
Using Domain-Specific Modeling to
Generate User Interfaces for Wizards

Enis Afgan, Jeff Gray, Purushotham Bangalore
University of Alabama at Birmingham

Department of Computer and Information Sciences
1300 University Boulevard

Campbell Hall #131
++ 1 (205) 934-2213

{afgane, gray, puri}@cis.uab.edu

ABSTRACT
The rising adoption and incorporation of computers into everyday
life requires human-computer interaction methods to be efficient
and easy to understand. Simultaneously, complexities of
underlying computer systems are increasing, inherently requiring
deeper understanding and a detailed level of human-computer
interaction methods. Software wizards are one important example
from the category of tools that simplify this interaction. Through
a simple, domain-specific, and targeted set of guided questions,
wizards allow complex tasks to be completed quickly and simply.
Tasks accomplished by wizards range from simple information
collection to complex system configuration. Because wizards are
task-specific, their lifespan is short and thus must live up to
requirements to be easily and quickly adaptable. This paper
outlines such wizard requirements and provides a metamodeling
approach to wizard generation. A domain-specific modeling
language is presented, which has been shown to be helpful in the
generation of domain-specific wizards that are capable of change
and adaptation to changing requirements.

Categories and Subject Descriptors
D.2.13 {Software Engineering}: Reusable Software – Domain
engineering, reusable libraries, reuse models

General Terms
Design, Reliability, Experimentation, Languages.

Keywords
Metamodeling, wizards, automated wizard generation, user
interfaces

1. INTRODUCTION
Many advances in technology emerge from mechanisms that hide
underlying accidental complexities by introducing additional

layers of abstraction. The renewed interest in domain-specific
languages is an example of how higher levels of abstraction can
assist end-users in describing concerns from the problem space of
a particular domain, as opposed to adopting notations of a specific
solution space (e.g., use of a general-purpose programming
language or middleware). Software wizards [1] are an additional
technique that assist in simplifying computer usage and
configuration. By guiding configuration and customization
through a set of targeted questions, a wizard can assist in
resolving many activities that previously involved lower level
knowledge of the inner workings of a specific application. For
example, software installation and computer diagnostic tools use
wizards to obtain information from a user that is needed to
perform configuration and analysis tasks. Software applications
like Microsoft Excel provide a host of wizards to assist in creating
various types of tables and charts that would be tedious to create
manually. As the trend toward raising levels of abstraction
continues, wizards offer a viable alternative to assist end-users in
describing more complicated tasks that refer to their domain
expertise. With supporting tools, intuitive interfaces and guided
suggestions provided by wizards can accomplish many tasks that
minimize the required expertise of specific technical spaces. A
challenge emerges, however, with respect to how the actual
wizards are designed and created. This paper describes a domain-
specific modeling language (DSML) that assists in generating
wizards.

Because wizards are domain and problem specific, they are often
transient and temporary in nature. New versions and various
compositions of wizards need to be created, each having a
possibly short life span. As such, allocating significant effort to
wizard creation is poor use of one’s time and should be
minimized. We realized that a significant improvement in wizard
composition could be offered by providing a modeling approach
that could be used by a domain expert to design targeted wizards.
A domain user can use the generated wizard to create necessary
artifacts based on the parameters supported through the wizard
questions. By investigating this technique, two categories of users
and generators emerged: (1) the domain expert who uses a DSML
for specifying a wizard in his/her own domain; this user utilizes
the DSML to concentrate on collecting desired information, (2)
the domain user who uses the wizard that was designed by the
expert; this user provides specific and targeted information.
The idea of wizard composition and guided information collection
contributes to the trend of improved abstraction mechanisms for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Third International Workshop on Model Driven Development of
Advanced User Interfaces, September 30–October 5, 2007, Nashville,
TN, USA.

specifying application information. By applying model-driven
engineering (MDE) [2] to wizard composition and generation,
improvements to wizard development are introduced by
eliminating complexity of hand-coding all the intricate links
between pages. Furthermore, different model interpreters can be
associated with the wizard DSML to generate wizards in many
different formats (e.g., HTML, Java), each of which can store the
obtained data in different formats (e.g., text, XML, VoiceXML).
We have devised and developed a DSML that enables generation
of user interfaces associated with wizards. A domain selected as
an example and used throughout this paper comes from the area
of grid computing [3]. The Application Specification Language
(ASL) [4] is an XML-based language allowing an application
developer to describe functionality, installation, and invocation
properties of their application that persist throughout the grid
environment. We selected ASL as an example because
composition of an ASL specification can be a time-consuming
and error-prone task for the application developer (i.e., wizard
user). The use of a wizard to create an ASL document consists of
constructing representations of the necessary language elements
describing an application. An application developer may answer
the wizard’s questions with parameters that describe the
corresponding application feature. We have found that a wizard
helps to remove many of the errors in formatting an ASL
document to ensure that the document was created correctly (i.e.,
the application developer would be alleviated of a lot of typing
and checking the correctness of XML tags).
The roles of each user and the tools that they use are highlighted
in

Grid expert

Instance model

ASL

Application
developer

Application specific
wizard XML

document

Figure 1. The DSML generates the corresponding wizard
(including page formatting and composition), which is then used
by the application developer to provide descriptive information
about the application through a targeted set of questions. After
completing the wizard, an XML document is created
corresponding to the data that was collected (i.e., correctly
formatted, ASL schema conforming document).

Grid expert

Instance model

ASL

Application
developer

Application specific
wizard XML

document

Figure 1. Two levels of abstraction accomplished by using a

DSML to generate a higher level wizard.

2. WIZARD CLASSIFICATION
Using MDE to compose wizards requires the design of a
metamodel capable of representing necessary entities within the
wizard domain. Thus, determining the purpose of a metamodel
depends on the type of wizards that will ultimately be created. In
order to distinguish general types of metamodels to be created, we
separate wizards into two broad categories: plain and guided.
Plain wizards correspond to simple page sequencing with
appropriate fields incorporated into each page. The categorizing
components of this type of metamodel are needed to enable and
handle connectivity between different pages, sequencing of the
pages, data passing and storage across the pages, as well as page
design (including proper page formatting). There is a single path
of execution built into this type of wizard at the time of model
creation. After the model is created, the generator is in charge of
converting the model into underlying code (e.g., Java, HTML).
Even though this type of wizard may seem somewhat trivial, the
task that must be handled by the wizard generator at this stage is
two-fold: a) create the user interface under given constraints; and
b) simultaneously and automatically implement the method of
capturing user data where it is output in the format (e.g., text,
XML, VoiceXML) specified by the user. Depending on the
underlying technology used, the correct method of data passing
must be applied (e.g., if wizard is created in HTML use CGI or
servlets). This step of wizard generation must be implemented in
the generator at a very generic level because the end-user denotes
their intention by connecting two individual pages, but does not
provide any additional parameters. The result of the modeling
task is the specification of a software configuration wizard where
the user specifies the necessary information to link appropriate
libraries and the location of needed services.
Guided wizards extend the concept of page sequencing and are
more closely related to expert systems [5]. Rather than having a
predefined path set at the time of creation, guided wizards must
have generic code incorporated into them so that user choices
determine the next page of the wizard to be displayed.
Incorporating these ideas into a metamodel requires much more
care to be taken and imposes much higher requirements on the
code generators. There are two major considerations at the
metamodel level when dealing with a guided wizard. The first one

is the requirement to create connections not only between entire
pages of the wizard, but also to offer the user a set of predefined
options. A user of the wizard modeling language must be able to
make connections between those individual options and between
subsequent wizard pages. The second consideration deals with
page scoping. Because different paths in the course of wizard
execution may take the wizard user to a page with equivalent
information, there may be redundant pages floating around the
instance model resulting in repetitive work done by the designer,
eventually leading to more difficult page management and
updating. Depending on the metamodel and corresponding data,
this condition may be unavoidable, but by proper scoping and
introduction of the hierarchical structuring of the collected output
such issues can be reduced.
When using a generator for a wizard model and transforming it
into the wizard implementation (e.g., HTML or source code),
there is the additional requirement to manage control flow
elements for individual user choices. This logic must be
customized to the particular wizard and be completely transparent
to the end-user. Beyond making the necessary connections at the
page level, the generator must be capable of composing necessary
code, including page scoping which introduces new challenges for
the generator developer. Figure 2 provides a graphical
representation of these considerations, where the workflow of a
guided wizard can be seen. The user initially provides some data,
which leads to a subsequent page that may branch off into several
possible pages. Selection of the subsequent page is determined by
user input at run-time. Each page may branch into multiple
subsequent pages, some of which can be equivalent in context,
even though the paths may differ. At each step of the wizard,
control flow (CF) code logic must be provided by the wizard
generator along with the code for data storage that incrementally
constructs the resulting document (e.g., Data).

Figure 2. Wizard flow showing multiplicity of generated
wizard pages and requirement to handle control flow (CF) at

each junction as the Data document is being generated.

3. A PROTOTYPE METAMODEL
To investigate the benefits of model-driven generation of wizards,
we developed a metamodel capable of representing wizard
components found in ASL. A model compiler was also developed
to generate the corresponding HTML code to represent the
wizard. As a supporting tool, we used the Generic Modeling

Environment (GME) [6], which is a metamodeling tool that can
be used to build DSMLs. Our metamodel describes a modeling
language that allows grid experts to specify the following
elements of a wizard: compose pages with corresponding
elements found in ASL, connect those pages into a meaningful
flow, and generate matching HTML code that can be incorporated
into a grid web portal interface.
The modeling language mirrors the structure of ASL. Because
ASL is a hierarchically structured language, which is
compartmentalized so that separate sections of a document are
logically related, the metamodel conforms to the desired scoping
rules of individual pages. By providing hierarchical components
within the metamodel based on segregation of individual sections
of ASL, the metamodel supports logical and meaningful structure
of wizard generation to the grid expert. These sectionally-
structured components provide page scoping, which allow the
user to logically separate individual pages into subsections. This
assists in keeping the number of pages to a manageable level.
Because pages at separate sections of a wizard are generally
dissimilar, metamodel segregation also minimizes the requirement
for redundant page composition. At the current stage of
development, the metamodel is capable of representing individual
page components, compose those into a meaningful format and
make them part of a larger section. Additionally, connections
between entire pages corresponding to ASL sections can be
established.
Figure 4 shows the metamodel with numbered elements, which
are referenced in the rest of this section. In the metamodel, there
are three major sections: section model, connection elements and
individual page components. The section model (number 6) is the
starting element of the entire metamodel setting the connectivity
rules and encompassing all the other components available in the
metamodel. The connectivity elements (numbers 1-5) establish
different types of connections (i.e., whether components belong to
a single page or establish connections between pages), and the
remaining elements (numbers 7-15) correspond to wizard page
components. All of the elements except number 8 directly
correspond to page components such as text box or a drop down
menu. In the case of composite elements (e.g., drop down menu,
radio button group), lower level elements are provided to allow
user creation of individual user options. Number 8 is a ‘help
element’ allowing each element to be associated with context-
sensitive help (as supplied by the metamodel user).

CC

CC

CC

CC
CC

CC

CC

Data Data Data Data

Figure 3. Sample page of generated wizard to collect
application information as defined in ASL.

A model compiler was developed for this metamodel to generate
the wizard in HTML and accommodate for proper page
formatting, sequencing and transitioning. The development of the
model compiler to support all available features of the
corresponding metamodel presented a significant challenge. The
current implementation of the model compiler is limited in
functionality to support generation of HTML pages realizing the
desired page formatting. Page arrangement and page connectivity
is still unavailable. The major challenge arose from the need to
automatically establish connectivity protocols based on different
types of connected objects within a model. A sample page of the

Figure 4. Metamodel for wizard generation. This particular instance is for creating ASL documents.

generated wizard in HTML is provided in Figure 3. This figure
shows the initial page of the wizard, corresponding to the general
information collection page of ASL. The figure also shows the
metamodel supplied outline of the interactive help functionality.

4. CONCLUSIONS AND FUTURE WORK
This paper is a report of work in progress that started with a
specific goal of producing wizards to assist in grid document and
application configuration. During the course of our investigation,
we realized that our modeling language was broader in scope and
applicable to multiple domains. This paper provides a motivation
of the requirements and challenges for specifying the composition
of generic wizards through the use of DSMLs. A contribution of

this work is the two levels of indirection that have to be handled
through the metamodeling environment. This means that the
compiler must seamlessly produce not only the code for the
wizard composition, but it also must incorporate code into the
wizard that will store the data provided to the wizard at run-time
in the appropriate format. The data storage component is not
explicitly defined in the instance model and thus must exist in the
generator.
A DSML was designed to support the approach. In the
development process, issues arose with the implementation of the
compiler code dealing with the support for the two levels of
indirection. Because both of the mentioned levels must
simultaneously be supported in the compiler code accommodating

1

2

3 4

5

6
7

8

9 10 11 12 13

14

15

16

for any possible combination of elements found in the metamodel,
the compiler encountered several challenges. This was due to the
fact that at each step of the wizard and at each level of indirection
very specific code needed to be automatically created. Use of
standard object-oriented programming techniques resulted in
inconsistent functionality that was hard to manage and maintain.
More specifically, this was referring to compiler code that was
used to generated page connections and organize page layout.
Because each component was slightly different depending on the
context, compiler code needed to be adjusted accordingly rather
than simply being able to reuse it transparently. A need to
modularize code into more manageable components, each
capturing the desired functionality, became apparent. Thus, we
are considering the use of new techniques such as the Aspect-
Oriented Programming [7] to solve such issues. Eventually, with
the improvements in generation of our metamodel compiler, new
fields for tool applicability can be realized, such as automated job
submission interface generation for grid applications, as well as
simultaneous output of multiple formats of wizard-collected data
requiring minimal user intervention.

5. REFERENCES
[1] D. Batory, G. Chen, E. Robertson, and T. Wang, "Web-

Advertised Generators and Design Wizards," International

Conference on Software Reuse (ICSR), Victoria BC, Canada,
1998.

[2] D. Schmidt, "Model-Driven Engineering," IEEE Computer,
vol. 39, pp. 25-32, 2006.

[3] The Grid: Blueprint for a New Computing Infrastructure, 1st
ed: Morgan Kaufmann Publishers, 1998.

[4] E. Afgan and P. Bangalore, "Application Specification
Language (ASL) – A Language for Describing Applications
in Grid Computing," Submitted for review to The 4th
International Conference on Grid Services Engineering and
Management - GSEM 2007, Leipzig, Germany, 2007.

[5] J. Durkin, Expert Systems: Design and Development, 1st ed.
Englewood Cliffs, NJ: Macmillan Coll Div, 1998.

[6] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits,
and S. Neema, "Developing Applications using Model-
Driven Design Environments," IEEE Computer, vol. 39, pp.
33-40, 2006.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-Oriented
Programming," European Conference on Object-Oriented
Programming (ECOOP), Jyväskylä, Finland, 1997.

