
A Component-based Approach for
Constructing High-confidence
Distributed Embedded Systems

Barrett Bryant1, Rajeev Raje2, Mikhail Auguston3,
Jeff Gray1, Shih-Hsi Liu1, Mihran Tuceryan2 and
Andrew Olson2

1. University of Alabama at Birmingham
2. Indiana University-Purdue University Indianapolis
3. Naval Postgraduate School

Realizing Distributed Embedded Systems
Using Service-Oriented Architectures

DES as a composition of heterogeneous,
independently developed components
Each component offers services along with
associated assurances about them.
Confidence characteristics incorporated
during design, construction, deployment, and
composition of these services
Cost of verification and validation reduced

Research Goals

Develop service-oriented models for DES which
incorporate high-confidence characteristics such
as correctness and QoS
Develop, discover and select components using
service-oriented models, so that components and
their ensemble exhibit high confidence
Automate the composition of components to
minimize vulnerability arising from handcrafting
Validate the assembled DES with respect to both
functional correctness and QoS

Key Research Issues

Architecture-based Interoperability
Automation, standardization, mappings and tools

Distributed Resource Discovery
Specification, publication, distribution, selection

Validation of Quality Requirements
Vocabulary and associated metrics, composition,
monitoring

Main Challenge: HeterogeneityMain Challenge: Heterogeneity

UniFrame Knowledge Base
Developed by domain experts for specific
application domains
Describes service-oriented architecture for the
application
Specifies functional and QoS properties of
components that make up the architecture
Discovers and matches components to the
requirements
Automatically generates code for interoperation of
components
Predicts and empirically measures vulnerability
properties of the integrated system

Formal Methods

Language for describing rules for integrating
components – Two-Level Grammar (TLG)
Automated scenario generation from
environment models – Attributed Event
Grammar (AEG)

Two-Level Grammar

TLG consists of two context-free grammars
corresponding to the set of type domains and the
set of logical rules operating on those domains.
The first level of the grammar, called meta-rules,
defines the structure of the domain, including the
syntactic interfaces of components.
The second level of the grammar, called hyper-
rules, defines the rules for composing components,
performing static evaluation of QoS constraints, and
generation of connector code.

TLG Example
ClientUMM, ServerUMM :: UniframeMetaModel.
ClientOperations, ServerOperations :: {Interface}*.

generate Application system
from ClientUMM and ServerUMM with QoS :

ClientOperations := ClientUMM get operations,
ServerOperations := ServerUMM get operations,
OperationMapping := map ClientOperations into

ServerOperations using Application domain,
ComponentModel :=

ServerUMM get component model,
generate java code for OperationMapping

using ComponentModel with QoS.

Java RMI
Client

CORBA
Server

TLG specification for
Java RMI Client

TLG specification for
CORBA Server

TLG Glue/Wrapper Generation

Proxy
server Proxy client

Connector

Knowledge
base

Attributed Event Grammar

Attributed event grammar (AEG) provides a
uniform approach for automatically
generating, executing, and analyzing tests.
Quantitative and qualitative risk assessment
can be performed based on statistics
gathered during automatic test execution.
AEG provides automated testing of
distributed real-time embedded software
systems, based on modeling the environment
in which a system will operate.

AEG Example

Shoot ::= Fire
(p(0.3) Hit /Send_input_to_SUT (Hit . time)/ |

p(0.7) Miss)
Large number of Shoot scenarios can be
generated.
Each event trace will satisfy the constraints
imposed by the event grammar.

AEG Validation

Environment
model

represented as
an event
grammar

Generator

Test driver
(in C or assembly

language)

SUT

Run time
monitor

How to
create test

cases

How to run test
case

How to
monitor the

results

Case Study – Mobile Augmented
Reality

Trackers

Soldier

HMD

Rifle Hand Tracker

GPS
Interaction

Battlefield

Wireless
Device

Environment
Model

DoDAssign
Strategies

Store
Environment
Data

Computation

Conclusions

Development and reuse of existing software
components for embedded systems in a
manner that fosters high-confidence
Partially automates the software design and
validation process for embedded systems,
thereby increasing reliability
Assists in the development of standards for
software component descriptions in
embedded domains

Future Work

Expand case studies to include other
domains
Develop prototype tool suites to further
validate framework

Further Information

http://www.cs.iupui.edu/uniFrame

