Contextion: A Framework for Developing
Context-Aware Mobile Applications

Elizabeth Williams, Jeff Gray

Department of Computer Science, University of Alabama

eawilliams2@crimson.ua.edu, gray@cs.ua.edu

Abstract

Context-aware mobile interfaces that are dynamic and adapt
to each user pose a challenge to developers because the in-
terface must continually adapt to accommodate changes in
the user’s activity and environment. Current methods of de-
velopment do not allow for efficient creation of contextual
applications. In addition, although data from sensors on a
mobile device provides a rough estimation of a user’s en-
vironment, the data needs to be combined in an intelligent
way in order to determine a user’s intention. In this paper we
present the design of a framework called Contextion for eas-
ily creating context-aware mobile applications. The frame-
work is built as a layered architecture in order for portions
of application components to be adapted based on current
contextual information. Contextion also allows for rapid ad-
dition of new sensor technologies on a mobile device to the
Contextion framework. Using a specification language, end-
users can define in what situations various pieces of contex-
tual data should be used and how the data affects the mobile
application. In addition, the design of Contextion allows for
the definition of operations based on contexts that may not
be known at the time of development.

Categories and Subject Descriptors H.1.2 [User/Machine
Systems]: Human factors; H.5.2 [User Interfaces]: User-
centered design

Keywords context-aware computing, mobile development

1. Introduction

Context-aware applications take advantage of contextual in-
formation to adapt their features to the user’s surroundings.
Context is defined in several ways. Schilit et al. [6] describe

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

MobileDeLi 14, October 21, 2014, Portland, OR, USA..

Copyright © 2014 ACM 978-1-4503-2190-7/14/10. .. $15.00.
http://dx.doi.org/10.1145/2688412.2688416

context in three aspects: “the location of use, the collection
of nearby people and objects, as well as the changes to those
objects over time.” Dey and Abowd [3] provide a broader
definition:

Context is any information that can be used to charac-
terize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the in-
teraction between a user and an application, including
the user and applications themselves.

The context of a user can include any information that char-
acterizes the situation of the user, including, but not limited
to, location and time, as well as a user’s emotions, social set-
ting, and surrounding noise level. Dey and Abowd [3] also
provide a definition of a context-aware system:

A system is context-aware if it uses context to provide
relevant information and/or services to the user, where
relevancy depends on the user’s task.

The key challenge in developing context-aware mobile
applications is that context constantly changes. Thus, infor-
mation regarding context must be obtained frequently by a
device’s internal and external sensors to keep an application
current. Chalmers [2] establishes five uses of contextual in-
formation:

1. Contextual sensing - where the context is sensed and
information describing the current context (e.g. location,
temperature) can be presented to the user.

2. To associate context with data, known as contextual aug-
mentation (e.g. records of objects surveyed can be as-
sociated with location, meeting notes can be associated
with people in the meeting and the place the meeting was
held).

3. To enable contextual resource discovery (e.g., to cause
printing to be on the nearest printer).

4. Context triggered actions to trigger actions such as load-
ing map data for an area to be entered, or exchange busi-
ness cards.

5. Contextual mediation - using context to modify a service.
For instance to describe limits and preferences over a

large range of offered data, in order to display the most
appropriate parts. The request for the data being mediated
need not arise from the context.

To these uses, we have been creating a framework, called
Contextion, that will allow developers to produce context-
aware applications without the accidental complexity of sen-
sors that collect environmental data. Through our frame-
work, we introduce the concept of intention. Intention is vital
to providing a user with relevant information. Yet different
users can have different intentions even with the same con-
textual data. For example, two people might be traveling to
the movie theater. Both are driving in a car to the same lo-
cation at the exact same time. It is probable that one person
is going to the movie theater to see a movie, for entertain-
ment purposes. However, the other person might be driving
to the theater because that is where he or she works. In this
situation, it is clear that both people have contrasting inten-
tions, although contextual data sensed by their mobile de-
vices might be the same. We propose that mining a user’s
history might give clues to their intention, allowing better
adaptivity and contextual awareness. The contribution of our
paper is to propose a system that will allow developers to
discover a user’s intention to create a more accurate context-
aware application.

In the next section we discuss the current state of research
in context-aware computing. Following, we introduce our
framework for creating context-aware mobile applications.
We then present an example application that can be devel-
oped easily and quickly using our framework.

2. Discussion of Current State of Research

Context-aware computing is an essential but newly emerging
area of research. Current state of the art includes various
frameworks and technologies that allow developers to utilize
data collected from sensors that form a context for a user.
Dey, Abowd, and Salber [4] created The Context Toolkit,

a framework that supports the acquisition, representa-
tion, delivery and reaction to context information that
can be automatically sensed and used as implicit input
to affect application behavior.

The toolkit was one of the first context-aware frameworks
introduced.

Since then, context modeling has been a topic with much
potential. According to Bettini et al. [1], there are three
approaches to context modeling: object-role based, spatial
models, and ontology-based. Out of those, ontology-based
models are considered to be the most powerful at expressing
complex contextual data and relationships. The OWL-DL
language [5] is a popular choice for defining models of
contextual information.

However, there are drawbacks to the current state of re-
search:

1. Although some current research does aggregate contex-
tual data, generally a user’s motives are not discovered.
For example, the context model is different if a user is
going to the movies for entertainment, or if the user is
heading to the movie theater because he or she works
there. We propose that this collected data can be com-
bined more intelligently to discover a user’s intention. An
intention might be going to a restaurant with friends for
fun or cooking breakfast at home in the morning. Know-
ing a user’s intention can allow developers to provide
dynamic information that more closely aligns with the
user’s needs.

2. Current research also does not mine contextual data for
characteristics of the user. Contextual inference based
also on characteristic information previously mined can
improve the context model.

3. Most context modeling algorithm require that there be an
initial set of user activities to match against. This means
that the user must perform activities at least once before a
system can infer it in the future. This is a major drawback
because activities that only occur once, such as those
performed on vacation, will never have any contextual
reasoning by the system.

4. End-users are not generally able to use the existing
frameworks that are pervasive in context-aware research.
However, end-users can define the most intelligent con-
text models.

5. In the current state of research, developers cannot define
operations on contexts that are unknown. For example,
if a user goes to a new location that he or she has never
been to, the system may not be able to provide any guess
as to the user’s intention in the new context model. Clus-
tering new context models with old can produce better
inferences about the user’s motive.

3. Conceptual Framework Design

In this section we discuss our conceptual design for a frame-
work that provides developers and end-users with an acces-
sible and efficient method for creating context-aware mobile
applications. The framework is currently designed as an An-
droid library, although it could easily be modified for any
platform. We chose Android because of the robustness of
the APIs in obtaining contextual information. We first define
a sensor used for collecting contextual data:

A sensor is any piece of hardware or software technol-
ogy used in the collection of data that forms a context
for a user.

Examples of sensors are GPS, accelerometers, and clocks.
The user’s calendar of upcoming events, apps the user ac-
cesses frequently, or social networks can also be considered
sensors as they can contribute important data to a user’s con-

text. The system can work with as many or as few sensors as
the developer requires.

We next define several requirements for the Contextion
framework. These requirements address the problems found
in the current state of context-aware research:

1. The Contextion framework should allow developers to
plug in strategies for combining contextual data intelli-
gently. For example, if a user is at home in the morn-
ing, he or she might have a different intention (e.g., per-
haps of eating breakfast or getting ready for work), and
thus, a different context, than if the user is at home in the
evening, when they might be watching TV. Although the
location is the same, the combination with the time data
created a totally different context.

2. Contextion should allow the building of a user profile,
which will hold information and characteristics about the
user. For example, a user profile might hold the locations
of the user’s home and work or places the user frequents.
This information can be used for more intelligent infer-
ence of contextual models.

3. Users of Contextion should be able to define operations
based on the type of context if the specific context is not
known. For example, a developer might want an opera-
tion to occur when a user is on vacation. It is impossible
to enumerate every possible location a user might visit
on vacation, so the framework should be able to distin-
guish which context models indicate that the user is on
vacation.

4. Using the Contextion framework, mobile applications
should be able to be created without needing to reimple-
ment the collection of contextual data. A specification
language will allow developers, and even end-users, to
effortlessly build applications that utilize contextual in-
formation.

5. Contexts that are unknown (e.g., the user or developer
has not been able to explicitly specify the context model)
should be clustered with existing context models to pro-
vide better predictions about the user’s intentions.

The framework is able to automatically detect and formu-
late a user’s context, or environment, through sensors, either
built-in or external. It also has the ability to plug in new sen-
sors as technologies are developed. Developers can easily
and quickly create new applications that take a user’s context
into account or infuse existing applications with contextual
information and data. The architecture is displayed in Figure
1.

The framework consists of a Sensor interface from which
classes of sensors can inherit. Sensor classes that conform
to the interface can contribute data to the user’s overall con-
text. By hiding the implementation of sensors such as lo-
cation, time, or accelerometer technologies, developers do
not need to be concerned with the realization of obtaining

data from these sensors. Currently, developers can write new
classes that implement this interface in order to add new sen-
sor technologies as they are developed. Any combination of
sensors can be used for an application. Specification files al-
low developers or users to define rules about various sensors.
For example, a developer might specify which data collected
from a location sensor represents a user’s home and which
represents work. These sorts of labels will be stored within
the framework and can be accessed by the specification lan-
guage defined by an application described in Listing 1. De-
velopers could also determine how coarse- or fine-grained
data collection for a sensor should be. For example, a devel-
oper can decide whether time data should be collected every
hour or every minute.

A SensorManager collects and handles all sensor objects
within an application. Using the SensorManager, developers
need never interact directly with any specific sensor objects.
The SensorManager combines all data from the various sen-
sors into one context. The SensorManager also allows de-
velopers to plug in strategies for combining raw contextual
data into more intelligent context models. These strategies
are implemented as Filters. Filters can be implemented that
allow the inference of a user’s intention or motive within a
context model. For example, a pattern matching algorithm
could be plugged in to discover patterns in a user’s history
of contextual data. By discovering patterns, we can fill in
absent data if a sensor fails in the collection of data for any
reason. Also, patterns can reveal a user’s routine, which can
enable the recognition of types of information the user might
need in various context scenarios.

The last main component in the Contextion framework
is the ActivityAdapter. In the Android platform, “an activity
is a single, focused thing that the user can do.” ! Typically,
a developer creates a new activity for each new screen dis-
played in the app. These various activities inherit from the
Activity class, part of the native Android API. In the Contex-
tion framework, to incorporate contextual information into
an application, developers need only inherit from an Activ-
ityAdapter rather than Activity. The ActivityAdapter reads
in a specification file and creates various layers of contextual
information on top of the existing base activity. Each layer
contains data from a single sensor. The ActivityAdapter is
responsible for managing contextual information from the
sensors, determining when a user’s context has changed, and
updating the current context model.

Using the Contextion framework, a specification file can
be written by a developer or end-user that specifies which
data layers are visible at different contexts. An example
specification file is shown in Listing 1. In this example, a
link is created between a context scenario and an operation.
The context consists of the user having a change in location
and there being no upcoming events on his or her calendar.
When the user is in this context scenario, the app will call

Uhttp://developer.android.com/reference/android/app/Activity.html

LocationSensor | TimeSensor | AppSensor |
| | |
<<interfaces=
Sensor SensorData |
Llﬁ |
+ getData(): SensorData |
Activity |
|
Extends
| <<interfaces> ‘
Filter
ActivityAdapter |1 SensorManager | .
< flh'-’+getCurrentContext{]:String . |
| +filter() |
1
Extends
MainActivity |
DatabaseHandler |
|
| I HistoryFilter | AppFilter |

Figure 1. Overview of the Contextion framework.

Listing 1. Specification File
<?xml version="1.0"” encoding="UTF-8”7>
<file>
<link>
<context>

from many different sensors. The developer simply needs
to change the inheritance of the application’s activities from
Activity to ActivityAdapter, write the specification file that
defines links between context scenarios and operations, and,
in the activity, define the operations that occur in the various
contexts.

<location>changelnLocation</location>

<calendar>null</calendar>
</context>
<operation>
displayNearbyEvents
</operation>
</link>
</ file>

the method displayNearbyEvents, which is defined in the
application’s activity.

Using the Contextion framework, developers do not need
to be concerned with the implementation of retrieving data

4. Example Application

In this section we describe a conceptual example application
that exhibits the capabilities of the framework outlined in
the previous section. This application will filter and display
events that might be of interest to the user. Google Now 2
provides a list of events that are occurring soon near the user.
Using a location sensor, we can obtain a similar list of events
and activities happening nearby the user. We can then use
a filter to pattern match between the user’s profile and the
nearby events.

2 http://www.google.com/landing/now/

The application consists of only one activity, called Main-
Activity. To create this application, a developer would need
only to inherit from ActivityAdapter from the Contextion li-
brary in the MainActivity. This allows the contextual infor-
mation from a specification file to be used in the application.

The specification file from Listing 1 is used in this ap-
plication. The file states that when the user changes his or
her location and when there are no upcoming events on
the user’s calendar the displayNearbyEvents method should
be called. The label of changelnLocation would be defined
within the sensor specification files described earlier and
are referenced here. For example, in the sensor specification
file, the changelnLocation label might refer to a method that
tracks when a user shows significant change in location.

The developer needs to define the displayNearbyEvents
method in the MainActivity. This method would filter events
for those that are determined to be most relevant for the user
and displays them when the criteria for the context scenario
in the specification file are met.

The ActivityAdapter determines when the user is in the
context model defined in the specification file and automat-
ically calls the displayNearbyEvents method. The developer
need not worry about collecting any contextual data and in-
stead can focus on the changing of the application’s user
interface with the changing context. The specification file
could even be modified by end-users if so desired. This
would allow end-users to control their own context scenar-
ios.

5. Future Work and Conclusions

Much research is left in the area of context-aware comput-
ing. With the context-aware framework we have presented in
this paper we demonstrate how a mobile application can be
extended to allow contextual information to be utilized. We
introduced the problem of incorporating a user’s context, or
environment, into a mobile system. We then introduced a
framework that allows efficient insertion of sensor data into
an application. Finally, we provided an example application
that makes use of the Contextion framework.

References

[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nick-
las, A. Ranganathan, and D. Riboni. A survey of context

First, we plan to implement strategies for the SensorMan-
ager that can improve inferences about a user’s intentions
within a context scenario. We intend to look at ways to as-
sociate raw sensor data with higher level contexts. In addi-
tion, we will look at patterns within a history of these con-
text models as wholes to determine whether better predic-
tions can be made of a user’s motives. Finally, we plan to
allow users to define operations based on types of contexts
rather than simply contexts that are explicity specified. The
Contextion framework is already able to handle pluggable
strategies for combining and filtering raw data into more ab-
stract contextual models. The framework can also be easily
extended to allow context models to hold abstract types upon
which developers can define operations.

modelling and reasoning techniques. Pervasive Mob. Com-

put., 6(2):161-180, apr 2010. ISSN 1574-1192. . URL

http://dx.doi.org/10.1016/j.pmcj.2009.06.002.

[2] D. Chalmers. Contextual mediation to support ubiquitous com-
puting. Technical report, 2002.

[3] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. In CHI 2000 Workshop
on The What, Who, Where, When, Why and How of Context-
Awareness, 2000.

[4] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of
context-aware applications. Hum.-Comput. Interact., 16(2):97-
166, Dec. 2001. ISSN 0737-0024.

[5] I. Horrocks, P. F. Patel-Schneider, and F. V. Harmelen. From
shiq and rdf to owl: The making of a web ontology language.
Journal of Web Semantics, 1:2003, 2003.

[6] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In Mobile Computing Systems and Applications,
1994. Proceedings., Workshop on, pages 85-90, 1994. .

