
The Flying Pi Eye is an autonomous, flying drone with four
rotors that lift a Raspberry Pi, GPS, and camera. The drone is
intended for search and rescue situations. It creates aerial
photography of an area, searches the photograph for any
area of a particular color within a provided margin of error,
and gives the GPS coordinates of the found areas. The drone
is a controlled by a program written in Python that uses the
Python Imaging Library to stitch together individual pictures
to create the combined photo of the entire search area. The
Python Imaging Library is also used to analyze the image to
locate areas of the indicated color. Trigonometry is used to
find the GPS coordinate of any pixel on the image given the
GPS coordinate the picture was taken from and the altitude
of the drone. This is used to calculate the GPS coordinates of
sections of the image that match the color being searched
for. To interact with the program a user connects the on
board Raspberry Pi through ethernet to a network, sets the
search area and color, and views the results through a web
interface created with the Flask library in Python, clicks the
start button, and disconnects the ethernet cable. Though
currently navigated by the quadcopter, the Raspberry Pi,
GPS, and camera could be attached to any flying vehicle in
order to provide better range or save costs if a search and
rescue department already had a drone and didn't need the
quadcopter portion of this project.

ABSTRACT LIMITATIONS
• The motors of the quadcopter drain the battery quickly,

limiting flight time to approximately seven minutes. This
limits the size of the area the device can scan.

• The software calculates latitude and longitude of pixels
within the image by interpolating the latitude and
longitude of the bounds of the image. This fails to
account for the curvature of the earth and introduces
some error, though this is negligible for distances capable
of being imaged by this device due to battery limitations.

• The Raspberry Pi is small, inexpensive, and doesn’t use
much power, but it also lacks computing power. The
Raspberry Pi can be slow to tell the quadcopter where to
fly when processing an image, and can pause in the air
for a few seconds, taking away from the limited flight
time.

• Some inefficiency is introduced by relying on the Python
interpreter for the program that controls the imaging and
quadcopter.

• The quadcopter must maintain the same altitude
throughout the flight and does not have any ability to
avoid obstacles. The need to take all pictures from the
same altitude comes from an assumption that the ground
is level and at a set distance away to calculate the
latitude and longitude of points on the ground.

FUTURE WORK
• Rewrite the control script in a compiled language to

remove the computational costs associated with using
Python.

• Replace the current battery with a larger and safer
battery for longer flight times and safer charging.

• Calculate latitude and longitude of points with a model
that accounts for the curvature of the earth and doesn’t
become inaccurate on larger scales.

• Add in obstacle avoidance when flying around to take
pictures

• Use a LIDAR system to map the topography of the
ground, removing the need to take pictures of flat
ground at a predetermined altitude.

• Add more advanced image recognition, beyond
searching for one color

INTRODUCTION AND TERMS
• A quadcopter is a helicopter propelled by four rotors, two

spinning clockwise and two spinning counterclockwise.
• A Raspberry Pi is an inexpensive, low power computer,

approximately the size of a credit card, with multiple
General Purpose Input/Output pins used for interacting
with other hardware.

• This project uses a Raspberry Pi to direct a quadcopter
fitted with a camera and GPS to take aerial photography
for image analysis.

• The images captured and analyzed by the Raspberry Pi
are used to find the latitude and longitude of areas of
interest identified through image analysis by interpolating
the latitude and longitude from the edges of the picture.

ENGINEERING GOALS
• Create a program to divide an area into an array of

latitudes and longitudes at which to take pictures in order
to capture the entire area, given that the pictures are
taken at some designated height.

• Create a web based interface for this program using the
Flask library.

• Run this program on a Raspberry Pi connected to a GPS
and camera to automatically take pictures at the
calculated coordinates.

• Create a quadcopter, directed by the Raspberry Pi, to
carry the imaging module.

• Connect the quadcopter and Raspberry Pi to create a
functioning unit capable of scanning an area and giving
the latitude and longitude of places within the scanned
area that match a given color.

• https://www.cs.bath.ac.uk/brown/papers/ijcv2007.pdf
• http://www.cs.bath.ac.uk/brown/autostitch/autostitch.

html
• http://www.ipni.net/publication/ssmg.nsf/0/0BDF314B

F75B9FC1852579E5007691F9/$FILE/SSMG-11.pdf

REFERENCES

Code to search the image for matching pixels and keep
track of their latitude and longitude

RESULTS
This project was ultimately successful in creating a
quadcopter with an onboard computer system to image a
given area and find the latitude and longitude of points of
interest selected based on matching a given color. It was
also successful in creating a Raspberry Pi module that can
be fitted to any flying device to image and analyze a swath
of land. The created system is relatively low cost and
provides good accuracy over areas the size of a football
field or smaller.

PURPOSE
Current aerial drones are expensive. Search and rescue
operations are not only expensive but dangerous for the
rescuers. This project aims to build a device that functions as
an inexpensive aid to rescuers searching for people and
things, such as a lost hiker in rough terrain.

Quadcopter
Quadcopter Control Circuitry

Part of thread that automatically captures images at the
specified GPS coordinates

	Slide Number 1

