
Creating Visual Domain-Specific Modeling Languages from

End-User Demonstration

Hyun Cho, Jeff Gray, and Eugene Syriani

Department of Computer Science
University of Alabama
Tuscaloosa, AL USA

hcho7@crimson.ua.edu, gray@cs.ua.edu, esyriani@cs.ua.edu

Abstract—Domain-Specific Modeling Languages (DSMLs)
have received recent interest due to their conciseness and rich
expressiveness for modeling a specific domain. However,
DSML adoption has several challenges because development of
a new DSML requires both domain knowledge and language
development expertise (e.g., defining abstract/concrete syntax
and specifying semantics). Abstract syntax is generally defined
in the form of a metamodel, with semantics associated to the
metamodel. Thus, designing a metamodel is a core DSML
development activity. Furthermore, DSMLs are often
developed incrementally by iterating across complex language
development tasks. An iterative and incremental approach is
often preferred because the approach encourages end-user
involvement to assist with verifying the DSML correctness and
feedback on new requirements. However, if there is no tool
support, iterative and incremental DSML development can be
mundane and error-prone work. To resolve issues related to
DSML development, we introduce a new approach to create
DSMLs from a set of domain model examples provided by an
end-user. The approach focuses on (1) the identification of
concrete syntax, (2) inducing abstract syntax in the form of a
metamodel, and (3) inferring static semantics from a set of
domain model examples. In order to generate a DSML from
user-supplied examples, our approach uses graph theory and
metamodel design patterns.

Keywords; Domain-Specific Modeling Languages,
Metamodel, Metamodel Inference, Semantic Inference, Graph
Theory, Metamodel Design Patterns

I. INTRODUCTION

Domain-Specific Modeling Languages (DSMLs) raise
the level of abstraction while at the same time keep the
design space narrowed to a specific domain. Due to the
increased abstraction, it has been observed that end-users can
learn a DSML in a short amount of time because they
perceive that they are working directly with domain notions
[8]. Moreover, it has been shown that DSMLs help to
produce quality domain models [10].

However, DSML development is not an easy task
because it requires both domain knowledge and language
development expertise. In addition, DSMLs often are
developed incrementally by iterating over complex tasks. As
shown in Figure 1, DSML development begins by eliciting
the DSML requirements, where domain experts describe

what capability is required and how that is represented in
their domain. Based on the DSML requirements, language
development experts then identify the concrete syntax,
design the abstract syntax, and specify semantics. Finally,
domain experts verify the DSML and give formative
feedback that may lead to an iteration requiring more
development. The design of the concrete and abstract syntax,
and the specification of semantics are difficult even for
language development experts. In addition, an iterative and
incremental DSML development process can be mundane
and error-prone if there is no tool support.

Figure 1. DSML Development Process

To lessen the burden of DSML development, we have
investigated a new approach for creating DSMLs, especially
visual DSMLs, based on a set of model examples that are
provided by a domain expert. Graph theory is used in our
approach to analyze each model instance representation
independently and to infer the metamodel and static
semantics based on the provided examples. Our approach
allows the concept of end-user model “sketching” on white
boards to be captured in a modeling tool that understands the
domain abstractions and static semantics.

This paper is organized as follows. Section 2 describes
the overall process for inferring a metamodel and semantics
from a set of domain model examples. We introduce in
Section 3 the approach that uses graph theory to handle a set
of domain model examples. Section 4 describes how to
induce a metamodel and static semantics from the graph
representation of the end-user provided model examples.
Section 5 describes related work, and Section 6 concludes
with future work based on current limitations.

II. MLCBD: FRAMEWORK FOR DSML CREATION

Conventionally, a visual DSML is developed using
metamodeling environments such as GME [16] and
MetaCase [17]. Although visual DSML development tasks
are aided by such metamodeling tools, most tasks (e.g.,
defining abstract/concrete syntax and specifying semantics)
are generally done manually by language development
experts who may not have deep understanding or experience
in the domains in which a visual DSML is needed. To
address these challenges of visual DSML development, we
have created a framework named MLCBD, which can assist
in creating a visual DSML in a semi-automated manner.
MLCBD addresses the issues and challenges of DSML
development described in [3]. The overall process of
MLCBD is illustrated in Figure 2.

Design domain
concepts with
shapes

Graph Builder

Concrete
Syntax

Identifier

A Set of
Domain Model

Examples

Concrete Syntax

Graph Representation of
Domain Model Examples

Metamodel
Design

Patterns

Metamodel
Inference
Engine

Metamodel

Graph
Annotator

Graph Representation
with Concrete Syntax

Semantics
Inference
Engine

Metamodel
with

Semantics

OS

Process

Thread Task

Synchronization

Mutex Semaphore

... ...

...Process
Conditional

Variable

Recording and
optimizing user
actions

Figure 2. Process of MLCBD for Creating Visual DSML

The process for creating a visual DSML begins with the
demonstration of a set of model examples by end users. A
Modeling Canvas, which has features similar to
diagramming tools (e.g., Microsoft Visio), is provided to
domain experts who then model the concepts in their domain.
While domain experts demonstrate the notions of a domain,
the sequences of user actions are captured and optimized to
indentify candidate concrete syntax.

After a set of domain model examples is created, those
examples are transformed into graph representations. Graph
transformation is widely used in the domain modeling
community and is also a proven approach for representing a
high-level programming language formally, which can then
be used to generate other types of outputs by applying
production/replacement rules through graph rewriting [2][14].
Transforming platform-independent models into platform-
specific models is a common example of graph
transformation [11]. In our approach, graph transformations
are used in two places: the Graph Builder and Graph
Annotator in Figure 2.

The Graph Builder transforms a set of domain model
examples into a set of graphs. The goal of the Graph Builder
is to generate a representation-independent model from a set
of domain model examples provided by an end-user.
Because DSMLs can be developed in various languages,
domain models can be described with different

representations. For example, to define the syntax of a
DSML and maintain model instance data, a visual DSML
may use different file representations such as XML, text, and
binary forms. Although DSMLs may use the same file
representation, the schema representing the metamodel for
the visual DSML can be structured differently for each visual
DSML. Thus, the Graph Builder reads a set of domain model
examples and transforms them into the corresponding
internal graph representation prior to inferring the
metamodel.

Table I shows examples of FSM instances that model a
simple photo view application (left side), and the
corresponding graph representations (right side). The first
FSM instance, shown in Table I (a), represents that the
application terminates without doing anything after startup.
In Table I (b), the application reads an image to display. The
last FSM instance in Table I (c) describes the state transition
for copying an image from one media to another, or saving
an image after rotation. The graph representation of each
FSM model is shown in the right side of Table I. As the
Graph Builder transforms a set of model examples based on
simply modeling elements and their links, it generates a set
of undirected graphs.

TABLE I. INSTACES OF FSM AND GRAPH REPRESENTATION

After a set of domain model examples are transformed
into the internal graph representations, the Concrete Syntax
Identifier defines the concrete syntax of the visual DSML in
a semi-automated manner. First, the Concrete Syntax
Identifier searches for candidate concrete syntax from a set
of graph representations of the domain model examples.
Because the concrete syntax describes how modeling
concepts (or abstract syntax) are rendered with visual and/or
textual elements, the Concrete Syntax Identifier finds unique
modeling elements, which are modeled as nodes in a graph,
by traveling each graph representation. In our approach, we
focus only on visual modeling elements. The identified
unique modeling elements become the candidate concrete
syntax. Then, the candidate concrete syntax is reviewed and
annotated by the end-user who is a domain expert. Initially,
the candidate concrete syntax is selected with respect to the
uniqueness of modeling elements (e.g., shapes and styles)
such that different names can be associated to each modeling
element. Thus, the framework requires interaction with the
domain expert to review the candidate concrete syntax and
annotate each unique modeling element with a generalized
name that can represent the notion of each modeling element
precisely and clearly.

During the review and annotation of candidate concrete
syntax, users may be asked to assign additional information
for association links between example model elements,
especially directional information. A link is used to connect
two or more classifiers and provides a static semantic
relationship between connected classifiers. The direction of a
link adds constraints between connected classifiers such as
direction of data or control flow. For example, a Dependency
relationship in UML is used to represent how a change in a
model element may affect the semantics of dependent
modeling elements at the modeling level. The arrow of a
dependency specifies the direction of a relationship between
connected modeling elements.

Table II shows the identified concrete syntax from Table
I and the results of the annotation. As shown in Table II (a),
four symbols are identified as candidate concrete syntax
from Table I, and their instance names are associated to the
symbol for annotation. Domain experts review each symbol
and associated attributes, in this case only instance names,
and then finalize concrete syntax identification by naming
each symbol with the term, which is generally accepted in
the domain. The assignment of required attributes is shown
in Table II (b). If a symbol is classified as a relationship type
(e.g., association, aggregate, or inheritance), domain experts
are asked whether the relationship is directional.

TABLE II. CONCRETE SYNTAX IDENTIFICATION

(a) Identified concrete

syntax

Name

State

EndState

StartState

Attribute

Type=Classifier

Type=Classifier

Type=Classifier

Type=Association
Directional=Yes

 (b) Output of Concrete Syntax
Identifier

After the concrete syntax is specified, the Graph
Annotator rewrites the graph representations generated by
the Graph Builder with the names of concrete syntax. To
generate a graph representation with concrete syntax, the
Graph Annotator takes the following three steps. First, all
nodes and edges are renamed with the matched concrete
syntax. The name of the nodes and edges are initially
assigned with instance names and the instance names are
provided to the domain experts when they review and
annotate the candidate concrete syntax. After the concrete
syntax is defined, the arbitrary names need to be renamed
with their corresponding concrete syntax name. Second, the
Graph Annotator checks the link information, which is also
added when the domain experts annotate the concrete syntax,
and determines whether to change the graph into a directed
graph. Initially, the graph representation is constructed using
an undirected graph because only limited link information
(e.g., name and participated classifiers) is provided when
transforming the domain model examples into a graph
representation by the Graph Builder. However, additional
pieces of information about links (including the direction of
a link) are added at the concrete syntax identification phase.
Finally, the Graph Annotator completes the graph generation

by optimizing a graph structure to reduce the complexity.
Table III shows the result of the Graph Annotator. The first
two graphs are simply transformed into the directed graph
from the undirected graph as domain experts annotate links
between modeling elements that are association types with
direction. However, the last graph is not just transformed
into the directed graph, but optimized by merging nodes,
especially State nodes, which have the same name and
attribute. The node State is used multiple times between node
StartState and EndState to represent state Read, Write, and
Rotate, and forms a cyclic loop. The Graph Annotator
optimizes the graph by pruning redundant nodes and edges,
and redirecting links to the remaining node.

TABLE III. OUTPUT OF GRAPH ANNOTATOR

StartState EndState

(a)

(b)
StartState EndStateRead

(c)

Graph Representation By Graph Builder

StartState

Write

Rotate

EndState

Read

StartState EndState

StartState EndStateState

StartState

Write

Rotate

EndState

Read

StartState EndStateState

Output of Graph Annotator

Based on the graph representation with the concrete
syntax, the Metamodel Inference Engine infers an abstract
syntax and produces its output in the form of a metamodel.
Generally, metamodel inference can be considered a special
case of inductive learning, which induces output by learning
from examples [7][13]. To induce quality output, the
inference engine requires a large set of training data, which
contains positive (i.e., a set of data that belongs to target) and
negative (i.e., a set of data that not belongs to target), but
preparing such training data is not easy in practice [3]. To
address the issue of preparing training data for inductive
learning, we introduce the notion of metamodel design
patterns.

Metamodel design patterns extend the notion of design
patterns onto metamodel design in order to provide solutions
for recurring problems when designing a metamodel. In
previous work [4], we analyzed the commonality and
variability of publicly available DSMLs and elicited
common features (i.e., classifier and relationship) and
variable features (e.g., style, containment, and nesting).
Based on the commonality and variability analysis, we
defined three initial metamodel design patterns, which can be
commonly applied to the design of a metamodel. From the
idea that a set of domain model examples can be instantiated
from a metamodel design pattern, the set of metamodel
design patterns can be used as training or reference data for
the inference engine. Thus, the Metamodel Inference Engine
is designed to find the maximum-likelihood for an inference
by comparing the graph representation of domain model
examples with the set of metamodel design patterns.

The final task of the MLCBD framework is inferring
static semantics from a set of domain model examples. An
explanation about metamodel and semantic inference is
described in the next section.

III. INFERRING METAMODEL AND SEMANTICS

This section provides an overview of the process for
inferring a metamodel and its associated static semantics,
especially static constraints, from the graph representation.

A. Metamodel Inference

After a set of domain model examples are transformed
into a set of graph representations with concrete syntax by
the Graph Annotator, the Metamodel Inference Engine infers
a metamodel based on the graph representation. To induce a
metamodel, the Metamodel Inference Engine loads each
graph representation, and then merges them in order to
generate a single graph that represents the entire set of
domain model examples. When combining each domain
model example, the type of each edge (e.g., mandatory and
optional) is specified based on the appearance of a node.

For instance, node StartState and EndState are specified
as mandatory because they are used in every domain model
example. However, node State is optional because it is not
present in some domain model examples, such as those in
Table III (a). The result of the graph combination is shown in
Figure 3. The merged graph is similar to the graph in Table
III (c), but a link between the StartState to EndState is added
in order to cover the FSM model that has only start and end
states, such as Table III (a). In addition, a dotted line is used
between StartState/EndState and State to represent that a
State can be used optionally in FSM models.

Figure 3. Combined Graph Representation

Besides combining graph representations, the Metamodel
Inference Engine determines the cardinality between nodes
as well as the dependency of the nodes in the graph. The
identified cardinality and dependency are represented by
using a matrix, as shown in Table IV. In both matrices, the
first column represents the source node and the first row lists
destination nodes. Table IV (a) shows the cardinality of FSM,
shown in Figure 3, assuming that nodes are connected with a
directed link. As links are directional, only certain nodes can
be source nodes, such as StartState and State, because those
links initiate a connection to End State or to State. The table
is initially set to 0 for the minimum and maximum value of
each cell. When the first domain model example from Table
III (a) is processed, both the minimum and maximum
cardinality between StartState and EndState is set to 1. When
the second domain model example is introduced, the
cardinality between StartState and State, and State and
EndState, are updated. At this time, the minimum cardinality
between StartState and State remains 0 because State does

not appear in the first model instance. The table is finally
completed by filling the cardinality between States when the
last domain model example is processed.

Generating the dependency matrix is simpler than that of
the cardinality matrix because it only checks nodes, which
are involved in linking, and directional information. Table IV
(b) shows the dependency matrix for the graph shown in
Figure 3. The combined graph representation and
cardinality/dependency matrix are used to infer the
metamodel as well as the semantics of the DSML (i.e., static
constraints) that will be described in the next section.

TABLE IV. CARDINALITY MATRIX AND DEPENDENCY MATRIX

After the Metamodel Inference Engine creates a

combined graph representation and its corresponding
cardinality and dependency matrix, it performs a graph and
subgraph isomorphism test to infer the metamodel. For the
(sub)graph isomorphism test, the combined graph
representations are used as an input graph and tested over a
set of graphs that are instantiated from metamodel design
patterns. Metamodel design patterns can provide solutions
for recurring problems when designing a metamodel. In
previous work [4], we proposed three different metamodel
design patterns after analyzing the commonality and
variability of publicly available DSMLs. Figure 4 shows one
of the metamodel design patterns, which shows the base
metamodel design pattern and possible graph instances of the
pattern. The base metamodel design pattern is commonly
used when designing a metamodel for simple DSMLs that
consist of simple classifiers and relationships. The top part of
Figure 4 (b) represents two different classifiers that are
linked with a directed relationship, and the middle part
describes two or more classifiers that are linked using a
circular and/or directed relationship.

C
lassifier

R
elationship

Figure 4. Base Metamodel Design Pattern

Let G be the combined graph representation, and
 M be the dependency matrix of G and
 represented as M = (a1, a2, ..., am)
 where m = |V|, size of vertex in the graph G,
 and ai is the row-column element that is attached
 to node i.

Let GTD = (GTD1, GTD2, ..., GTDk) be a set of graph template
 of metamodel design patterns, and k is the number of
 metamodel design patterns

Measure size of vertex, m = |V|, of the combined graph

Instantiate_Compile_Tree(GTD, m)
For i =1 to k
 GM += Merge_Tree(Node Root, GDi)
next for

Let N = Root of GM
For i=1 to m
 Look up row-column elements that is attached to node N,
 and find an entry aN such that aN = ak
 if no matched element is found,
 the graph G is not isomorphic with GM, and
 exit with failure
 else N = NS and mark node N matched
next for

Traverse GM to find the marked nodes and then transform the
node with corresponding metamodel design pattern.

Instantiate_ Graph (GTD, m)
 Instantiate GD = (GD1, GD2, ..., GDk) with size of m
 from GTD and GDi = (GDi1, GDi2,..., GDil) is l different
 types of graph instances of ith metamodel design pattern
 with vertex size m
 Create the root node Root of the decision tree
 if it does not yet exist.

Merge_ Graph(Node Root, GDi)
 Generate dependency matrix of GDi,
 MDi = (MDi1, MDi2,..., MDil,), where dimension of MDi

 is m, and MDik = (aik1, aik2,..., aikm), where aikl is
 row-column elements that is attached to node l

 Let N = Root
 For l = 1 to m
 If there is successor node NS of N for which aikl = aNs,
 and N = NS
 Else Generate a new node NS for aikl and
 make NS a direct successor of N.
 end if
 next for

Figure 5. The Algorithm for Metamodel Inference

The algorithm for inferring a metamodel is shown in
Figure 5. To infer a metamodel, a combined graph
representation is tested over a set of graphs, which is
instantiated from metamodel design patterns in order to
check (sub) graph isomorphism. Thus, the algorithm needs to
solve the one-to-many (sub)graph isomorphism problem: one

combined graph representation and many graphs instantiated
from the metamodel design patterns. To solve the issue, the
algorithm extended and modified the algorithm proposed by
Messmer and Bunke [12], whose algorithm tests one-to-
many (sub)graph isomorphism in quadratic time. In order to
test (sub)graph isomorphism, the algorithm transforms a set
of reference graphs into a decision tree and then tests the
input graph over the decision tree.

The algorithm shown in Figure 5 consists of three parts;
Instantiate_Graph(), Merge_Graph(), and main.
Instantiate_Graph() generates a set of graphs from
metamodel design patterns with size of m, where m is the
size of the vertex of the combined graph representation. As
shown in Figure 4, each metamodel design pattern is used as
a template to instantiate a set of graphs. Merge_Tree()
merges graphs instantiated from Instantiate_Graph() in order
to make a decision tree. When graphs instantiated from
metamodel design patterns are passed into Merge_Graph(), a
dependency matrix is constructed and its row-column
representation for every graph is passed into Merge_Graph().
Figure 6 (a) and (b) show the dependency matrix and its
corresponding row-column representation of the graph at the
top of Figure 6 (a). As shown in Figure 6 (b), the row-
column representation has different dimensions depending
on the node type.

(a) Graph and
Dependency Matrix

(b) Row-Column
Representation

(c) Decision Tree

Figure 6. An Example of Row-Column Representation and Decision Tree

After the dependency matrix and row-column elements
are identified, Merge_Tree() builds a new decision tree if it
does not yet exist, or merges graphs into the existing
decision tree. Each branch, which connects from one node to
another, is labeled with a row-column element. The row-
column element associated to the branch is used to determine
whether the algorithm needs to traverse further down nodes,
or whether the input graph is isomorphic. The main part
controls the overall process for the (sub)graph isomorphism
test and generates a complete metamodel by traversing the
decision tree.

B. Semantics Inference

Model semantics are often used to impose structural and
behavioral properties, as well as govern the syntax and
semantics of concrete syntax, and the value of the properties.
In general, DSMLs require two types of semantics: static and
dynamic semantics. Dynamic semantics describe the
meaning of a model and are related to the abstract syntax.
Static semantics are well-formed rules for the model and are
used to constrain the concrete syntax.

As mentioned earlier, the Metamodel Inference Engine
generates a single graph that is created by combining
individual graph representations of domain model examples.
Based on the graph representation and the cardinality tables,
the MLCBD framework induces the following static
constraints as fundamental constraints for visual DSMLs.

• Identification of concrete syntax: Some calssifiers
are mandatory for every model instance, while
others are optional. In our FSM example, StartState
and EndState are mandatory modeling elements that
should be included in all FSM domain model
examples. But, State can be used optionally as
shown in Table I (b) and (c). Initially, this constraint
can be identified when the Metamodel Inference
Engine produces a single graph representation by
combining individual domain model examples. The
Semantics Inference Engine verifies the concrete
syntax by comparing it with the cardinality table.

• Identification of boundedness: In our FSM examples,
all modeling elements are bounded to each other
through transitions. In some DSMLs, such as the
chemical structure modeling language [1], modeling
elements can have an open link in one end as long as
the other end is bounded to other modeling elements.
If modeling elements are not bounded to other
modeling elements, they can be represented as
isolated nodes, forming cyclic paths, or have an
infinite number of branches [6]. Thus, the Semantics
Inference Engine needs to search for those cases, and
cardinality is used as additional information for the
boundedness check. For example, a cyclic path
around State may be marked as unbounded. But, it
can be determined as bounded because the
cardinality between StartState/EndState and State is
set to (1, 1).

• Identification of relationship constraint: Some
DSMLs may constrain the use of a relationship. For
example, in a UseCase diagram, relationship types
known as “extend” and “include” are only applicable
between UseCases. When those relationships are
used to link between UseCases and an Actor, most
tools warn about a violation. The Semantics
Inference Engine infers all possible relationship
constraints and provides the constraints for the end-
users to select and apply according to their needs.

• Identification of participation constraints for each
modeling element: Some modeling elements can be
used only once in a model. StartState and EndState
are examples of this constraint. To derive this
constraint, the inference engine looks at the
cardinality table and finds cells that are set to 1 for
both minimum and maximum cardinality.

IV. RELATED WORK

The core of the MLCBD framework is an inference
engine for inducing a metamodel and its static constraints
from a set of domain model examples. Metamodel inference
has been researched in the past as an instance of grammar

inference in order to recover the lost metamodel and
architecture from example instance models.

Javed et al. [9] introduced a grammar inference system,
named MARS, for metamodel recovery. Their goal was to
induce a metamodel from a set of domain model examples,
which are the legacy of previous modeling tools when
additional information such as syntax and a language manual
are lost. To induce a metamodel, the MARS system
translates a set of domain model examples into MRL (Model
Representation Language), which is a small domain-specific
language. The MRL is used to translate domain model
examples into a context-free grammar, and then that
grammar is used to infer a metamodel. The MRL is
introduced as an intermediate representation between a set of
domain model examples and the MARS inference engine. In
our approach, a graph is used to resolve the representation
mismatch issue instead of introducing a new DSL such as the
MRL. In addition to this difference in representation and
inference, the purpose of MARS and MLCBD is also
different. MARS is focused on recovering a lost metamodel
from a set of legacy instances, whereas MLCBD assumes
that domain experts are available when creating a brand new
modeling language for a new domain, and a visual DSML is
built based on interaction with the user in the form of
supplied examples of the language that they desire. Thus, in
MARS, the underling metamodel has already been defined in
the past, but MLCBD allows new DSMLs to be elaborated
from domain expert interaction.

CacOphoNy [5] proposed a metamodel-driven process
for reconstructing software architecture based on a
metamodel. The approach defined six major steps, which are
performed iteratively and incrementally to reconstruct
software architecture. To reconstruct software architecture,
the approach collects domain-specific knowledge through
interviewing domain experts and storing domain information
in a database. From this information, a metamodel is
designed by searching and integrating appropriate
metamodel components from the inventory. As the approach
focuses on a methodological guide, no technical descriptions
about the algorithm, implementation, and automation are
discussed. However, the notion of metamodel integration
needs to be considered even in our approach when a set of
domain model examples are matched to more than one
metamodel design pattern.

To ease the semantics specification, Qattous et al. [15]
adopted a By-Example technique for specifying constraints
for modeling languages. As specifying constraints requires
language development expertise and is a mundane and error-
prone task, especially for domain experts who do not have
language development expertise, they implemented a
Specification By-Example technique in a metamodeling tool
and compared the approach with a wizard-based approach.
The metamodel-based approach showed better results
compared to a wizard-based approach with respect to
accuracy of specification, elapsed time for completion, and
user satisfaction. However, the approach needs intervention
of language experts if users do not understand a series of
constraint specification tasks. Similar to the Qattuos
approach, our approach infers the semantics of the visual

DSMLs (in particular, the static constraints of the visual
DSMLs), which can be applicable for most visual DSMLs,
by the Semantics Inference Engine. However, unlike the
Qattuos approach, our approach infers the static semantics
from the domain model examples, which are created by the
By-demonstration technique. Thus, our approach can specify
(static) semantics without intervention of a language expert.

V. CONCULUSION AND FUTURE WORK

In this paper, we introduce a systematic and
(semi)automated approach to create visual DSMLs from a
set of domain model examples, while resolving issues of
visual DSML development from an end-user perspective.
The approach identifies concrete syntax from a set of domain
model examples and then infers abstract syntax in the form
of a metamodel. To identify the concrete syntax and infer a
metamodel, a set of domain model examples provided by an
end-user are transformed into a graph representation. By
transforming a set of domain model examples into a graph
representation, the framework can resolve representation
mismatch issues. In addition, incremental and iterative
metamodel inference can reduce computation complexity.

We illustrated our approach with simple FSM instances.
But, in practice, visual DSMLs often have complex language
constructs such as types, containment, nesting and composite
structures. We will consider how to represent such complex
language constructs with a graph representation and to
minimize computation complexity of metamodel inference.

Another issue is the absence of negative domain model
examples. The approach induces a metamodel only with a set
of positive domain model examples. The generated DSML
may allow domain experts to design domain models that do
not belong to the domain. To prevent this problem, the
framework needs an extra verification step that can generate
positive and negative samples from an induced metamodel
and then reflect negative model instance information from
user feedback (i.e., from an inferred metamodel, generate all
possible model instances allowed by the metamodel and ask
the user to confirm correctness).

Although we can infer static constraints, the most
significant limitation of our approach is the need to infer
dynamic semantics of the visual DSML. Because semantics
add domain-specific knowledge and help in reasoning about
the desired properties of modeling elements, we need to list
and identify the categories of semantics that can be applied
generally to all visual DSMLs. Our future work is focused on
inferring and expressing these semantics formally and
declaratively in a manner that continues to support the idea
of an end-user by-example approach.

ACKNOWLEDGMENT

This work is supported by NSF CAREER award CCF-
1052616.

REFERENCES
[1] J. L. Bentley, L. W. Jelinski, and B. W. Kernighan, “Chem-a program

for phototypesetting chemical structure diagrams,” Computers &
Chemistry, vol. 11, no. 4, pp. 281-297.

[2] D. Blostein and A. Schürr, “Computing with Graphs and Graph
Transformations,” Software Practice and Experience, vol. 29, no. 3,
pp. 197-217, 1999.

[3] H. Cho, Y. Sun, J. Gray, and J. White, “Key Challenges for Modeling
Language Creation By Demonstration,” ICSE 2011 Workshop on
Flexible Modeling Tools, Honolulu HI, May 2011.

[4] H. Cho, and J. Gray, “Design Patterns in Metamodels,” The 11th
Workshop on Domain-Specific Modeling, Portland OR, Oct. 2011.

[5] J-M. Favre, “CacOphoNy: Metamodel driven architecture
reconstruction,” In Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004), IEEE Computer Society, Delft,
The Netherlands, pp. 204-213, 2004.

[6] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi, “Graph self-
organizing maps for cyclic and unbounded graphs,” Neurocomputing,
vol. 72, no. 7-9, pp.1419-1430, Mar. 2009.

[7] C. De La Higuera, “A bibliographical study of grammatical
inference,” Pattern Recognition, vol. 38, no. 9, pp. 1332-1348, Sep.
2005.

[8] P. Hudak, “Building domain-specific embedded languages,” ACM
Comput. Surv., vol. 28, no. 4es, Dec. 1996.

[9] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: A
metamodel recovery system using grammar inference,” Information
and Software Technology, vol. 50, no. 9-10, pp. 948-968, Aug. 2008.

[10] S. Kelly and J-P. Tolvanen, Domain-Specific Modeling: Enabling
Full Code Generation, Wiley-IEEE Computer Society Press, 2008.

[11] T. Mens, and P. V. Gorp, “A Taxonomy of Model Transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125-
142, Mar. 2006.

[12] B. T. Messmer and H. Bunke, "A decision tree approach to graph and
subgraph isomorphism detection," Pattern Recognition, vol. 32, no.
12, pp. 1979-1998, Dec. 1999.

[13] R. S. Michalski, “A theory and methodology of inductive learning,”
Artificial Intelligence, vol. 20, no. 2, pp. 111-161, Feb. 1983.

[14] G. Rozenberg (ed.). Handbook on Graph Grammars and Computing
by Graph Transformation: Foundations, vol.1-2. World Scientific,
Singapore, 1997.

[15] H. Qattous, P. Gray, and R. Welland, “An empirical study of
specification by example in a software engineering tool,” In
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM '10), Sep.
2010, Bolzano-Bozen, Italy.

[16] GME. http://www.isis.vanderbilt.edu/Projects/gme/

[17] MetaCase. http://www.metacase.com/

