loads. After the panic has subsided, a usual response is to simply add more
hardware resources to the underlying computing system (a practice similar to placing a “Band-
Aid” on a fatal wound). In the event that increased hardware does not solve the problem, the
entire architecture of the software system may need to be reconsidered - at an obvious expense to
both time and money as well as contributing to reduced maintainability. Of course, all of these
dilemmas could have been ameliorated at an earlier stage of development if only the traditional
software process models focused more attention on performance issues.

There are various circumstances in which the ability to quantify the performance of a software
system is important. An obvious concern is to ensure that the response time of a user query is
satisfied within a “satisfactory” amount of time. Users may become disgruntled if they are forced
to wait an exceedingly long amount of time for the system to respond. Such considerations are
especially important for commercial vendors of software. In fact, the main motivation for the
work presented in [Allen 83] was to produce a commercial product which had better performance
than a competing product providing the same functionality. Other reasons for being able to
quantify the performance of software have more severe implications. Real-time systems with hard
deadlines need to ensure that their deadlines can be met. Failure to do so may result in loss of life
or property and suggests why such systems are often described as “mission critical.”

This paper is the result of an observation that the SPE community, while focusing on the
performance of a new system as a whole, has overlooked the importance of reusable components
in particular’. Likewise, it appears that the reuse community has neglected to investigate in detail
the implications of non-functional issues like performance (although recently the disregard for
performance documentation has been identified as a cause for the lack of widespread reuse at the
component level [Pancake 95]). Therefore, the paper attempts to unite these two areas by
asserting the need for an increased awareness of the performance of reusable software.

As one reuse pundit recently opined, “Like Caesar’s wife, reusable components must be above
reproach” [Berard 95]. Further research into the topics mentioned in this paper should help in
advancing the support that reusable components offer to the software engineer who recognizes

' Fortunately, this phase of the software life-cycle does address some performance concerns This could be
attributed to the role that prototypes play in arriving at a mutual agreement of the description of the desired
system. A rapid prototype could capture some of the response requirements that the user will come to
expect in the final product.

’In order to expose reuse issues to the performance community, an earlier draft of this paper served as a
position statement at the recent Software Engineering Institute’s (SEI) Disciplined Engineering Workshop:
Effective Practice in Performance Engineering.



the need for examining performance concerns prior to implementation. Such support will also aid
toward improving the credibility of reuse repositories.

The format of the rest of this paper is as follows. The motivation for performance characterization
of reusable components is given in section II. In section III, a brief overview of the history of
Software Performance Engineering is presented along with several of the techniques that have
been developed. Following such an introduction, a framework for discussing the performance and
architecture of reusable components is expounded upon in section IV. A short description of the
importance of performance verification issues can be found in section V. As usual, the final
section offers some concluding remarks.

II. Characterizing Performance Engineered Reusable Components

Within the past fifteen years, the area of software performance engineering has received much
attention. The focus of study has been on analyzing/predicting complete systems which were built
from scratch. Little work seems to have been done in investigating the benefits of characterizing
the performance of reusable software. In this section, justifications are presented for some of the
benefits that can be accrued by a heightened awareness of the performance of reusable software.

At the 1968 NATO conference on Software Engineering, Doug Mcllroy presented what is
considered to be one of the first references to a component-based view of software reuse [Mcllroy
69]. Although over a quarter century has passed since this seminal paper was written, the current
state of software reuse is far from reaching Mcllroy’s initial goals. The original concept was to
construct an industry that created a library of software components that could be retrieved and
classified as a “condensed document like the Sears-Roebuck catalogue.” In the abstract for his
paper, Mcllroy states, “...yet software production in the large would be enormously helped by the
availability of spectra of high quality routines, quite as mechanical design is abetted by the
existence of families of structural shapes, screws, or resistors.” This view implies the use of
methods similar to those found in the electronic or mechanical components industry’ (although
this view has been criticized, e.g., “Myth #7” in [Tracz 95, pg. 118]). The concept was to
assemble new systems by obtaining “off-the shelf” components that have already been
constructed and tested. For example, one could walk into a local software shop and purchase, in
either source or binary form, many of the operational components needed to create the
functionality of a complete system. Furthermore, these components could be retrieved from some
standard component catalog that is indexed by both functional and performance criteria.

One might argue that the general state of reuse could be found in an examination of several
government funded software repositories (e.g., NASA’s ELSA (formerly AdaNet), DOD’s
CARDS, and STARS ASSET). What a client often finds when accessing these repositories is,
among other artifacts, a collection of components ranging from reusable design documents to
source code. In some cases a client may find that the specification of the functionality of source
components is either ambiguous or non-existent*. This state of affairs could point to the need for
formal specification of components, a topic beyond the scope of this paper (for additional
information, see [Jeng 93]). Aside from the functional documentation problems that sometimes

There are efforts to revive the notion (e.g., the “Software-IC” idea proposed in [Cox 86] and [Cox 90]).
*This is not an attack on the efficacy of such organizations. The situation is a consequence of the fact that
the outside authors who submitted the artifacts did not have these issues in mind.



exist with software repositories’, the concept of characterizing the specific performance of
components is almost always overlooked. Furthermore, practically every commercial set of
reusable components fails to address hard performance concerns (although they do a better job of
representing functional characteristics). For example, the famous “Booch components” [Booch
87] fail to incorporate any notion concerning the performance of software like that provided by
software performance engineering.

Using the electronic components industry as an analogy, suppose that one were to walk into a
local Radio Shack and ask the store clerk to “Please give me something that you think resembles
a resistor.” This describes the current approach adopted by many software reuse efforts. As an
improvement, an electronics enthusiast would like to ask the store clerk for a component with
exact functionality and specific performance (e.g., “Please give me a 20Q resistor”). In terms of
performance considerations, this type of retrieval does not exemplify current reuse efforts.

To move closer to this idealized view of software reuse, three pivotal research issues are
1dentified:

e Performance Modeling

Mechanisms for determining the performance of modular components need to be devised. In
section III, the area of software performance engineering is presented as a foundation for this
issue.

e Performance Specification Frameworks

Section IV inspects another problem that needs to be examined: classification and retrieval
frameworks which incorporate performance information. That is, what is the taxonomy used
to classify components based on performance and what are some of the techniques employed
to allow efficient access to these components?

e Verification of Performance Properties

After investigating solutions for incorporating performance into the classification and
retrieval problem, further research is needed in the area of performance verification. This will
be presented briefly in section V as one of the last obstacles to be undertaken.

II1. Overview of Software Performance Engineering

Software Performance Engineering (SPE) has been defined by many authors as a method for
constructing software systems to meet performance objectives [Marciniak 94], [Smith 90]. Some
define the area as an intersection between software engineering and performance evaluation
[Allen 83]. The goal of SPE is to provide a method for discussing the performance requirements
of a system throughout the entire spectrum of the software life-cycle [Smith 83]. Thus, the
necessity of the “fix-it later” approach is minimized.

There are three basic evolutions that have taken place in the area of performance to bring SPE to
its current state. The first evolutionary stage produced the various models developed for

’Ed Berard has recently stated that “All too often, software reuse repositories more closely resemble
‘software landfills,” i.e., any and all software -- regardless of quality -- is dumped into the repository”
[Berard 95].



performance prediction. The queuing network models (QNM) proposed in the early seventies are
an example. Early work with QNMs focused on the modeling of hardware resources and provided
little benefit to an overall analysis of software. A second stage of evolution involved the
construction of numerous tools and algorithms to facilitate performance studies of software.
Software execution models, like those described in [Beizer 84], [Booth 80], and [Smith 79], allow
one to determine measurements pertaining to software. The third evolutionary advance is a
synergy of QNMs and software execution models to produce system execution models. This
allows for a complete analysis of software and the utilization of hardware resources. This permits
a more detailed examination of systems while they are still under development.

Early work in software performance concentrated on the development of specific languages that
allow one to determine the efficiency of a program without actually executing any code. For
example, [Cohen 74] describes two incremental languages which resemble Algol-60 and can be
used for determining efficiency. Translators for the languages allow a designer to compare
different performance alternatives. Another early attempt, described in [Graham 73], provides a
description of the problems associated with the “fix-it later” approach. The authors propose a
single high-level language (named DES - Design and Evaluation System) that is used to describe
the system at all stages of development. The programs coded in DES can be used as direct input
into performance analysis and simulation routines. A common problem with these early attempts,
however, can be seen in the fact that implementation details are required during early stages of
development.

The bulk of research contributing to SPE appears to have begun in the late 1970s and early 1980s
[Beizer 78], [Browne 83], and [Smith 79]. Most of these efforts belong in the second evolutionary
stage mentioned above. A model that seems to have gained the most popularity as a
representation for software execution models is the execution graph. Unfortunately, the literature
describing execution graphs often provides only trivial examples of the method which makes it
difficult to comprehend fully the complete process (e.g., those examples provided in [Browne
83]). The notation for execution graphs allows software modules to be represented as nodes in a
graph [Smith 79] and [Smith 90]. The basic operations permitted on these graphs are concerned
with iteration, branching, and sequential execution. Additional operations provide for
probabilistic transfers of control, locking, and other features. After modeling the architecture of
the software system using execution graphs, graph analysis and reduction algorithms are applied.
After the analysis of the software execution model is completed, parameters are obtained that can
then be fed into the next phase: the system execution model.

The system execution model represents the results of research performed during the third
evolutionary stage. The standard representation for the system execution model has been the
information processing graph (IPG). An IPG could be thought of as an intermediate
representation of a QNM that combines the information obtained from the software execution
model with the topology of the resources contained in the computer system. In fact, much of its
notation has been derived from the commonly used notations associated with QNMs [Allen 83].
The final analysis of an IPG is often obtained by supplying the IPG as input to some of the
solution packages that are commercially available [Smith 90]. For a detailed case study, which
illustrates the application of software and system execution models to a real-time system, see
[Smith 93].

As individuals experiment with the SPE process, the intuition and wisdom gained from the
experience often becomes formalized so that others can receive benefits. A summary of seven



basic SPE principles is described in [Marciniak 94] and [Smith 90]. Likewise, [Allen 83] and
[Lampson 84] offer various hints to help in the design and implementation of future systems.

The first impediment to this effort involves the additional time that is required to ascertain the
performance of a component. A problem with many reuse efforts is that it is often difficult to
encourage developers to specify the functionality of a component correctly, not to mention the
extra effort that is needed to analyze its performance. A commitment from management is needed
to ensure that incentives are in place to encourage this extra effort. The additional time spent on
performance analysis may incur a large expense initially, but, as the component is made available
for retrieval, this cost is amortized over each use.

Another impediment focuses on concerns with the fact that many SPE solutions produce mean-
value results [Sarkar 89]. The problem with mean-value results occurs if the system has periodic
problems or unusual execution characteristics [Marciniak 94]. When these problems exist, the
characterization of the performance of a system may not be adequately represented. There exist,
however, bounding techniques that can be used in lieu of mean-value results [Smith 90].

There are still many open issues within SPE, as noted in [Marciniak 94]. A lack of specific case
studies should point to an area of future work to help in documenting explicit problems
encountered when applying the SPE methods. The case studies that have been presented to date
are either vague in their description (e.g., [Allen 83]) or are the results of work done on small to
medium sized systems (e.g., [Nixon 93] and [Smith 93]). The scalability of SPE methods to larger
systems needs to be demonstrated.

This section has served as a brief overview of the topics found in the area of SPE. For a more
detailed account, the Fall 1985 edition of CMG Transactions contains a special issue on SPE.
Additionally, the more recent and thorough account found in [Smith 90] can be consulted.

IV. A Framework for Discussing Reusable Software

Existing reuse repositories often contain thousands® of different components. There may even be
many reusable components that implement the same functionality but have different timing and
space characteristics. For example, a taxonomy similar to that proposed in [Booch 87] would
allow for many different components that implement the functionality of a stack. Some stacks
may be represented in a bounded form using arrays while others may be unbounded using a
pointer representation. Many other different classifications could exist (based upon space/time
tradeoffs) that are variants of what one would consider to be a basic LIFO stack. The majority of
current classification and retrieval methods address solely the functional characteristics of a
desired component. This poses a problem for the client who needs to choose among several
alternative implementations (which have different levels of performance) that serve the same
functionality.

To begin addressing this point, Murali Sitaraman has argued that frameworks for representing the
performance requirements of reusable components must be decomposed into three layers
[Sitaraman 94]; to wit:

SActually, the size and granularity of repositories vary considerably. For example, the number of work
products/modules examined in [Lim 94] and [Prico-Diaz 91] are 685 and 128, respectively; on the other
hand, [Lanergan 84] reports on 3,200 modules while [Selby 89] inspected thousands of components. The
problems of large reuse libraries has been presented in [Biggerstaff 1994].



e implementation independent specifications which describe the functionality
of a component

e implementation dependent specifications which describe the performance
and other non-functional requirements

e the implementation itself

The idea has also been adapted to the constraints facility offered in the RESOLVE specification
language [RESOLVE 94].

A useful model for discussing some of the topics related to software reuse can be found in the 3C
model [Tracz 89]. This model, when applied to the underlying structure of a software system, can
be used to illustrate the relationship among concepts (specifications), contents (implementations),
and the context (environment) in which they occur. Conventions of the model state that concepts
are to be represented by circles while contents are indicated by rectangles. As an illustration, the
3C model will be used to describe the possible structure of a prime number generator.

In Figure 1, the representation of a prime number generator is given which is based upon the use
of sets. In the figure, an arrow from a concept to a content indicates that the content implements
the concept. An arrow from a content to a concept means that the content uses the facilities
provided by the concept. Dotted arrows which point to empty spaces indicate additional
concepts/contents which were not included in order to keep the figure as simple as possible. For
example, the content List Based Set can be used to implement the concept Set Template.
Likewise, the concept List Template is used by the content List Based Set. It is obvious from
the illustration that the model allows a concept to be realized by multiple contents, a useful
attribute that is needed in the description of reusable software.

In [Krone 93], a proposed extension to the 3C model is given where additional constraints are
used to indicate performance requirements. In terms of notation, “tombstones” are inserted
between the arrows of the concept-content relationship’. The constraints contained in the
tombstones are then formally specified. The overall purpose of such extensions apply to new
proof rules for the verification of performance expressions. The incorporation of such extensions
into the 3C model will allow the architecture of a system to be described in a way which
highlights performance alternatives of multiple implementations.

V. Verification

After a client has successfully obtained a component, it is desirable to formally prove that the
new component functions correctly within the overall system. Formal methods for proving
performance are also needed to allow the client to certify and locally reason about the component.
Recent efforts have been increasing in the area of formally verifying timing properties of software
through the use of specification languages. In particular, [Krone 93] presents an approach for
reasoning about the performance of reusable components and also provides a series of proof rules
needed to automate the approach.

’ Diagrammatically, this is the same as the proposed extensions in [Sitaraman 94].
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The 3C Model Representation of a Prime Number Generator Using Sets
Figure 1

In related work done by Murali Sitaraman, a set of language extensions are proposed for Ada that
allow a programmer to parameterize the performance of a system [Sitaraman 92]. This allows for
the concept of “plugging in” reusable components.

VI. Conclusion

The overall theme of this paper has been to assert the need for an increased awareness of
performance issues in the reuse community. Such an awareness will push reuse efforts closer to
the original goals proposed more than twenty-five years ago with respect to an industry rivaling
that found in the manufacturing and classification of electronic components.

As pointed out previously, an advantage of determining the performance of reusable components
can be found in a more aggrandized retrieval facility. That is, users of software repositories can
more effectively select those components that are desired based not only on the functionality of a
component but also its performance. Perhaps the hardest problem in addressing this issue is the



lack of a generalized retrieval facility to be used by various users on myriad hardware platforms.
In addition to containing reusable components, software repositories also contain, in some sense,
portable components. Some clients may be retrieving components to be incorporated into a PC
application while others might be obtaining components for a Sun application. Therefore, a
component cannot be classified specifically by the performance that is observed on a particular
development platform.

A future area of study would investigate how a generalized performance expression is converted
into a specific measure once the platform of the client is ascertained. As a starting point, [Booth
80] offers some help in arriving at cost expressions that may be useful in finding generalized
performance expressions. Booth first noted the distinction of separate parts to handle the
functional and performance descriptions of an abstract data type (ADT). He presented the
following three aspects as considerations for analyzing the performance of ADTs [Booth 80]:

e the algorithms and data representation selected to represent the data type
e the particular machine for which the software system is designed
o the statistical properties of the actual data

More recently, Opdahl and Solvberg have initiated an investigation into what they call target
platform modeling, whereby a target model “abstracts the target platform and operating system
software of a computer installation” [Opdahl 92]. Their overall model, then, consists of the high-
level application model integrated with the target platform model. The notion of the term
“platform,” however, will need to be expanded to include not only the hardware and operating
system but also the particular compiler which is used. This was pointed out by Saavedra and
Smith within the context of the different performance characteristics of optimizing compilers
[Saavedra 95]. Perhaps the Java language may offer some solutions to this problem [Sun 95]. Java
generates an architecture-neutral object file format. The bytecodes of the Java-compiled applet
are then interpreted by the specific Java run-time system for each architecture. Thus, a
generalized performance characteristic can be given for each application, based upon the
generated bytecodes, which can then be combined with the specific performance of each bytecode
once the architecture is determined.

It could be argued that the goal of an industry which mass produces software components (to be
used by clients with varying requirements), like that envisioned by Mcllroy, will be hardpressed
to see fruition until performance issues are further investigated. The first obstacle of analyzing
performance has already been addressed by researchers in the field of SPE. Frameworks for
extending the classification/retrieval problem to handle performance have just begun to be
explored. After this basic framework is in place, a more mature industry can begin to tackle some
of the more demanding problems that may be involved with performance verification. On the
positive side, a recent proposal for a systematic methodology for creating a reusable library has
identified the following as one of five core principles: “Execution times of components are
included as part of the specification. A component’s assumptions about its environment are
specified explicitly and systematically” [Gall 95].
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