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Abstract—Domain-Specific Modeling Languages (DSMLs) 
have received recent interest due to their conciseness and rich 
expressiveness for modeling a specific domain. However, 
DSML adoption has several challenges because development of 
a new DSML requires both domain knowledge and language 
development expertise (e.g., defining abstract/concrete syntax 
and specifying semantics). Abstract syntax is generally defined 
in the form of a metamodel, with semantics associated to the 
metamodel. Thus, designing a metamodel is a core DSML 
development activity. Furthermore, DSMLs are often 
developed incrementally by iterating across complex language 
development tasks. An iterative and incremental approach is 
often preferred because the approach encourages end-user 
involvement to assist with verifying the DSML correctness and 
feedback on new requirements. However, if there is no tool 
support, iterative and incremental DSML development can be 
mundane and error-prone work. To resolve issues related to 
DSML development, we introduce a new approach to create 
DSMLs from a set of domain model examples provided by an 
end-user. The approach focuses on (1) the identification of 
concrete syntax, (2) inducing abstract syntax in the form of a 
metamodel, and (3) inferring static semantics from a set of 
domain model examples. In order to generate a DSML from 
user-supplied examples, our approach uses graph theory and 
metamodel design patterns. 

Keywords; Domain-Specific Modeling Languages, 
Metamodel, Metamodel Inference, Semantic Inference, Graph 
Theory, Metamodel Design Patterns 

I.  INTRODUCTION 

Domain-Specific Modeling Languages (DSMLs) raise 
the level of abstraction while at the same time keep the 
design space narrowed to a specific domain. Due to the 
increased abstraction, it has been observed that end-users can 
learn a DSML in a short amount of time because they 
perceive that they are working directly with domain notions 
[8]. Moreover, it has been shown that DSMLs help to 
produce quality domain models [10]. 

However, DSML development is not an easy task 
because it requires both domain knowledge and language 
development expertise. In addition, DSMLs often are 
developed incrementally by iterating over complex tasks. As 
shown in Figure 1, DSML development begins by eliciting 
the DSML requirements, where domain experts describe 

what capability is required and how that is represented in 
their domain. Based on the DSML requirements, language 
development experts then identify the concrete syntax, 
design the abstract syntax, and specify semantics. Finally, 
domain experts verify the DSML and give formative 
feedback that may lead to an iteration requiring more 
development. The design of the concrete and abstract syntax, 
and the specification of semantics are difficult even for 
language development experts. In addition, an iterative and 
incremental DSML development process can be mundane 
and error-prone if there is no tool support. 

 

 
Figure 1.  DSML Development Process 

To lessen the burden of DSML development, we have 
investigated a new approach for creating DSMLs, especially 
visual DSMLs, based on a set of model examples that are 
provided by a domain expert. Graph theory is used in our 
approach to analyze each model instance representation 
independently and to infer the metamodel and static 
semantics based on the provided examples. Our approach 
allows the concept of end-user model “sketching” on white 
boards to be captured in a modeling tool that understands the 
domain abstractions and static semantics. 

This paper is organized as follows. Section 2 describes 
the overall process for inferring a metamodel and semantics 
from a set of domain model examples. We introduce in 
Section 3 the approach that uses graph theory to handle a set 
of domain model examples. Section 4 describes how to 
induce a metamodel and static semantics from the graph 
representation of the end-user provided model examples. 
Section 5 describes related work, and Section 6 concludes 
with future work based on current limitations. 



II. MLCBD: FRAMEWORK FOR DSML CREATION 

Conventionally, a visual DSML is developed using 
metamodeling environments such as GME [16] and 
MetaCase [17]. Although visual DSML development tasks 
are aided by such metamodeling tools, most tasks (e.g., 
defining abstract/concrete syntax and specifying semantics) 
are generally done manually by language development 
experts who may not have deep understanding or experience 
in the domains in which a visual DSML is needed. To 
address these challenges of visual DSML development, we 
have created a framework named MLCBD, which can assist 
in creating a visual DSML in a semi-automated manner. 
MLCBD addresses the issues and challenges of DSML 
development described in [3]. The overall process of 
MLCBD is illustrated in Figure 2. 
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Figure 2.  Process of MLCBD for Creating Visual DSML 

The process for creating a visual DSML begins with the 
demonstration of a set of model examples by end users. A 
Modeling Canvas, which has features similar to 
diagramming tools (e.g., Microsoft Visio), is provided to 
domain experts who then model the concepts in their domain. 
While domain experts demonstrate the notions of a domain, 
the sequences of user actions are captured and optimized to 
indentify candidate concrete syntax.  

After a set of domain model examples is created, those 
examples are transformed into graph representations. Graph 
transformation is widely used in the domain modeling 
community and is also a proven approach for representing a 
high-level programming language formally, which can then 
be used to generate other types of outputs by applying 
production/replacement rules through graph rewriting [2][14]. 
Transforming platform-independent models into platform-
specific models is a common example of graph 
transformation [11]. In our approach, graph transformations 
are used in two places: the Graph Builder and Graph 
Annotator in Figure 2. 

The Graph Builder transforms a set of domain model 
examples into a set of graphs. The goal of the Graph Builder 
is to generate a representation-independent model from a set 
of domain model examples provided by an end-user. 
Because DSMLs can be developed in various languages, 
domain models can be described with different 

representations. For example, to define the syntax of a 
DSML and maintain model instance data, a visual DSML 
may use different file representations such as XML, text, and 
binary forms. Although DSMLs may use the same file 
representation, the schema representing the metamodel for 
the visual DSML can be structured differently for each visual 
DSML. Thus, the Graph Builder reads a set of domain model 
examples and transforms them into the corresponding 
internal graph representation prior to inferring the 
metamodel. 

Table I shows examples of FSM instances that model a 
simple photo view application (left side), and the 
corresponding graph representations (right side). The first 
FSM instance, shown in Table I (a), represents that the 
application terminates without doing anything after startup. 
In Table I (b), the application reads an image to display. The 
last FSM instance in Table I (c) describes the state transition 
for copying an image from one media to another, or saving 
an image after rotation. The graph representation of each 
FSM model is shown in the right side of Table I. As the 
Graph Builder transforms a set of model examples based on 
simply modeling elements and their links, it generates a set 
of undirected graphs. 

TABLE I.  INSTACES OF FSM AND GRAPH REPRESENTATION  

 

After a set of domain model examples are transformed 
into the internal graph representations, the Concrete Syntax 
Identifier defines the concrete syntax of the visual DSML in 
a semi-automated manner. First, the Concrete Syntax 
Identifier searches for candidate concrete syntax from a set 
of graph representations of the domain model examples. 
Because the concrete syntax describes how modeling 
concepts (or abstract syntax) are rendered with visual and/or 
textual elements, the Concrete Syntax Identifier finds unique 
modeling elements, which are modeled as nodes in a graph, 
by traveling each graph representation. In our approach, we 
focus only on visual modeling elements. The identified 
unique modeling elements become the candidate concrete 
syntax. Then, the candidate concrete syntax is reviewed and 
annotated by the end-user who is a domain expert. Initially, 
the candidate concrete syntax is selected with respect to the 
uniqueness of modeling elements (e.g., shapes and styles) 
such that different names can be associated to each modeling 
element. Thus, the framework requires interaction with the 
domain expert to review the candidate concrete syntax and 
annotate each unique modeling element with a generalized 
name that can represent the notion of each modeling element 
precisely and clearly. 



During the review and annotation of candidate concrete 
syntax, users may be asked to assign additional information 
for association links between example model elements, 
especially directional information. A link is used to connect 
two or more classifiers and provides a static semantic 
relationship between connected classifiers. The direction of a 
link adds constraints between connected classifiers such as 
direction of data or control flow. For example, a Dependency 
relationship in UML is used to represent how a change in a 
model element may affect the semantics of dependent 
modeling elements at the modeling level. The arrow of a 
dependency specifies the direction of a relationship between 
connected modeling elements. 

Table II shows the identified concrete syntax from Table 
I and the results of the annotation. As shown in Table II (a), 
four symbols are identified as candidate concrete syntax 
from Table I, and their instance names are associated to the 
symbol for annotation. Domain experts review each symbol 
and associated attributes, in this case only instance names, 
and then finalize concrete syntax identification by naming 
each symbol with the term, which is generally accepted in 
the domain. The assignment of required attributes is shown 
in Table II (b). If a symbol is classified as a relationship type 
(e.g., association, aggregate, or inheritance), domain experts 
are asked whether the relationship is directional. 

TABLE II.  CONCRETE SYNTAX IDENTIFICATION 

 
(a) Identified concrete 

syntax 

Name

State

EndState

StartState

Attribute

Type=Classifier

Type=Classifier

Type=Classifier

Type=Association
Directional=Yes  

  (b) Output of Concrete Syntax
Identifier 

After the concrete syntax is specified, the Graph 
Annotator rewrites the graph representations generated by 
the Graph Builder with the names of concrete syntax. To 
generate a graph representation with concrete syntax, the 
Graph Annotator takes the following three steps. First, all 
nodes and edges are renamed with the matched concrete 
syntax. The name of the nodes and edges are initially 
assigned with instance names and the instance names are 
provided to the domain experts when they review and 
annotate the candidate concrete syntax. After the concrete 
syntax is defined, the arbitrary names need to be renamed 
with their corresponding concrete syntax name. Second, the 
Graph Annotator checks the link information, which is also 
added when the domain experts annotate the concrete syntax, 
and determines whether to change the graph into a directed 
graph. Initially, the graph representation is constructed using 
an undirected graph because only limited link information 
(e.g., name and participated classifiers) is provided when 
transforming the domain model examples into a graph 
representation by the Graph Builder. However, additional 
pieces of information about links (including the direction of 
a link) are added at the concrete syntax identification phase. 
Finally, the Graph Annotator completes the graph generation 

by optimizing a graph structure to reduce the complexity. 
Table III shows the result of the Graph Annotator. The first 
two graphs are simply transformed into the directed graph 
from the undirected graph as domain experts annotate links 
between modeling elements that are association types with 
direction. However, the last graph is not just transformed 
into the directed graph, but optimized by merging nodes, 
especially State nodes, which have the same name and 
attribute. The node State is used multiple times between node 
StartState and EndState to represent state Read, Write, and 
Rotate, and forms a cyclic loop. The Graph Annotator 
optimizes the graph by pruning redundant nodes and edges, 
and redirecting links to the remaining node. 

TABLE III.  OUTPUT OF GRAPH ANNOTATOR 

StartState EndState

(a)

(b)
StartState EndStateRead

(c)

Graph Representation By Graph Builder
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Based on the graph representation with the concrete 
syntax, the Metamodel Inference Engine infers an abstract 
syntax and produces its output in the form of a metamodel. 
Generally, metamodel inference can be considered a special 
case of inductive learning, which induces output by learning 
from examples [7][13]. To induce quality output, the 
inference engine requires a large set of training data, which 
contains positive (i.e., a set of data that belongs to target) and 
negative (i.e., a set of data that not belongs to target), but 
preparing such training data is not easy in practice [3]. To 
address the issue of preparing training data for inductive 
learning, we introduce the notion of metamodel design 
patterns. 

Metamodel design patterns extend the notion of design 
patterns onto metamodel design in order to provide solutions 
for recurring problems when designing a metamodel. In 
previous work [4], we analyzed the commonality and 
variability of publicly available DSMLs and elicited 
common features (i.e., classifier and relationship) and 
variable features (e.g., style, containment, and nesting). 
Based on the commonality and variability analysis, we 
defined three initial metamodel design patterns, which can be 
commonly applied to the design of a metamodel. From the 
idea that a set of domain model examples can be instantiated 
from a metamodel design pattern, the set of metamodel 
design patterns can be used as training or reference data for 
the inference engine. Thus, the Metamodel Inference Engine 
is designed to find the maximum-likelihood for an inference 
by comparing the graph representation of domain model 
examples with the set of metamodel design patterns. 



The final task of the MLCBD framework is inferring 
static semantics from a set of domain model examples. An 
explanation about metamodel and semantic inference is 
described in the next section. 

III. INFERRING METAMODEL AND SEMANTICS 

This section provides an overview of the process for 
inferring a metamodel and its associated static semantics, 
especially static constraints, from the graph representation. 

A. Metamodel Inference 

After a set of domain model examples are transformed 
into a set of graph representations with concrete syntax by 
the Graph Annotator, the Metamodel Inference Engine infers 
a metamodel based on the graph representation. To induce a 
metamodel, the Metamodel Inference Engine loads each 
graph representation, and then merges them in order to 
generate a single graph that represents the entire set of 
domain model examples. When combining each domain 
model example, the type of each edge (e.g., mandatory and 
optional) is specified based on the appearance of a node.  

For instance, node StartState and EndState are specified 
as mandatory because they are used in every domain model 
example. However, node State is optional because it is not 
present in some domain model examples, such as those in 
Table III (a). The result of the graph combination is shown in 
Figure 3. The merged graph is similar to the graph in Table 
III (c), but a link between the StartState to EndState is added 
in order to cover the FSM model that has only start and end 
states, such as Table III (a). In addition, a dotted line is used 
between StartState/EndState and State to represent that a 
State can be used optionally in FSM models. 

 
Figure 3.  Combined Graph Representation 

Besides combining graph representations, the Metamodel 
Inference Engine determines the cardinality between nodes 
as well as the dependency of the nodes in the graph. The 
identified cardinality and dependency are represented by 
using a matrix, as shown in Table IV. In both matrices, the 
first column represents the source node and the first row lists 
destination nodes. Table IV (a) shows the cardinality of FSM, 
shown in Figure 3, assuming that nodes are connected with a 
directed link. As links are directional, only certain nodes can 
be source nodes, such as StartState and State, because those 
links initiate a connection to End State or to State. The table 
is initially set to 0 for the minimum and maximum value of 
each cell. When the first domain model example from Table 
III (a) is processed, both the minimum and maximum 
cardinality between StartState and EndState is set to 1. When 
the second domain model example is introduced, the 
cardinality between StartState and State, and State and 
EndState, are updated. At this time, the minimum cardinality 
between StartState and State remains 0 because State does 

not appear in the first model instance. The table is finally 
completed by filling the cardinality between States when the 
last domain model example is processed. 

Generating the dependency matrix is simpler than that of 
the cardinality matrix because it only checks nodes, which 
are involved in linking, and directional information. Table IV 
(b) shows the dependency matrix for the graph shown in 
Figure 3. The combined graph representation and 
cardinality/dependency matrix are used to infer the 
metamodel as well as the semantics of the DSML (i.e., static 
constraints) that will be described in the next section. 

TABLE IV.  CARDINALITY MATRIX AND DEPENDENCY MATRIX 

 
After the Metamodel Inference Engine creates a 

combined graph representation and its corresponding 
cardinality and dependency matrix, it performs a graph and 
subgraph isomorphism test to infer the metamodel. For the 
(sub)graph isomorphism test, the combined graph 
representations are used as an input graph and tested over a 
set of graphs that are instantiated from metamodel design 
patterns. Metamodel design patterns can provide solutions 
for recurring problems when designing a metamodel. In 
previous work [4], we proposed three different metamodel 
design patterns after analyzing the commonality and 
variability of publicly available DSMLs. Figure 4 shows one 
of the metamodel design patterns, which shows the base 
metamodel design pattern and possible graph instances of the 
pattern. The base metamodel design pattern is commonly 
used when designing a metamodel for simple DSMLs that 
consist of simple classifiers and relationships. The top part of 
Figure 4 (b) represents two different classifiers that are 
linked with a directed relationship, and the middle part 
describes two or more classifiers that are linked using a 
circular and/or directed relationship. 

C
lassifier
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elationship

 
Figure 4.  Base Metamodel Design Pattern 

 



 

Let G be the combined graph representation, and 
      M be the dependency matrix of G and  
           represented as M = ( a1, a2, ..., am)  
           where m = |V|, size of vertex in the graph G,  
               and ai is the row-column element that is attached  
                    to node i. 
 
Let GTD = (GTD1, GTD2, ..., GTDk) be a set of graph template 
      of metamodel design patterns, and k is the number of 
      metamodel design patterns  
 
Measure size of vertex, m = |V|, of the combined graph 
  
Instantiate_Compile_Tree(GTD,  m ) 
For i =1 to k  
    GM += Merge_Tree( Node Root, GDi) 
next for 
 
Let N = Root of GM 
For i=1 to m 
    Look up row-column elements that is attached to node N, 
    and find an entry aN such that aN = ak 
    if no matched element is found,  
        the graph G is not isomorphic with GM, and 
               exit with failure 
    else N = NS and mark node N matched 
next for 
 
Traverse GM to find the marked nodes and then transform the 
node with corresponding metamodel design pattern. 
 
Instantiate_ Graph (GTD,  m ) 
    Instantiate GD = (GD1, GD2, ..., GDk) with size of m 
        from GTD and GDi = (GDi1, GDi2,..., GDil ) is l different 
        types of graph instances of ith metamodel design pattern  
        with vertex size m    
    Create the root node Root of the decision tree  
        if it does not yet exist. 
 
Merge_ Graph(Node Root, GDi) 
    Generate dependency matrix of GDi,  
         MDi = (MDi1, MDi2,..., MDil,), where dimension of MDi  

              is m, and MDik = (aik1, aik2,..., aikm), where aikl is 
         row-column elements that is attached to node l  
 
    Let  N = Root 
    For l = 1  to m 
        If there is successor node NS of N for which aikl = aNs,  
             and N = NS 
        Else Generate a new node NS for aikl and  
              make NS a direct successor of N.   
        end if  
    next for 

Figure 5.  The Algorithm for Metamodel Inference 

The algorithm for inferring a metamodel is shown in 
Figure 5. To infer a metamodel, a combined graph 
representation is tested over a set of graphs, which is 
instantiated from metamodel design patterns in order to 
check (sub) graph isomorphism. Thus, the algorithm needs to 
solve the one-to-many (sub)graph isomorphism problem: one 

combined graph representation and many graphs instantiated 
from the metamodel design patterns. To solve the issue, the 
algorithm extended and modified the algorithm proposed by 
Messmer and Bunke [12], whose algorithm tests one-to-
many (sub)graph isomorphism in quadratic time. In order to 
test (sub)graph isomorphism, the algorithm transforms a set 
of reference graphs into a decision tree and then tests the 
input graph over the decision tree. 

The algorithm shown in Figure 5 consists of three parts; 
Instantiate_Graph(), Merge_Graph(), and main. 
Instantiate_Graph() generates a set of graphs from 
metamodel design patterns with size of m, where m is the 
size of the vertex of the combined graph representation. As 
shown in Figure 4, each metamodel design pattern is used as 
a template to instantiate a set of graphs. Merge_Tree() 
merges graphs instantiated from Instantiate_Graph() in order 
to make a decision tree. When graphs instantiated from 
metamodel design patterns are passed into Merge_Graph(), a 
dependency matrix is constructed and its row-column 
representation for every graph is passed into Merge_Graph(). 
Figure 6 (a) and (b) show the dependency matrix and its 
corresponding row-column representation of the graph at the 
top of Figure 6 (a). As shown in Figure 6 (b), the row-
column representation has different dimensions depending 
on the node type.  

 

 
  

(a) Graph and 
Dependency Matrix

(b) Row-Column 
Representation 

(c) Decision Tree

Figure 6.  An Example of Row-Column Representation and Decision Tree 

After the dependency matrix and row-column elements 
are identified, Merge_Tree() builds a new decision tree if it 
does not yet exist, or merges graphs into the existing 
decision tree. Each branch, which connects from one node to 
another, is labeled with a row-column element. The row-
column element associated to the branch is used to determine 
whether the algorithm needs to traverse further down nodes, 
or whether the input graph is isomorphic. The main part 
controls the overall process for the (sub)graph isomorphism 
test and generates a complete metamodel by traversing the 
decision tree.  

B. Semantics Inference 

Model semantics are often used to impose structural and 
behavioral properties, as well as govern the syntax and 
semantics of concrete syntax, and the value of the properties. 
In general, DSMLs require two types of semantics: static and 
dynamic semantics. Dynamic semantics describe the 
meaning of a model and are related to the abstract syntax. 
Static semantics are well-formed rules for the model and are 
used to constrain the concrete syntax. 



As mentioned earlier, the Metamodel Inference Engine 
generates a single graph that is created by combining 
individual graph representations of domain model examples. 
Based on the graph representation and the cardinality tables, 
the MLCBD framework induces the following static 
constraints as fundamental constraints for visual DSMLs. 

• Identification of concrete syntax: Some calssifiers 
are mandatory for every model instance, while 
others are optional. In our FSM example, StartState 
and EndState are mandatory modeling elements that 
should be included in all FSM domain model 
examples. But, State can be used optionally as 
shown in Table I (b) and (c). Initially, this constraint 
can be identified when the Metamodel Inference 
Engine produces a single graph representation by 
combining individual domain model examples. The 
Semantics Inference Engine verifies the concrete 
syntax by comparing it with the cardinality table. 

• Identification of boundedness: In our FSM examples, 
all modeling elements are bounded to each other 
through transitions. In some DSMLs, such as the 
chemical structure modeling language [1], modeling 
elements can have an open link in one end as long as 
the other end is bounded to other modeling elements. 
If modeling elements are not bounded to other 
modeling elements, they can be represented as 
isolated nodes, forming cyclic paths, or have an 
infinite number of branches [6]. Thus, the Semantics 
Inference Engine needs to search for those cases, and 
cardinality is used as additional information for the 
boundedness check. For example, a cyclic path 
around State may be marked as unbounded. But, it 
can be determined as bounded because the 
cardinality between StartState/EndState and State is 
set to (1, 1). 

• Identification of relationship constraint: Some 
DSMLs may constrain the use of a relationship. For 
example, in a UseCase diagram, relationship types 
known as “extend” and “include” are only applicable 
between UseCases. When those relationships are 
used to link between UseCases and an Actor, most 
tools warn about a violation. The Semantics 
Inference Engine infers all possible relationship 
constraints and provides the constraints for the end-
users to select and apply according to their needs. 

• Identification of participation constraints for each 
modeling element: Some modeling elements can be 
used only once in a model. StartState and EndState 
are examples of this constraint. To derive this 
constraint, the inference engine looks at the 
cardinality table and finds cells that are set to 1 for 
both minimum and maximum cardinality. 

IV. RELATED WORK 

The core of the MLCBD framework is an inference 
engine for inducing a metamodel and its static constraints 
from a set of domain model examples. Metamodel inference 
has been researched in the past as an instance of grammar 

inference in order to recover the lost metamodel and 
architecture from example instance models.  

Javed et al. [9] introduced a grammar inference system, 
named MARS, for metamodel recovery. Their goal was to 
induce a metamodel from a set of domain model examples, 
which are the legacy of previous modeling tools when 
additional information such as syntax and a language manual 
are lost. To induce a metamodel, the MARS system 
translates a set of domain model examples into MRL (Model 
Representation Language), which is a small domain-specific 
language. The MRL is used to translate domain model 
examples into a context-free grammar, and then that 
grammar is used to infer a metamodel. The MRL is 
introduced as an intermediate representation between a set of 
domain model examples and the MARS inference engine. In 
our approach, a graph is used to resolve the representation 
mismatch issue instead of introducing a new DSL such as the 
MRL. In addition to this difference in representation and 
inference, the purpose of MARS and MLCBD is also 
different. MARS is focused on recovering a lost metamodel 
from a set of legacy instances, whereas MLCBD assumes 
that domain experts are available when creating a brand new 
modeling language for a new domain, and a visual DSML is 
built based on interaction with the user in the form of 
supplied examples of the language that they desire. Thus, in 
MARS, the underling metamodel has already been defined in 
the past, but MLCBD allows new DSMLs to be elaborated 
from domain expert interaction. 

CacOphoNy [5] proposed a metamodel-driven process 
for reconstructing software architecture based on a 
metamodel. The approach defined six major steps, which are 
performed iteratively and incrementally to reconstruct 
software architecture. To reconstruct software architecture, 
the approach collects domain-specific knowledge through 
interviewing domain experts and storing domain information 
in a database. From this information, a metamodel is 
designed by searching and integrating appropriate 
metamodel components from the inventory. As the approach 
focuses on a methodological guide, no technical descriptions 
about the algorithm, implementation, and automation are 
discussed. However, the notion of metamodel integration 
needs to be considered even in our approach when a set of 
domain model examples are matched to more than one 
metamodel design pattern. 

To ease the semantics specification, Qattous et al. [15] 
adopted a By-Example technique for specifying constraints 
for modeling languages. As specifying constraints requires 
language development expertise and is a mundane and error-
prone task, especially for domain experts who do not have 
language development expertise, they implemented a 
Specification By-Example technique in a metamodeling tool 
and compared the approach with a wizard-based approach. 
The metamodel-based approach showed better results 
compared to a wizard-based approach with respect to 
accuracy of specification, elapsed time for completion, and 
user satisfaction. However, the approach needs intervention 
of language experts if users do not understand a series of 
constraint specification tasks. Similar to the Qattuos 
approach, our approach infers the semantics of the visual 



DSMLs (in particular, the static constraints of the visual 
DSMLs), which can be applicable for most visual DSMLs, 
by the Semantics Inference Engine. However, unlike the 
Qattuos approach, our approach infers the static semantics 
from the domain model examples, which are created by the 
By-demonstration technique. Thus, our approach can specify 
(static) semantics without intervention of a language expert. 

V. CONCULUSION AND FUTURE WORK 

In this paper, we introduce a systematic and 
(semi)automated approach to create visual DSMLs from a 
set of domain model examples, while resolving issues of 
visual DSML development from an end-user perspective. 
The approach identifies concrete syntax from a set of domain 
model examples and then infers abstract syntax in the form 
of a metamodel. To identify the concrete syntax and infer a 
metamodel, a set of domain model examples provided by an 
end-user are transformed into a graph representation. By 
transforming a set of domain model examples into a graph 
representation, the framework can resolve representation 
mismatch issues. In addition, incremental and iterative 
metamodel inference can reduce computation complexity. 

We illustrated our approach with simple FSM instances. 
But, in practice, visual DSMLs often have complex language 
constructs such as types, containment, nesting and composite 
structures. We will consider how to represent such complex 
language constructs with a graph representation and to 
minimize computation complexity of metamodel inference. 

Another issue is the absence of negative domain model 
examples. The approach induces a metamodel only with a set 
of positive domain model examples. The generated DSML 
may allow domain experts to design domain models that do 
not belong to the domain. To prevent this problem, the 
framework needs an extra verification step that can generate 
positive and negative samples from an induced metamodel 
and then reflect negative model instance information from 
user feedback (i.e., from an inferred metamodel, generate all 
possible model instances allowed by the metamodel and ask 
the user to confirm correctness). 

Although we can infer static constraints, the most 
significant limitation of our approach is the need to infer 
dynamic semantics of the visual DSML. Because semantics 
add domain-specific knowledge and help in reasoning about 
the desired properties of modeling elements, we need to list 
and identify the categories of semantics that can be applied 
generally to all visual DSMLs. Our future work is focused on 
inferring and expressing these semantics formally and 
declaratively in a manner that continues to support the idea 
of an end-user by-example approach. 
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