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Refactoring is an essential approach toward improving the internal structure
of a software system while preserving its external behavior. Traditional refac-
toring techniques have focused on the implementation stage, with source code
as the primary artifact of the refactoring process. However, a recent trend is to
apply the concepts of refactoring to higher levels of abstraction. Consequently,
model refactoring is emerging as a desirable means to improve design models
using behavior-preserving transformations.

This chapter describes a practical approach toward implementing model-
level refactoring. A model transformation engine has been developed and pro-
vides a generalized underlying refactoring tool for manipulating models. A
model refactoring browser is integrated within the model transformation en-
gine to enable the automation and customization of various refactoring meth-
ods for either generic models or domain-specific models. A result of this work
is the capability to perform model refactoring rapidly using user-specified
transformation rules.

1 Introduction

Refactoring was first proposed by Opdyke [20] in 1992 as a methodology for
restructuring programs. Over the past decade, refactoring has grown into a
disciplined technique to improve the maintainability of software systems by
changing the internal structure of software without altering its external behav-
ioral properties. With proper tool support, refactoring can be an efficient and
effective way to help improve the design of software, make software easier to
understand, and to assist in identifying errors [8]. In addition, lightweight de-
velopment methods, such as eXtreme Programming (XP) [25], have promoted
refactoring as a core development practice.

The majority of previous research into refactoring is focused at the code
level (i.e., the implementation and maintenance phases during the software
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life-cycle), and less concerned with the earlier stages of design. It is well-known
that errors made early in the design process, but discovered late, are much
harder to fix than errors made and found earlier in the development process
[24]. Thus, a strong need exists for tools that enable designers to discover errors
early in development, and to better modularize designs captured in models,
not just code [2]. Applying refactoring as early as possible during the software
life-cycle can improve the quality of design and reduce the complexity and cost
in successive development phases. According to a recent survey on software
refactoring [18], several researchers have begun to investigate refactoring at
the design level, specifically in terms of UML models. The concept of model
refactoring is emerging as a desirable means to improve design models using
behavior-preserving transformations.

The main contribution of this chapter is to describe a customizable envi-
ronment for performing model-level refactoring. In our previous work, a model
transformation tool was developed to provide a generalized underlying engine
for manipulating models. A new model refactoring browser has been built on
top of the transformation engine to enable the automation and customization
of various refactoring methods for either generic models or domain-specific
models. The work described in this chapter differs from previous model refac-
toring research because it provides the ability for users to create their own
rules that specify the effect of a refactoring. A set of pre-existing refactoring
rules can be applied to a generic model, or a user may customize refactoring
rules that pertain to a particular domain-specific modeling language.

The chapter is structured as follows. Section 2 gives an overview of the
modeling tool and transformation engine. The model refactoring browser is
introduced in Section 3. In Sections 4 and 5, examples are presented to illus-
trate generic and domain-specific model refactorings. The chapter concludes
with a section on related and future work.

2 Background: Model Transformation with GME and
C-SAW

This section briefly introduces the modeling tool and transformation engine
that are used throughout the remainder of the chapter. The overview provides
references and links to additional details describing specific features and use
of the tools. The particular focus of the chapter is to extend the concepts of
this section in order to provide a generic model refactoring tool.

2.1 The Generic Modeling Environment

Model-Integrated Computing (MIC) [27] has been refined at Vanderbilt Uni-
versity over the past decade to assist with creation and synthesis of computer-
based systems. In MIC, multiple-view models are used to capture the infor-
mation relevant to the system, represent the dependencies and constraints
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among different modeling views, and automatically synthesize different kinds
of software artifacts. As a variant of the Model-Driven Architecture (MDA)
[17, 10], a key application area for MIC is those domains that tightly integrate
the computational structure of a system and its physical configuration (i.e.,
embedded system domains such as avionics and automotive software). In such
systems, MIC has been shown to be a powerful tool for providing adaptability
in frequently changing environments.

A specific instance of the type of domain-specific modeling supported by
MIC is implemented using the Generic Modeling Environment (GME) [7]. The
GME is a UML-based meta-modeling environment that can be configured and
adapted from meta-level specifications (called the modeling paradigm) that
describe the domain. When using the GME, a modeling paradigm is loaded
into the tool to define an environment containing all of the modeling elements
and valid relationships that can be constructed in a specific domain [16]. Model
interpreters supply an ability to generate other software artifacts (e.g., code or
simulation scripts) from the models. The GME provides a meta-environment
for constructing system and software models using notations that are familiar
to the modeler. It was developed before the OMG Meta-Object Facility (MOF)
[10] existed, but a MOF-compliant model editor is near completion [6].

2.2 Constraint-Specification Aspect Weaver

The Constraint-Specification Aspect Weaver (C-SAW) is a model transforma-
tion engine implemented as a plugin component for GME. C-SAW unites the
ideas of aspect-oriented software development (AOSD) [15] with MIC to pro-
vide better modularization of model properties that are crosscutting through-
out multiple layers of a model [12]. C-SAW offers the ability to explore nu-
merous modeling scenarios by considering crosscutting modeling concerns as
aspects that can be rapidly inserted and removed from a model. This permits
a modeler to make changes more easily to the base model without manually
visiting multiple locations in the model. Until C-SAW, these transformations
and translations have largely been performed manually in practice. Additional
information about C-SAW, including software downloads and video demos, is
available at: http://www.cis.uab.edu/gray/Research/C-SAW.

The C-SAW model transformation engine is depicted in Figure 1. In this
figure, a source model serves as input to the model weaver, and the output is
a target model that has a crosscutting concern dispersed across the original
base. To perform this process, the transformation specifications describe the
binding and parametrization of strategies to specific entities in a model. A
transformation specification is composed of an aspect and several strategies.
An aspect is the starting point of a transformation process. A strategy is used
to specify elements of computation and the application of specific properties
to the model entities.

The specification aspects and strategies are based on a special underly-
ing language, called the Embedded Constraint Language (ECL) [14]. The
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Fig. 1. C-SAW overview

ECL is an extension of the Object Constraint Language (OCL) [29], and pro-
vides many of the common features of OCL, such as arithmetic operators,
logical operators, and numerous operators on collections (e.g., size, forAll, ex-
ists, select). ECL also provides special operators to support model aggregates
(e.g., models, atoms, attributes), connections (e.g., connpoint, target, refs)
and transformations that provide access to modeling concepts that are within
the GME (e.g., addModel, setAttribute, removeNode).

ECL is distinct from OCL with respect to side-effects and model manipula-
tion features. OCL is a declarative language and cannot support operations to
create, update or remove the entities within a model, whereas the use of ECL
requires the capability to introduce side-effects into the underlying model.
This is needed because the strategies often specify transformations that must
be performed on the model. This requires the ability to make modifications
to the model as the strategy is applied. ECL supports an imperative trans-
formation procedural style with numerous operations that can alter the state
of the model. The application of ECL to model refactoring will be presented
later in Sections 4 and 5.

3 Model Refactoring Browser

C-SAW was originally developed as an aspect weaver at the modeling level.
It has evolved into a general model transformation engine. In this chapter,
C-SAW is applied specifically to a special case of model transformation, i.e.,
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model refactoring. In particular, the ECL is used to specify and implement
the model refactoring process. The following definition of model refactoring is
adapted from Robert’s refactoring definition [23]:

Definition 1. A Model refactoring is a pair R = (pre; T) where pre is the
precondition that the model must satisfy, and T is the model transformation.

Within this definition, several trivial properties are also implied, such as
the name and parameters of the refactoring. In the following sections, detailed
explanations will be presented regarding the way C-SAW passes the parame-
ters to strategies and how the strategies are used to specify the precondition
and transformation rules.

A model refactoring browser (see Figure 2) has been implemented as a
plugin within GME. This plugin operates with the underlying C-SAW trans-
formation engine. The overall aim of this refactoring browser is to provide
an interactive and automated framework for refactoring models. The model
refactoring browser provides automation of generic pre-defined refactoring
methods within the GME meta-model domain. It also enables the specifi-
cation of user-defined refactoring strategies, either in the generic model or in
any domain-specific model. For pre-defined refactorings, users select a sub-
set of the models to be refactored from the browser menu list, and provide
the appropriate parameters to the specified refactoring method. After that,
the refactoring process will be carried out automatically. A partial list of the
implemented UML class diagram refactorings contains: Add Class, Extract
Superclass, Extract Class, Remove Class, Move Class, Rename Class, Col-
lapse Hierarchy, Add Attribute, Remove Attribute, Rename Attribute, Pull
Up Attribute, and Push Down Attribute. These generic refactorings are pre-
defined within the refactoring browser and can be used for any GME meta-
model. During the automated refactoring of a model, the error messages that
occur during model transformation will be displayed as soon as a violation
is discovered. For user-defined refactorings, users specify their own refactor-
ing strategies using ECL. Such customized refactorings will be stored in the
browser for later reuse. Sections 4 and 5 provide more details and examples
regarding the implementations of pre-defined and user-defined refactorings.

4 Generic Model Refactorings

During the meta-modeling process, the basic step is to determine the modeling
paradigm that contains all of the syntactic, semantic, and other information
of the domain to be modeled. Generic modeling, i.e., meta-modeling, is the
mapping of specification concepts onto entities, relations and attributes of a
specific domain. The GME meta-modeling paradigm is based on UML. The
syntactic definitions are modeled using pure UML class diagrams and the
static semantics are specified with OCL. Hence, it is quite natural to regard
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Fig. 2. Model refactoring browser in GME

GME meta-models as class diagrams in order to perform UML class diagram
refactorings [26]. In addition, GME meta-models extend the notations of UML
to support various generic modeling concepts, which give rise to analysis on
GME meta-specific refactorings.

4.1 Class Diagram Refactorings

UML class diagrams are widely adopted to help design and visualize software
structure [3]. It is apparent that some refactorings introduced for code repre-
sentation can also be applied to class diagrams. Furthermore, it may be more
intuitive for the system developer or maintainer to discover the refactoring
hot spots in the class diagram rather than the source code. Likewise, after a
particular refactoring has been carried out, the impact of it may be better
overviewed in a graphical notation.

Fowler’s catalogue lists seventy-two object-oriented refactorings [8], among
which we select “Extract Superclass” as a specific example for describing the
application of ECL transformation strategies to refactor class diagrams. The
“Extract Superclass” refactoring is defined as, “when you have two classes
with similar features, create a superclass and move the common features to the
superclass” [9] (see Figure 3). This refactoring helps to reduce the duplicate
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common features spread throughout different classes. Generally, a refactoring
is composed of a name, several parameters, preconditions, and a sequence of
strategies, all of which are specified below.

Name: Extract Superclass
Parameters: selectedClasses, className
Preconditions:

1. The className for the new super class must be unique, i.e., no other
classes have the same name.

2. All of the selected classes must have at least one common attribute.
Strategies:

1. Create a new superclass named as className.
2. Insert the common attributes into this superclass.
3. Delete the common attributes in each selected class.
4. Make an inheritance relationship from the superclass to the selected

classes.

Fig. 3. Extract Superclass refactoring

Figure 4 contains the complete ECL specification of the “Extract Super-
class” refactoring. Here, the “start” aspect defines the starting point of a
transformation process. It takes parameters that are provided by users (ob-
tained from the refactoring browser) and passes them to strategies that define
the necessary transformation semanctics to implement the refactoring.
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1 defines start ,evalPrecond ,extractSuper;

2

3 strategy evalPrecond(classes :modelList;

4 className:String)

5 {

6 assert(currentFolder ().select(m|

7 m.name()== className)->size()==0);

8 declare commonAttrs:attributeList;

9 commonAttrs := findCommonAttributes(classes);

10 if (commonAttrs.size() >0) then

11 extractSuper(classes ,commonAttrs ,className);

12 endif;

13 }

14

15 strategy extractSuper(classes:modelList;

16 commonAttrs:attributeList; className:String)

17 {

18 declare super:model;

19 super:= createModel("SuperClass", className);

20 super.addAttributes(commonAttrs);

21 classes ->removeAttributes(commonAttrs);

22 super.connectedTo("Inheritance", classes);

23 }

24

25 aspect start(selectedClasses:modelList;

26 className:String)

27 {

28 evalPrecond(selectedClasses ,className);

29 }

Fig. 4. ECL for composing states into a composite state

For this particular refactoring, the precondition evaluation is specified as
the first strategy to be executed. At the beginning, it uses an “assert” state-
ment to verify whether a class named “className” already exists in the cur-
rent model folder. If the assertion fails, an error message will be displayed to
indicate the violation of the precondition, and the refactoring process will be
terminated. However, if “className” does not yet exist, refactoring will con-
tinue to check if there are any common attributes within the selected classes.
If common attributes are found in the current modeling scope, the second
strategy “extractSuper” will begin to execute. As a result of this refactoring,
a new superclass will be introduced with extracted common attributes in the
selected classes. This ECL code fragment can be applied to any number of
classes within a specific scope of a model.
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4.2 GME Meta-model Refactorings

This section presents several GME meta-specific refactorings. The GME meta-
model extends the concepts of UML entities and relationships to support a
set of generic modeling stereotypes, such as model, atom, connection, set,
and reference [7]. Figure 5 illustrates a simple meta-model that represents a
system administration domain. This meta-model contains entities acting as
the major roles in the domain, such as Administrator, PC, and Server, as
well as the Administrate relationship (represented by “Connection”) between
these entities. In this domain, an Administrator is responsible for a set of PCs
and Servers. A Server or PC may be controlled by several Administrators.

Fig. 5. A system administration meta-model

The meta-model is rather simple. Nevertheless, it requires every system
device managed by an administrator to have an “Administrate” connection.
The drawback is that 100 devices would require 100 separate connections.
Even if a new visualization was assigned to the connection lines, the vast
number of associations would render the diagram unreadable and error prone.
This suggests the need for a “multi-connections” refactoring. The following
subsections describe two refactoring methods that use different entity concepts
from the GME meta-model.

Replace Connections with Set

The first refactoring utilizes the idea of “set,” which is the GME concept
recommended for situations in which an object has to be associated with a
relatively large number of neighboring objects in a diagram. The members
of a set are “owned” by the set through the “SetMembership” connection
defined in the GME. The concept of sets is not as indispensable as that of
connections because sets can usually be replaced by connections. However, sets
should be regarded as an alternate association technique that supplies greater
convenience in many situations. The refactored meta-model that is based on
a set is shown in Figure 6, which is semantically equivalent to the meta-model
in Figure 5. However, Figure 6 provides a more concise and clearer model
structure than Figure 5 and addresses improved scalability of devices. This
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refactoring process includes removing all of the “Administrator” connections
from each device (PC and Server), replacing the “Administrator” model by
a set, and connecting each device to the new set through a “SetMembership”
association.

Fig. 6. Refactoring the meta-model using Set

Introduce FCO

Another kind of refactoring can be implemented on this meta-model by intro-
ducing a First Class Object (FCO) [7], which is a generic concept representing
a general class for all of the entities and relations in GME. The purpose of
using a FCO is to enable objects that are inherently different (such as model,
atom, reference, connection) to inherit from a common base class. Figure 7 il-
lustrates the refactored meta-model for the system administration domain by
inserting an FCO. In this case, a generic entity that represents anything that
a system administrator can govern is specified by the FCO named “Network.”
All of the devices inherit from this FCO. Consequently, only one connection
is needed to link the “Administrator” model to the “Network” FCO.

Fig. 7. Refactoring the meta-model using FCO

Because of the rich set of concepts in the GME meta-model, there exist
other feasible methods for GME meta-specific refactorings, such as Introduce
Reference, Compose Atoms into Model, and Replace General Inheritance with
Implementation/Interface Inheritance. These refactorings have been specified
using ECL and integrated into the model refactoring browser.
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5 Domain-Specific Model Refactorings

The previous section described general refactorings that were applied to UML
class diagrams at the GME meta-modeling level. Due to the intrinsic generic
modeling features of GME, the C-SAW model transformation engine can
be applied to any domain of interest, not only to the generic GME meta-
model. This section provides examples within two different modeling domains
to demonstrate refactoring of domain-specific models with user-defined cus-
tomizations.

5.1 Refactoring Quality of Service Models

The Adaptive Quality Modeling Language (AQML) [19] is a domain-specific
graphical modeling language developed for modeling Distributed Real-Time
Embedded (DRE) systems with quality-of-service (QoS) adaptation config-
urations. The key objective of AQML is to raise the level of abstraction in
specifying QoS policies by providing a control-centric design for the represen-
tation and analysis of adaptation of bandwidth for video streaming software.

Within the QoS Adaptation Modeling category, the designer can spec-
ify numerous details, such as: the different state configurations of the QoS
properties, the legal transitions between the different state configurations, the
conditions that enable these transitions, the data variables that receive and
update QoS information, and the events that trigger the transitions. These
properties are modeled using an extended Finite-State Machine (FSM) formal-
ism. Figure 8 shows a QoS adaptation model of a video streaming scenario in
the AQML. The application of QoS adaptation is used to minimize the latency
on the video transmission. Cutting frame size is one of the feasible strategies
to reduce the transmission rate to compensate for the increased load.

There are six different states that are possible in Figure 8. After initializa-
tion, the camera is tracking over a specific area and transmitting the video.
The video is initially transferred at the full frame rate with 100% full frame
size (in “Nominal” state). As load increases on the communication resources,
each image frame has to be cropped to 90% (“Crop 90pc” state) or even 80%
(“Crop 80pc” state) of the original size.

In fact, these three states perform the same task (i.e., adjusting the frame
size). In order to improve comprehensibility and modularity, we can apply the
model refactoring technique to group related states together into a composite
state by specifying ECL model transformation strategies. Because the AQML
model is based on state machines, the generic analysis regarding state diagram
refactoring is provided below. This refactoring is composed of a name, a couple
of parameters, preconditions, and strategies. The selected objects are those
states that users are willing to group, as well as their internal transitions. The
new state name is for the composite state. These parameters are provided
by the user of the refactoring browser. The details of the ECL strategies are
specified in Figure 9.
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Fig. 8. AQML model before refactoring

Name: Compose states into a composite state
Parameters: selectedObjects, newStateName
Preconditions:

1. This newStateName must be legitimate, i.e., no other state has the
same name.

2. Find out all of the external states from which the selected states
have the incoming transitions, in the name of “ExtInStateLs.” Each
found state in this list must have the identical set of transitions
(“ExtInTransitionLs”) leading to the identical set of selected states
(“IntSourceLs”).

3. Find out all of the interior states in the selected set outward connecting
to the external states, named “IntDstLs.” Each found state in such a
list must have the identical set of transitions (“ExtOutTransitionLs”)
leading to the identical set of external states (“ExtOutStateLs”).

Strategies:
1. Create a new state model, under the name of newStateName.
2. Move all of the user-selected states along with all of the internal tran-

sitions into this new composite state. According to the GME meta-
model definition, a connection is just an attachment to a first-class
object (e.g., model, atom); whenever the objects are copied, moved or
removed, those connections will lose one of their ends automatically.
Consequently, all of the transitions in “ExtInTransitionLs” as well as
“ExtOutTransitionLs” will be removed.

3. Within this new state, insert an “Init” state and connect it to all of
the states in “IntSourceLs.”

4. Within the composite state, insert an “End” state and make a tran-
sition from each state in “IntDstLs” to the end.

5. Go back to the initial outer model, and make a transition from each
state in the “ExtInStateLs” to the new composite state that will also
be connected to each state in the “ExtOutStateLs.”
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1 defines start ,evalPrecond ,createNewState ,

2 modifyNewState ,modifyInitModel;

3

4 strategy evalPrecond(selectedObjs:objectList;

5 newStateName:String)

6 {

7 assert(currentFolder ().select(m|

8 m.newStateName ()== newStateName)->size()==0);

9 declare ExtInStateLs ,IntDstLs:objectList;

10 ExtInStateLs := findExtIns(selectedObjs);

11 IntDstLs := findIntDsts(selectedObjs);

12 if (ExtInStateLs.hasCommonExtInTransitionLs ()

13 && IntDstLs.hasCommonExtOutTransitionLs ())

14 then createNewState(selectedObjs , newStateName);

15 endif;

16 }

17

18 strategy createNewState(selectedObjs:objectList;

19 newStateName:String)

20 {

21 declare IntDstLs ,IntSourceLs:objectList;

22 declare newState:model;

23 IntSourceLs := findIntSources(selectedObjs);

24 IntDstLs := findIntDsts(selectedObjs);

25 newState := newModel("State", newStateName);

26 moveObjects(selectedObjects , newState);

27 newState ->modifyNewState(selectedObjects ,

28 IntDstLs ,IntSourceLs);

29 }

30

31 strategy modifyNewState(selectedObjects ,IntDstLs ,

32 IntSourceLs:objectList)

33 {

34 declare init ,end:atom;

35 init:= createAtom("Init");

36 IntSourceLs ->connectFrom(init);

37 end:= createAtom("End");

38 IntDstLs ->connectTo(end);

39 currentFolder ().select(m|m.newStateName ()==

40 "initialModel")->modifyInitModel(this ,selectedObjs);

41 }

42

43 strategy modifyInitModel(newState:model;

44 selectedObjs:objectList)

45 {

46 declare ExtInStateLs ,ExtOutStateLs:objectList;

47 declare compositeState:model;

48 ExtInStateLs := findExtIns(selectedObjs);

49 ExtOutStateLs := findExtOuts(selectedObjs);
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50 compositeModel := copyModel(newState);

51 ExtInStateLs ->connectTo(compositeModel);

52 ExtOutStateLs ->connectFrom(compositeModel);

53 }

54

55 aspect start(selectedObjects:objectList;

56 newStateName:String)

57 {

58 evalPrecond(selectedObjects , newStateName);

59 }

Fig. 9. ECL for composing states into a composite state

Figure 10 shows the refactored AQML model as a result. The upper model
delineates the new state diagram with a composite state “AdjustingFrame-
Size” and the bottom model illustrates the three sub-states contained by this
composite state.

Fig. 10. AQML model after refactoring

5.2 Refactoring Petri Nets

Petri Nets (PNs) [21] are well-known as a basic model for the general theory
of concurrency, and as a formal specification technique for distributed and
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concurrent systems. Petri Nets have obtained extensive usage and acceptance
due to their easy-to-understand visual notation and a wide range of available
tools. A Petri Net is primarily characterized by places, transitions and arcs
and is graphically represented by a directed bipartite graph in which places
are drawn as circles, transitions are drawn as bars, input and output arcs
(from a place to a transition or a transition to a place) are drawn as arrows.
The execution of a Petri Net is controlled by the position and movement of
markers (tokens). It incorporates the notion of a distributed state, called the
marking, which is graphically represented by black dots (tokens) in places.
The dynamic behavior of a Petri Net is governed by transition firing rules. A
transition can fire if all of its input places contain at least one token, and if all
of its inhibitor places do not contain tokens. If these conditions are satisfied,
the transition is said to be enabled, and its firing removes one token from all
its input places and generates one token in each of its output places (assuming
the weight of each arc is 1).

Figure 11 shows a Petri Net model describing a simplified version of the
classic Dining Philosophers problem. This problem consists of philosophers
sitting at a table who do nothing but think and eat. The philosophers each
have a chopstick next to them, both of which they need in order to eat. The
initial marking for this model will have all philosophers in the “Thinking”
state, and all of the chopsticks available. Because there is only a finite set
of chopsticks, it is not possible for all philosophers to eat at the same time.
The Petri Net shown here models a philosopher that takes both chopsticks
simultaneously, thus preventing the situation where some philosophers have
one chopstick, but are not able to pick up the second one.

This Dining Philosophers Petri Net model is deadlock-free (i.e., there
always exists at least one philosopher whose state is able to transfer from
“Thinking” to “Eating”). Nevertheless, partial starvation is still possible be-
cause the firing of one transition named “Hungry” prevents the other neigh-
boring transition from firing. If one philosopher rapidly alternates between
“Thinking” and “Eating,” then the neighboring philosophers may never ob-
tain the “Chopstick” that they need, which will result in starvation. In such
a case, the “Chopstick” place models a semaphore to guarantee only one of
the two adjacent philosophers can eat at the same time.

One possible solution to avoid starvation is to refactor the Petri Net model
in order to enforce that every transition must be fired in alternating turns. A
generalized semaphore refactoring for this transformation can be specified as
follows:

1. Pick out the semaphores from among the places in the model.
2. For each semaphore and its two output transitions, insert two

new places, one with a marker and the other without a marker.
Connect the two new transitions to the existing model to form a
cycle (see highlights in Figure 12).
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Fig. 11. Dining Philosophers Petri Net

To verify that the refactored Dining Philosophers Petri Net is starvation-
free after applying this refactoring, we might keep track of the control flow
among the transitions one by one. Figure 12 illustrates this Petri Net model
after refactoring. Due to the six added places, initially only the philosopher
on the left can be triggered from the “Thinking” state to “Eating” state.
This transition will move the markers in P1 and P2 to Q1 and Q2. After the
first philosopher finishes eating and places the chopsticks back on the table
(marker goes from “Eating” to “Chopsticks”), the philosopher in the middle
will be enabled to eat.

Likewise, the philosopher on the right will eventually start to eat in turn.
Therefore, all of the philosophers will obtain the opportunity to eat in turn.
The corresponding ECL code fragment for implementing this particular refac-
toring is illustrated in Figure 13. An iteration over the selected list of the Petri
Net places checks to see if they meet the precondition of being semaphores,
and then inserts two new places with appropriate connections. This strategy
is suitable for any number of semaphores involved in the refactoring. For sim-
plicity, it is assumed that each semaphore controls two transitions and it is
the user’s responsibility to select the semaphores to be transformed.
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Fig. 12. Dining Philosophers Petri Net

1 defines freeStarvation , refactorPetriNet;

2

3 strategy freeStarvation ()

4 {

5 declare dstList:modelList;

6 declare dst1 ,dst2 ,p,q:model;

7 declare static num:Integer;

8 dstList := findOutConnections ();

9 assert(dstList.size()==2);

10 dst1:= dstList.get (0); dst2:= dstList.get (1);

11 p:= createModel("InitMarker","P"+intToStr(num));

12 q:= createModel("Place", "Q" + intToStr(num));

13 num:=num + 1;

14 addConnection(dst1 ,p); addConnection(p,dst2);

15 addConnection(dst2 ,q); addConnection(q,dst1);

16 }

17

18 aspect refactorPetriNet(selectedObjs:objectList)

19 {

20 selectedObjs ->freeStarvation ();

21 }

Fig. 13. ECL for starvation-free Petri Net
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6 Related Work

There are several ongoing investigations into the topic of software refactoring.
This section briefly acknowledges some of the work that has been done in
this area. Mens and Tourwé [18] made a comprehensive literature survey on
the existing research of general software refactoring, which is based upon
various research perspectives such as refactoring activities, specific techniques
to support these activities, types of the software artifacts to be refactored,
and refactoring effects.

Opdyke [20] first initiated the concept of refactoring. He identified a set
of program refactorings that were applied to an object-oriented framework
and presented the theory for automating refactorings in a behavior/semantics
preserving way. Fowler et al. [8] provided a catalog of dozens of refactoring
techniques for improving code. The focus on these works is at the code level,
which is different from our approach to perform the refactoring at a higher
level of modeling.

With respect to the research of model refactoring at a higher level of ab-
straction, Suny et al.[26] proposed an initial set of refactorings for UML class
diagrams and statecharts. Their research provided a fundamental paradigm
for model refactoring to improve the design of object-oriented applications;
nevertheless, they do not have any concrete implementation of representative
tools. Boger [4] implemented a refactoring browser for a UML case tool to
automate the process of system-defined refactoring methods. However, this
browser can only provide the automation of pre-existing refactorings; it does
not allow a user to specify their own customized refactoring strategies. Porres
[22] defines model refactorings as rule-based model transformations, which
is similar to our approach. But, his experimental tool does not represent the
capability to support refactoring automation and domain-specific model refac-
torings.

In contrast to the related literature, our model refactoring browser is built
on top of an underlying model transformation engine that can enable the
automation and customization of refactorings for either generic meta-models
or domain-specific models.

Additionally, there exist other related model refactoring approaches, but
with different contexts from our approach. Astels [1] presented techniques for
detecting bad smells in UML. Correa and Werner [5] primarily contribute
several smells and refactorings to OCL specifications. Several researchers are
concentrating on a refactoring based on design pattern models [9, 1]. Van Gorp
[11] extends the UML meta-model for automating the consistency between the
model and the code. Tichelaar [28] developed a specific meta-model to support
language-independent refactorings for Smalltalk and Java.

Several of the approaches cited above provide theoretical investigations
that do not have concrete implementations of representative tools. Some of
the implementation tools provide the automation of pre-existing refactorings,
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but do not offer the extensibility of user-defined refactorings. Some tools can
not support refactoring automation.

7 Conclusions and Future Work

This chapter described an approach to model refactoring that is based on the
existing C-SAW model transformation engine. With ECL, users can express
their objectives in a more concise manner than using traditional programming
languages. It also permits a modeler to make changes flexible to the base
model without manually visiting multiple locations in the model (for instance,
imagine such a case when there are 100 semaphores within one Petri Net
model). The C-SAW model transformation engine and its associated language
ECL permit the modeler to make quantifiable statements across the model in
a style that supports improved reusability and scalability of models.

An initial prototype model refactoring browser tool serves as a front-end to
C-SAW and exists as a plugin within the GME. A set of predefined refactor-
ings have been integrated within the browser in order to facilitate automated
refactorings. The ECL can be used also to specify new refactoring strate-
gies. This interactive tool permits users to request refactorings to either a
GME meta-model, or a domain-specific model (e.g., Petri Nets, or finite state
machines). The current research project is integrated with the GME, whose
meta-meta-model is based on its own specification instead of the Meta-Object
Facility (MOF). The existence of GME’s UML/OCL meta-meta-model pre-
dates the adoption of MOF as the OMG’s standard meta-meta-model. In
addition, although MOF offers some advantages over the GME UML/OCL
meta-meta-model, such as package importation and merge, it’s also lacking
some features that are important for defining domain-specific modeling lan-
guages, such as stateful associations, facilities for multi-view modeling, and a
standard way to specify the concrete syntax of models [6]. However, there is
an ongoing project that incorporates MOF into the GME. It is believed that
the same model refactoring technique can be applied to GME-MOF. Further-
more, this research is not limited to GME. We believe that it can be adapted
into other modeling tools and plan to generalize a tool-independent version
of the model refactoring browser.

With respect to future work, there are several extensions that will be
integrated into the model refactoring browser. Behavior/Semantics preser-
vation is an important issue with regard to model refactoring. To preserve
the semantics of a model, it is necessary to measure the impact of a model
transformation in such a way that it can be proved that the behavior/seman-
tics of the model is unchanged. In the GME, a meta-model is specified with
UML and OCL constraints. The meta-model can assist in the determination
of behavior/semantics preservation [26]. However, a more precise formalism
is required for semantic and behavior analysis to ensure the preservation of
the model behavior. Because the behavior/semantics of different models may
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have different specification, and various aspects of the behavior/semantics
may depend on various user-specific concerns [18], it is essential to allow the
modelers to provide the information of the behavior property that will remain
invariant during a model refactoring. We are in the process of developing a
model testing suite to assess behavior/semantics preservation by executing
user-specified test cases on target and refactored models [13]. In addition, a
debugging toolkit is planned for C-SAW. This will be indispensable for detect-
ing errors in the ECL specification during the refactoring execution process.
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