
Representing Clones in a Localized Manner
Robert Tairas

AtlanMod (INRIA & École des Mines de Nantes)
44307 Nantes, France

robert.tairas@inria.fr

Ferosh Jacob and Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL 35487

fjacob@crimson.ua.edu, gray@cs.ua.edu

ABSTRACT
Code clones (i.e., duplicate sections of code) can be scattered
throughout the source files of a program. Manually evaluating a
group of such clones requires observing each clone in its original
location (i.e., opening each file and finding the source location of
each clone), which can be a time-consuming process. As an
alternative, this paper introduces a technique that localizes the
representation of code clones to provide a summary of the
properties of two or more clones in one location. In our approach,
the results of a clone detection tool are analyzed in an automated
manner to determine the properties (i.e., similarities and
differences) of the clones. These properties are visualized directly
within the source editor. The localized representation is realized
as part of the features of an Eclipse plug-in called CeDAR.

Categories and Subject Descriptors D.2.6 [Software
Engineering]: Programming Environments – Integrated
environments.

General Terms Management, Languages.

Keywords Code clones, visualization, representation.

1. INTRODUCTION
Refactoring tools, including those that are part of an IDE, have
been documented to be under-utilized [14]. One of the reasons is
the need to configure the refactoring activity through multiple
modal dialog boxes that forces a separation between the activities
of program editing and the actual refactoring task. That is, the
programmer must switch from the activity of editing the source
code in a source editor to answering configuration questions in
dialog boxes, thus making the source editor unfocused. The
refactoring tool Refactor! Pro [4] proposes a solution to reduce
the need for dialog boxes by visualizing refactoring changes
directly in the source editor.

The principle of keeping most programming activities within the
source editor also can be applied to the representation of code
clones. Code clones are sections of code that are duplicated in
multiple locations in the source files of a program. Often a
programmer has to evaluate the clones identified by clone
detection tools, by observing directly the actual sections of code
that represent the clones. This evaluation can be for program

comprehension purposes only or can also include analysis to
determine refactoring opportunities. In some instances, the clones
can be scattered within a large source file. The clones can also be
scattered in several files, such that opening each file containing
the clones can clutter the view of the code in an IDE. This
suggests a similar situation with the display of dialog boxes in
refactoring tools as described in the previous paragraph. This
motivates the need to provide a localized representation of the
clones that visualizes the properties of each clone in a clone group
and the relationships among them.

This paper describes a representation of clone groups that is
localized, such that the information about each clone in a group
can be viewed in one location. Such representation is not limited
to a pair of clones, but can represent multiple clones (i.e., three or
more clones) in a clone group. This representation is implemented
as part of the features of an Eclipse plug-in called CeDAR (Clone
Detection, Analysis, and Refactoring) [17]. The rest of this paper
is structured as follows: the next section introduces our
representation and the information gathered for the representation.
Section 3 shows how the representation is generated and
examples of the representation are given. Section 4 evaluates the
instances of the localized representation and Section 5 offers a
discussion related to the approach. Sections 6 and 7 provide
related work, a conclusion and future work.

2. REPRESENTING CLONES IN ONE LOCATION
Our representation of a clone group in a single location provides a
summary of the differences and implicit similarities that is not
limited to just a pair of clones, but can include more than two
clones. The code associated with one of the clones is used as the
primary display for the clone group in what we call the “default”
clone. Differences among the clones in a group are incorporated
within this section of code. The focus of our approach is on clone
types II and III (as categorized in [3]).

Figure 1. Sample clone group representation

A simple example of the localized display of a clone group in
CeDAR can be seen in Figure 1. This example represents a code
fragment in a group of four clones found in Apache Ant 1.6.5.
The code elements that differ between at least two of the clones in
the group are highlighted in neon green (i.e., the string "Unable
to delete file" and variable file in the declaration of
variable message). When the cursor is placed above one of the
highlighted code elements, a pop-up will be displayed that lists

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0588-4/11/05... $10.00.

the differing values associated with the code element. In Figure 1,
placing the cursor above the "Unable to delete file" string
spawns a pop-up reporting that Clone 4 consists of a different
string (i.e., "Unable to delete directory"). This also
implies that the remaining clones consist of the same string as the
string that is displayed in the figure.

1

2

3

4 5

$ #
&

1 2 3 4 $

C lo n e 1

1 2 3 4 #

C lo n e 2

1 2 3 5 &

C lo n e 3

Figure 2. Portion of tree identifying clone similarities

2.1 Detecting clone similarities and differences
The initial step of displaying localized clone group information in
CeDAR is to obtain the location of clones. Such information is
obtained from clone detection tools, in particular the textual
results of the various tools. It should be noted that part of the
clone detection process related to these tools includes the
determination of differences among the clones. However, in the
majority of the tools such difference information is not made
available in the final results that are reported to the user. In our
approach, analysis of the clones reported by a clone detection tool
is performed to determine the parameterized differences among
the clones. In effect, CeDAR performs a “second pass” on the
code associated with the clones to determine these properties.
However, this independent process allows for CeDAR to utilize
results from different clone detection tools (i.e., CCFinder [12],
CloneDR [2], Deckard [10], Simian1, and SimScan2).

To process the similarities and parameterized differences among
the clones in a group, the Abstract Syntax Tree (AST)
representation of each clone in the group is obtained. Because
CeDAR is an Eclipse plug-in, the Eclipse Java Development
Tools (JDT)3 is used in the process. After the AST of each clone
in the group is obtained, comparisons can be made on these ASTs
to determine predefined parameterized elements that are
recognized. Comparisons are currently performed on the
statement-level sub-trees within the ASTs. The suffix tree
technique [8] is used to determine the levels of similarities among
the clones, which include identifying similarities among the
subset of clones in a clone group. Because the clone detection tool
has already determined a group of code snippets as clones, the
suffix tree in this case is used as a way to identify the similarities
and differences within the clones themselves.

To generate the suffix tree, the sequence of elements in which
comparisons are performed is the concatenation of all first-level
statement nodes from each clone. This is a lower granularity level
compared to using each AST node for the sequence, but in this
case, the suffix tree is not used to find clones, but rather to
determine first-level statement characteristics of the clones that

1 Simian, http://www.redhillconsulting.com.au/products/simian
2 SimScan, http://blue-edge.bg/simscan
3 Eclipse JDT, http://www.eclipse.org/jdt

have already been found by a third-party clone detection tool.
Furthermore, these similarities and differences are identified for
the entire region of the reported clones from the clone detection
tool. CeDAR, for example, will not represent duplicate sections of
code within a single clone if there were such cases, because it is
basing its representation on the original clone reported by the
clone detection tool.

Currently in our case, two statements are considered similar if the
statements exhibit characteristics such as a Type I or Type II
clone. Otherwise, the statements are considered different. For
example, in Figure 2, statement 1 of all three clones must either
exactly match each other or consist of recognized parameterized
elements to be considered as a “match.” The next section outlines
the currently recognized parameterized elements (or matches).

E xa ct M a tch ing
N o d es

P a ra m e te rized
Id e n tica l N o d e s

P a ram e te rize d
N on -Id en tica l

N o d es

S tm t in
C lo n e 1

S tm t in
C lo n e 2

M a tch

N on -
M a tch

Y Y

Y

N

NN

Figure 3. Statement matching levels

2.2 Similarity Levels
When two statement nodes from two clones are compared and are
determined to match each other, these two statements share the
same branch in the suffix tree. For Type II clones, the matching
process is relaxed to allow statements that do not exactly match
each other to still be considered similar. In this work, the
matching process compares the AST nodes representing the
statements. The AST nodes are compared by calling the
subtreeMatch API call in the JDT, which compares two sub-
trees representing the two statements and their children. To
identify the parameterized elements between two statements and
the differences between two statements, several similarity levels
are considered during the matching process. These similarity
levels are described in the following paragraphs. Figure 3 outlines
the filtering process. The initial matching looks at exact matching
nodes. A non-match will compare the nodes for predefined
parameterized elements, which is then followed by parameterized
elements of non-identical nodes if the nodes still do not match.

Exact matches – This represents a subtreeMatch that utilizes the
default matcher as provided by the JDT. The sub-trees that are
compared must exactly match each other. Otherwise, the sub-trees
are considered not equal to each other. The comparison process
performs this type of matching initially to determine whether the
two sub-trees are exact matches.

Parameterized matches of identical nodes – In this situation, the
matcher is customized to allow certain nodes to differ
corresponding to the parameterized elements of the clones. The
matcher can identify differing values such as variable names and
string literals. Currently, the customized subtreeMatch in
CeDAR allows for differences between two AST nodes that are of
type MethodInvocation, NumberLiteral, QualifiedName,
SimpleName, or StringLiteral. This allows clones to have
parameterized values for method calls, primitive integers,
identifiers separated by the ‘.’ operator, simple identifiers, and
strings.

In each case where a sub-tree is “matched,” but contains
parameterized differences, these differences are stored by

mapping the two differing values. The mapping is between the
value of the “default” clone and the corresponding clone with the
differing value. The mapping provides two properties regarding
the parameterized elements. The first property is the different
values between the clones, which will be displayed to the user.
The second property is the code element in the default clone that
needs to be highlighted to signify that the element represents
differing values among the clones.

If an allowed parameterized difference is encountered, then
subtreeMatch will still report the sub-trees as matching, but will
also record the mapping between the parameterized elements. For
example, for the code snippet in Figure 1, the subtreeMatch
comparisons between Clone 1 and Clones 2, 3, and 4 yield the
mapping of string "Unable to delete file" in Clone 1 to
string "Unable to delete directory" in Clone 4. In
addition, as can be seen in Figure 4, two other mappings are
given: variable file in Clone 1 to variable f in clones 2 and 3;
variable file in Clone 1 to variable dir in Clone 4.

Parameterized matches of near-identical nodes – CeDAR also
allows for differences to be considered as matches for
combinations of non-identical nodes. The currently allowable
combinations consist of nodes listed in the “Parameterized
matches of identical nodes” section. For example, a
MethodInvocation is matched with a SimpleName in two AST
sub-trees of two clones.

Non-supported parameterized matches / statement differences –
This case technically does not represent a similarity, but rather
identifies situations when a comparison produces a non-match
where two sub-trees are considered not equal to each other. If the
matcher can not identify two corresponding nodes in the sub-trees
being compared as matching, then the statements represented by
the sub-trees are considered not equal. In this case, the two nodes
are not exactly equal and do not represent elements that are
allowed to be different (i.e., parameterized). The non-matching
statement will also be displayed to the user.

1: function DISPLAY(T: suffix tree, S: statement): void
2: E ← GetEdge(T, S);

3: if (≠E Ø)
4: P ← GetParameterizedPairs(E);

5: PPEPE ∪←

6: if (!RepresentsAllClones(E))
7: SNMNM ∪←

8: end if
9 else
10: SNMNM ∪←

11: end if
12: end function

Listing 1. Determining statement similarities

3. LOCALIZED REPRESENTATION IN CEDAR
The localized display of a group of clones is generated when the
user selects a clone group in CeDAR. Initially the first clone in
the group is set as the default clone. This default clone can be
changed to any other clone in the group by the user. When a clone
group is selected, the suffix tree process outlined in the previous
section is performed. Because the code associated with the default
clone will be used to display the localized representation of all the

clones in the group, each statement in the default clone needs to
be determined whether it is an exact match, a parameterized
match, or a non-match with the corresponding statements in the
other clones. This is done by evaluating the generated suffix tree
based on the statements of the default clone. After the properties
of each statement have been determined, the display of the clone
group can be done. The following sub-sections describe the
process of visualizing the localized representation in CeDAR.

3.1 Obtaining clone similarity properties
The method DISPLAY in Listing 1 outlines the process of
determining how the default clone will be displayed in the source
editor. For each statement in the default clone, an edge in the
suffix tree that represents the statement is obtained using the
GetEdge method (line 2). The edge must also represent
statements from at least one other clone, which signifies that the
statement is matched in at least one other clone in the clone
group. If no edge is found, then the statement is considered to
have no match with the other clones in the group and is added to
the list of non-matched statements (NM in line 10). If an edge is
found, the process looks for mappings or pairings (i.e., by method
GetParameterizedPairs in line 4) that signify a parameterized
element in the statement (i.e., at least two statements of two
clones consist of differing values for a specific element). The
mappings are stored in the list of parameterized elements (i.e., PE
in line 5). It may be the case that not all clones match the default
clone’s statement. This is determined by whether the edge
represents all clones in the clone group (i.e., by method
RepresentsAllClone). If a statement does not match all clones,
then it is added to NM (line 7).

1: function GETEDGE(T: suffix tree, S: statement): edge

2: for each E in T do

3: if (StmtInEdge(E, S))

4: if (RepresentsMultipleClones(E))

5: return E;

6: end if

7: else

8: for each B in GetBranches(E) do

9: return RecursiveStmtInEdge(B);

10: end for

11: end if

12: end for

13: end function

Listing 2. Determining matching statements

The GETEDGE method in Listing 2 (i.e., used in Line 2 in the
DISPLAY method) searches the suffix tree to find an edge
containing the statement of the default clone. The process
recursively evaluates each edge of the tree starting from the top-
most edges. The method StmtInEdge looks to see if the given
statement is part of the edge that is being evaluated (line 3). If
not, then the branches of that edge are recursively evaluated (i.e.,
by the method RecursiveStmtInEdge in line 9). If the edge
contains the statement, then it is evaluated to determine whether it
also represents two or more clones (i.e., by the method
RepresentsMultipleClones in line 4). This is determined by
looking at the branches of the edge to see if at least two branches
represent sequences of statements of two separate clones. For

example, in Figure 2, the top-most edge represents the first three
statements of all three clones, because the edge has branches that
represent the three clones, which in this case are the branches for
the three special terminating characters (i.e., ‘$,’ ‘#,’ and ‘&’).

During the suffix tree generation process in this application, when
a statement in an edge matches a new statement being compared,
the new statement is also stored in the edge. For example, in
Figure 2, the branch with statement 4 will contain the statement
nodes from both Clone 1 and Clone 2. The determination of
whether an edge represents at least two clones can be done by
evaluating the matching statements that are stored in the edge.

3.2 Displaying clones in one location
The examples in this section represent clones found in Apache
Ant 1.6.5. In CeDAR, the localized representation is visualized
directly in the source editor. An example can be seen in Figure 4

where the section of the default clone, which in this case is Clone
1, is highlighted in light blue and bordered by two horizontal lines
in the figure. The sections of all other clones in the same file are
highlighted in light grey, which is not shown in the figure. As
stated at the beginning of Section 3, the representation is activated
when a clone group is selected, hence only a single clone group is
represented per user request. When a user selects another clone
group, the representation is reset for the new clone group.

For all parameterized elements in PE, the corresponding code
element in the default clone is highlighted. These elements are
highlighted in neon green. Hovering the mouse over one of these
elements will invoke a pop-up containing the parameterized
differences associated with that code element. In Figure 4, the
parameterized differences of the file variable are visualized in
the pop-up. In this case, clones 2 and 3 use a different variable
name (i.e., f), while clone 4 uses the variable name dir.

Figure 4. Pop-up of simple variable differences

(a) Clone 1

(b) Clone 2

Figure 5. Highlighted statement differences

Figure 6. Display of two sub-groups of parameterized clones

For all non-matching statements in NM, the corresponding
statement in the default clone is highlighted. In CeDAR, these
statements are highlighted in dark grey. Figure 5 provides an
example of the highlighting of statements that are not equal. In
Figure 5 (a), the second statement is highlighted (i.e., in dark
grey). The differences can be seen as compared to the
corresponding clone in Figure 5 (b), where the second and third
statements in Clone 2 perform the task that was only done by one
statement in Clone 1 (i.e., the second statement). In addition, the
differences between the fourth statement in Clone 1 and the fifth
or last statement in Clone 2 are more profound. The only exact
matching statement is the first statement. The third statement in
Clone 1 is a parameterized match with its corresponding
statement in Clone 2, where it consists of parameterized elements
of identical node types (i.e, variables classFile – depFile and
location – filename). A non-identical node type match is also
evident (i.e., config.srcDir – baseDir). This example
demonstrates the various display properties for the clones, starting
from exact matching statements to non-matching statements.

Figure 6 is an example scenario where the display of
parameterized elements is within the display of a non-matching
statement. The four clones in the clone group associated with this
display consist of two separate sub-groups where each sub-group
represents a tighter similarity. In this case, clones 1 and 4 are
more similar to each other than with clones 2 and 3, and vice
versa. The parameterized constant COMMENTS_KEY in Clone 4 is
visualized in the pop-up as the only clone with a parameterized
difference (i.e., with the constant CONTAINS_KEY in Clone 1).

The statement is not equal for the remaining clones; hence, clones
2 and 3 are also listed in the pop-up as non-matches.

4. EVALUATION
The instances where the localized representations can visualize
parameterized elements or statement differences were evaluated
on multiple open source software artifacts. Parameterized
elements represent differences that are acknowledged by CeDAR,
such as variable name differences. Statement differences represent
statements that differ syntactically or those that contain
parameterized elements that are not currently supported by
CeDAR (i.e., AST nodes not listed in Section 2.2). The clones
were detected using Deckard, a tree-based clone detection tool
that reports syntactically meaningful clones. In this case, the
reported clones represent clearly separated statements. The
similarity value was set to 0.95 to allow non-exact clones,
including parameterized clones. The evaluation considers the
number of clone groups that can be represented appropriately by
the localized representation in CeDAR.

Four different scenarios were considered. The first scenario is
when a clone group consisted of exact matching clones (i.e., Type
I clones). In this case, the localized representation will not show
any differences among the clones. The second scenario is when a
clone group consists only of recognized parameterized elements,
which are listed in Section 2.2. The third scenario is when a clone
group consists of only statement differences. The final scenario is
when a clone group consists of both recognized parameterized
elements and statement differences (e.g., as seen in Figure 5).

Table 1. Clone types identified by CeDAR in various open source programs

Program #CG Exact (%) Param (%) StmtDiff (%) Mixed (%)
Apache Ant 1.6.5 429 61 (14%) 152 (35%) 131 (31%) 85 (20%)
ArgoUML 0.26 650 61 (9%) 214 (33%) 124 (19%) 251 (39%)
Jakarta-JMeter 2.3.2 377 77 (20%) 158 (42%) 71 (19%) 71 (19%)
JBoss AOP 2.1.5 159 51 (32%) 81 (51%) 14 (9%) 13 (8%)
JFreeChart 1.0.10 847 151 (18%) 415 (49%) 168 (20%) 113 (13%)
JRuby 1.4.0 318 113 (36%) 70 (22%) 63 (20%) 72 (23%)
EMF 2.4.1 285 54 (19%) 136 (48%) 52 (18%) 42 (15%)
JEdit 4.2 345 91 (26%) 120 (35%) 88 (26%) 46 (13%)
Squirrel-SQL 3.0.3 428 78 (18%) 164 (38%) 70 (16%) 116 (27%)

#CG = Total clone groups
Exact = Clone groups with exactly matching clones

Param = Clone groups with parameterized clones
StmtDiff = Clone groups with non-supported parameterized clones or near-exact clones

Mixed = Clone groups consisting of both “Param” and “StmtDiff” instances

Instances of the first two scenarios can be fully represented by
CeDAR. When the clones are exactly the same, then no
annotations are needed. When the clones only contain recognized
parameterized elements, then the representation of the clones can
be summarized accordingly within the source editor. The last two
scenarios represent instances where CeDAR cannot fully identify
the differences of the clones. This is especially the case for the
non-matched statements, as these non-matches can signify several
properties related to the differences of the clones. In these cases,
CeDAR currently reports that the statements do not match, but
does not provide information about the reason for the non-match.

Table 1 documents the instances after running a batch process that
looked at each clone group to determine what type of scenario is
related to the clone group. The first scenario (“Exact” column)
occurred considerably. The second scenario (“Param” column)
occurred in the majority of cases except for ArgoUML and
JRuby. In fact, in four of the artifacts (i.e., Jakarta-JMeter, JBoss-
AOP, JFreeChart, and EMF) this scenario occurred in almost half
of all the instances. The third (“StmtDiff” column) and fourth
(“Mixed” column) scenarios consist of statement differences.
Only in ArgoUML did the number of instances containing
statements that could not be matched by CeDAR (i.e., “Mixed”
column) exceed the number of instances of parameterized
elements that are currently recognized (i.e., “Param” column).

The evaluation from Table 1 suggests that in the majority of the
cases, the clone groups consisted of parameterized elements that
are currently recognized and supported by CeDAR. For the cases
where statements could not be matched, there is a possibility of
eliminating these non-matches by supporting more parameterized
elements. Further evaluation of these instances can help determine
the additional parameterized elements that can be included for the
localized representation.

5. DISCUSSION
This section describes some points for consideration related to the
representation process described in the previous sections.

Initial clone detection tool process – As stated in Section 2, the
process described in this paper is considered a “second pass” on
the code associated with the clones that were initially reported by
a clone detection tool. Several tools (e.g., [6][12][16]) have
utilized the suffix tree technique to find clones. However, in the
process used by these tools, the actual values of the identifiers are
ignored as long as the identifier token or node matches. In some
cases, the actual identifier values are only evaluated during a
post-processing stage to determine the type of the clone (i.e.,
exact or parameterized). Incorporating the identification of the
parameterized elements that can be used in the display of the
clones within the clone detection process itself can remove the
need for a second pass on the code. An alternative is to perform
post-processing on the clone detection results directly within the
tool rather than working with the textual output of the tool.
However, this removes the flexibility of utilizing the technique on
different clone detection tools.

Version clones – The existence of multiple versions of a class in a
version control system can give rise to what we call “version
clones.” Related work on visualizations of code changes based on
version history is described in Section 6. The focus of the work
described in this paper is on “snapshot clones,” which we define
as clones detected by a clone detection tool in a single snapshot of

the source code. A question that arises is what are the
characteristics of version clones as compared to snapshot clones?
If we look at the techniques associated with version clones, they
focus mainly on changes on a class as a whole and the differences
between two versions of the class. In contrast, for the work
described in this paper, clones can vary from statement-level,
method-level, and also class-level clones. In addition, the CeDAR
approach allows for comparison of two or more clones. An
interesting exercise would be to extend the techniques for version
clones to support snapshot clones, and vice versa.

Limitations – A particular limitation of the technique described in
this paper is that it generates a suffix tree on the first-level
statements associated with the detected clones. This presents a
fixed granularity level for the representation of the clones. The
disadvantage in this case can be seen when the statement consists
of multiple nested levels. When the first-level statements cannot
be matched, then the entire statement is displayed as a non-match
even though the difference may only reside several levels below
the top level statement.

A further limitation is seen in the results of the evaluation in
Section 5, specifically related to the display of non-matched
statements. The reason for non-matches may be due to
unsupported parameterized elements. Increasing the support for
additional parameterized elements can potentially reduce the
number of non-matched statements that are displayed.

6. RELATED WORK
This section outlines related work on localized clone
representation and other clone visualization techniques.

Localized representation – CloneDR provides a similar
functionality called “Clone Abstraction,” which lists the
parameterized elements associated to a group of clones. The
HTML reports generated by CloneDR include a section that
presents in textual format a single representation for a clone that
identifies the parameterized elements. More recently, the
(COBOL) CloneDR4 tool displays parameterized elements within
the Rational Development for System Z (RDz) Environment. The
localized representations in CeDAR consist of additional
capabilities, which include the display of the varying values of the
parameterized elements directly in the source editor and the
display of non-matching statements among the clones.

Clone visualizations – Several techniques to visualize clones have
been proposed, but these mostly visualize clones in a system-wide
level, whereas the work presented in this paper visualizes the
similarities and differences of clones at the source code level. The
use of scatter plots is a popular clone visualization mechanism
and is included in several clone detection tools such as [12]. In
addition to scatter plots, duplication web, duplication aggregation
tree map, and system model views are introduced in [15]. Clone
information is included in a visualization tool of software
architectures and their dependencies [13]. A clone system
hierarchy graph was proposed by Jiang and Hassan [11].

Code version visualizations – Various efforts have been made to
visualize the differences between versions of code. The Eclipse
Compare editor uses a tokenized version of the Unix diff

4 (COBOL) CloneDR,

http://www.semdesigns.com/Products/Clone/COBOLCloneDR.html

command to show differences between two code segments.
Version Editor (VE) [1] provides tighter integration between
editors and version control systems to show the changes of a file
with a source code repository. However, it uses a text-based
algorithm, which cannot distinguish between comments and code.
CSeR (Code Segment Reuse) uses an AST-based algorithm to
keep track and visualize copy-paste induced changes [9].
Compared to CeDAR, CSeR is limited to copy-paste induced
clones and support for clone groups (more than two clones) is also
limited. SolidSDD5 shows differences between clones that it
detects, but similar to CSeR, the differences are limited to a pair
of clones. Breakaway [5] introduces an approach to find
correspondences between two code segments, but the
representation is textual. Change distiller [7] extracts changes
from a repository and visualizes the changes using the Compare
editor in Eclipse. The changes are extracted from hierarchically
structured data, but are limited to class-level changes.
Furthermore, comparisons are performed only on multiple
versions of the same class.

7. CONCLUSION AND FUTURE WORK
The clone group representation described in this paper allows the
visualization of clone properties for all the clones in a clone group
on just one clone instance. The representation of clones in a clone
group in one location provides a quick summary of the properties
of the clones and allows the programmer to learn about the clones
without the need to open every occurrence of each clone in the
source files. Although an evaluation of several software artifacts
demonstrates the majority of clone groups can be displayed
appropriately by CeDAR, the main future work to be considered
is the inclusion of more parameterized elements to reduce the
number of non-matched statements. In addition, an evaluation will
be considered to determine to what extent this representation can
be utilized without becoming just a cluttered and hence less useful
representation.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0702764.

9. REFERENCES
[1] Atkins, D. L. 1998. Version Sensitive Editing: Change

History as a Programming Tool. In Proceedings of the Scm-8
Symposium on System Configuration Management (Brussels,
Belgium, Jul. 1998), pp. 146-157.

[2] Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M., and Bier,
L. 1998. Clone Detection Using Abstract Syntax Trees. In
Proceedings of the International Conference on Software
Maintenance (Bethesda, MD, Mar. 1998), pp. 368-377.

[3] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo,
E. 2007. Comparison and Evaluation of Clone Detection
Tools. IEEE Transactions on Software Engineering. 33, 9
(Sep. 2007), pp. 577-591.

[4] Campbell, D. and Miller, M. 2008. Designing Refactoring
Tools for Developers. In Workshop on Refactoring Tools
(Nashville, TN, Oct. 2008), Article 9, 2 pages.

5 SolidSDD, http://www.solidsourceit.com/products/SolidSDD-code-

duplication-cloning-analysis.html

[5] Cottrell, R., Chang, J. J., Walker, R. J., and Denzinger, J.
2007. Determining Detailed Structural Correspondence for
generalization tasks. In Proceedings of the Joint Meeting of
the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering
(Dubrovnik, Croatia, Sep. 2007), pp. 165-174.

[6] Falke, R., Frenzel, P., and Koschke, R. 2008. Empirical
Evaluation of Clone Detection using Syntax Suffix Trees.
Empirical Software Engineering. 13, 6 (Dec. 2008), pp. 601-
643.

[7] Fluri, B., Wuersch, M., PInzger, M., and Gall, H. 2007.
Change Distilling: Tree Differencing for Fine-Grained
Source Code Change Extraction. IEEE Transactions on
Software Engineering. 33, 11 (Nov. 2007), pp. 725-743.

[8] Gusfield, D. 1997 Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biology.
Cambridge University Press, Cambridge, United Kingdom.

[9] Jacob, F., Hou, D., and Jablonski, P. Actively Comparing
Clones Inside The Code Editor. In Proceedings of the
International Workshop on Software Clones (Cape Town,
South Africa, May 2010), pp. 9-16.

[10] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of
Code Clones. In Proceedings of the International Conference
on Software Engineering (Minneapolis, MN, May 2007), pp.
96-105.

[11] Jiang, Z. M. and Hassan, A. E. 2007. A Framework for
Studying Clones In Large Software Systems. In Proceedings
of the International Working Conference on Source Code
Analysis and Manipulation (Paris, France, Sep. 2007), pp.
203-212.

[12] Kamiya, T., Kusumoto, S., and Inoue, K. 2002. CCFinder: a
Multilinguistic Token-based Code Clone Detection System
for Large Scale Source Code. IEEE Transactions on
Software Engineering. 28, 7 (Jul. 2002), pp. 654-670.

[13] Kapser, C. and Godfrey, M. W. 2005. Improved Tool
Support for the Investigation of Duplication in Software. In
Proceedings of the International Conference on Software
Maintenance (Budapest, Hungary, Sep. 2005), pp. 305-314.

[14] Murphy-Hill, E. and Black, A. P. 2008. Refactoring Tools:
Fitness for Purpose. IEEE Software. 25, 5 (Sep. 2008), pp.
38-44.

[15] Rieger, M., Ducasse, S., and Lanza, M. 2004. Insights into
System-Wide Code Duplication. In Proceedings of the
Working Conference on Reverse Engineering (Delft, The
Netherlands, Nov. 2004), pp. 100-109.

[16] Tairas, R. and Gray, J. 2006. Phoenix-based Clone Detection
Using Suffix Trees. In Proceedings of the ACM Southeast
Regional Conference (Melbourne, FL, Mar. 2006), pp. 679-
684.

[17] Tairas, R. and Gray, J. 2009. Get to Know Your Clones with
CeDAR. In Companion to the International Conference on
Object-Oriented Programming Systems Languages and
Applications (Orlando, FL, Oct. 2009), pp. 817-818.

