
Int. J. Computer Applications in Technology, Vol. 00, Nos. 0/0, 0000 1

Copyright © 0000 Inderscience Enterprises Ltd.

Aspect Mining from a
Modeling Perspective
Jing Zhang*, Jeff Gray, Yuehua Lin, and Robert Tairas
Department of Computer and Information Sciences,
University of Alabama at Birmingham,
1300 University Blvd., 126 Campbell Hall, Birmingham, AL 35294, USA
E-mail: {zhangj, gray, liny, tairasr}@cis.uab.edu
*Corresponding author

Abstract: Aspect mining aims at identifying, analyzing, and refactoring crosscutting
concerns throughout a legacy system for the purpose of improving software modularization.
Current research on aspect mining prevails at the implementation level as applied to source
code. However, an aspect-oriented approach can be beneficial at various levels of
abstraction and at different stages of the software lifecycle. This paper presents our
investigation into raising the benefits of aspect mining to a higher level of abstraction
through application of aspect mining algorithms to domain-specific models. A key
contribution of the approach is a capability to identify crosscutting concerns early in
development, which assists in modularizing a design through aspects before proceeding to
the implementation level. Furthermore, our experience has led us to believe that aspects are
easier to identify at the modeling level because much of the accidental complexities of
implementation concerns are not present in the corresponding modeling abstractions.

Keywords: Aspect-Oriented Software Development; Aspect Mining; Model-Driven
Engineering; Domain-Specific Modeling.

Biographical notes: Jing Zhang is a PhD candidate in the Department of Computer and
Information Sciences at the University of Alabama at Birmingham (UAB) and a member of
the Software Composition and Modeling (SoftCom) Laboratory. Her research interests
include techniques that combine model transformation and program transformation to assist
in evolving large software systems. She received an MS in computer science from UAB.

Jeff Gray is an Assistant Professor in the Department of Computer and Information
Sciences at UAB, where he co-directs research in the SoftCom lab. His research interests
include model-driven engineering, aspect-orientation, and generative programming. He
received a PhD in computer science from Vanderbilt University.

Yuehua Lin is a PhD candidate in the Department of Computer and Information Sciences at
UAB and a member of the SoftCom lab. Her technical interests are focused on model
transformation and supporting tools. She received an MS in computer science from Auburn
University.

Robert Tairas is a PhD student in the Department of Computer and Information Sciences at
UAB and a member of the SoftCom lab. His research interests include clone detection and
aspect mining. He received an MS in computer science from UAB.

Int. J. Computer Applications in Technology, Vol. 00, Nos. 0/0, 0000 2

Copyright © 0000 Inderscience Enterprises Ltd.

1 INTRODUCTION

In poorly modularized software, numerous concerns are
often tangled within the boundary of a single module,
which leads to cohesion problems. In other cases, a single
concern may be scattered across several different modules,
which introduces strong coupling among modules. The
occurrence of tangling and scattering offers challenging
maintenance problems when a software system needs to
evolve to address changing requirements. Throughout
programming language history, new language constructs
have been offered to address the issues of scattering and
tangling. For example, the hierarchical decomposition
provided by object-orientation assists in localizing common
behaviour in superclasses, such that the same behaviour is
not repeated in multiple places in subclasses.

Although scattering and tangling have been an important
focus of software engineering and language design for
decades, a new type of concern has emerged, which is
crosscutting in nature. Crosscutting represents a
relationship property between two concerns such that
traditional hierarchical composition is not capable of
modularizing each concern in a separate unit. Aspect-
Oriented Software Development (AOSD) (Filman et al.,
2004) offers a powerful technology for supporting the
separation of such concerns, whereby the crosscutting is
explicitly specified as an aspect.

For legacy software to benefit from AOSD, it is necessary
to analyze the existing implementation to discover the
crosscutting concerns and refactor them into aspects. Aspect
mining refers to the identification and analyses of non-
localized crosscutting concerns throughout an existing
legacy software system (Bruntink et al., 2005). The ultimate
goal of aspect mining is to support aspect-oriented
refactoring to improve software comprehensibility,
reusability and maintainability.

1.1 Key challenges of aspect mining

The challenges of aspect mining are focused along three
separate phases:

• Aspect Identification: This phase is concerned with
an analysis task that leads to identification of a
suggested set of candidate aspects. This phase may
require user interaction to provide initial seed
information, or to assist in sifting through false
positive noise (i.e., suggested aspects that are not
really representative of a crosscutting concern).

• Aspect Extraction: After a set of candidate aspects
has been identified, the crosscutting concern must be
extracted from the existing representation (i.e., all of
the locations in the legacy software where the aspect
appears must be removed).

• Aspect Refactoring: After extracting the crosscutting
concerns from the base representation, an equivalent
aspect must be codified in an aspect language in order
to preserve the initial functionality. The result is

improved modularization (as captured in the new
aspect), with no change in functional behaviour.

With respect to these three phases of aspect mining, there

appear to be no reports in the research literature on
individual tools that perform all three of the above
challenges successfully. Most aspect mining research tools
are focused on one phase of aspect mining, with the
majority of work (as summarized in Section 6) focused on
the aspect identification phase. Regarding extraction and
refactoring, a technique that uses program slicing to
perform these two phases has been presented by Ettinger
and Verbaere (Ettinger and Verbaere, 2004).

1.2 Aspect mining earlier in the lifecycle

Much of the current research on aspect mining focuses
solely on the implementation as applied to source code.
However, an aspect-oriented approach can be beneficial at
various levels of abstraction and at different stages of the
software lifecycle. For instance, aspect-oriented analysis
and design (Clarke and Baniassad, 2005) is a new
development approach that unites AOSD with requirements
and design models. Likewise, the concepts of feature-
oriented programming are also being applied to design
models (Batory, 2006). Research in Aspect-Oriented
Modeling (AOM Workshop) has the potential to help define
common characteristics (which are encapsulated within
aspects) from a perspective that is at a more abstract level.
For existing models to benefit from AOSD, it is
indispensable to perform reengineering techniques, such as
aspect mining, at many different stages throughout the
development lifecycle.

This paper presents our investigation into raising the
benefits of aspect mining to a higher level of abstraction
through application of aspect mining algorithms to domain-
specific models. Specifically, the paper describes our
approach to the aspect identification problem as applied to
models, rather than source code. A key contribution of the
approach is a capability to identify crosscutting concerns
early in development, which assists in modularizing a
design through aspects before proceeding to
implementation. Furthermore, our experience in performing
both manual and automated aspect mining suggests that
aspects are easier to identify at the modeling level because
the accidental complexities of implementation concerns are
absent in the corresponding modeling abstractions.

The remainder of this paper is structured as follows.
Section 2 introduces the basic idea of domain-specific
modeling and describes how aspects emerge in such
models. This section also initiates the motivation of
applying an aspect identification technique at the modeling
level. Sections 3 and 4 propose two different approaches for
aspect identification, i.e., pattern matching and clone
detection. Section 5 offers a case study using clone
detection to identify crosscutting concerns in a modeling
language for embedded systems. The last two sections
discuss the related work, conclusions and future work.

ASPECT MINING FROM A MODELING PERSPECTIVE 3

2 ASPECTS IN DOMAIN-SPECIFIC MODELING

Model-Driven Engineering (MDE) (Schmidt, 2006) is an
emerging paradigm supporting the development of
computer-based systems. The principles of MDE have been
applied successfully in many domains, but have exhibited
specific contributions in the domain of embedded control
software, such as avionics and automotive control systems
(Lédeczi et al., 2003). An important characteristic of MDE
is the use of Domain-Specific Modeling (DSM) techniques
by which software products are derived from models that
directly relate to the problem domain (Gray et al., 2006b).
Meta-configurable domain-specific modeling environments
provide support for customization of modeling tools that
enable domain experts to construct models in notations that
are familiar to them. Such tools also offer the capability to
generate, or synthesize various artifacts from models. The
ability to describe properties of a system at a higher level of
abstraction, and in a technology-independent notation, can
protect intellectual assets from technology obsolescence.

The Generic Modeling Environment (GME) (Karsai et al.,
2004) is a metamodeling environment that can be
configured and adapted from meta-level specifications that
describe a domain. The GME supports a set of generic
modeling concepts to represent entities, relationships and
attributes. An atom is the most basic type of entity that
cannot have any internal structures. A model is another type
of entity that can contain any other modeling types. A
connection represents the relationship between two entities.
Attributes are used to record state information and are
bound to atoms, models, and connections.

In our previous work (Gray et al., 2001), we made the
observation that crosscutting concerns emerge in domain-
specific models, as shown in Figure 1. It is often the case
that the metamodel forces a specific type of decomposition,
such that the same concern is repeatedly applied in many
places, usually with slight variations at different nodes in
the model. Abstractly, Figure 1 shows four different
concerns that are spread about a model hierarchy. Examples
of crosscutting modeling aspects include constraints (Gray
et al., 2001), concurrency and state management (Gray et
al., 2004), and pre/post conditions (Gray et al., 2006a).

The crosscutting concerns scattered across the models
lead to several impediments to system comprehension and
maintenance:

• Discovering or understanding a specific concern

representation that is spread over the model hierarchy
is difficult, because the concern is not localized in one
single module. This limits the ability to reason
analytically about such a concern.

• Changing a concern requirement is also difficult and
time-consuming, because the model engineers must
go into each relevant model and modify the specific
elements one by one. This requires much typing and
mouse clicking, which affects productivity and
correctness (Gray et al., 2006a).

Manual inspection of models to discover potential aspects
is a laborious task. Performing automated aspect mining to
existing non-aspectized models can offer insight into the
identification of emergent aspects. Aspect mining from a
modeling perspective allows the designer to locate the
places in a model that must be changed when a particular
concern needs to be modified. The identification of aspects
earlier in the software lifecycle allows crosscutting
concerns to be managed and understood before details of
the implementation are planned.

This paper describes the first investigation (with
corresponding tool support) into aspect identification at the
modeling level. The next two sections discuss different
approaches that we have investigated to realize aspect
identification on models.

3 PATTERN MATCHING FOR ASPECT MODEL MINING

The pattern matching process is conducted by a human
designer who suspects the existence of aspects in a model.
The designer has to comprehend the domain information
contained in a model and provide a “seed” pattern to
indicate properties of potential aspects. Such a seed serves
as the starting point for discovering all matched concerns.
There are two different representations of the seed for
aspect mining of models through pattern matching. One
representation is based on textual expressions, and another
kind of seed is described by graphical models.

3.1 Textual-based pattern matching

In our past work (Sudarsan and Gray, 2006), we used XPath
expressions as the pattern description to search for
properties within domain-specific models. The underlying
model search engine parses the XPath expression and
traverses the internal representation of a model to compare
the user-defined pattern with every model entity. This
modeling search technique can be adapted to perform
aspect mining. Although this technique is easily
implemented and provides lightweight search power for

Figure 1 Crosscutting concerns throughout
a model hierarchy

4 J. ZHANG, J. GRAY, Y. LIN AND R. TAIRAS

simple textual pattern expressions, it lacks the capability to
specify complex patterns intuitively and efficiently (e.g., a
collection of sub-models that involve heterogeneous model
elements and sinuous relationships among them).

3.2 Graphical-based pattern matching

Another approach to identify crosscutting modeling
concerns is to represent a pattern in a graphical notation. As
an example of this type of pattern matching, GReAT
(Agrawal et al., 2003) defines a graph pattern specification
language to express complicated patterns with a fixed and
variable cardinality. This graph notation complements the
shortcomings of textual pattern expression and supports
complex and dynamic pattern matching. We did not explore
graphical-based pattern matching in our investigation.

4 CLONE DETECTION FOR ASPECT MODEL MINING

Pattern matching techniques assist users in efficiently
locating predefined crosscutting concerns. However, users
of pattern matching are required to have a considerable
amount of knowledge about the domain and overall model
structure (e.g., users must input a particular format of the
seed so that the aspect mining process can be automated
partially). Moreover, pattern matching cannot explore
unknown classes of crosscutting concerns (i.e., those for
which no seed is known) and will often result in missing
some desirable aspects. In order to overcome the
deficiencies of pattern matching, we developed a clone
detection technique for aspect mining applied to models.

Various clone detection techniques (as summarized in
Section 6) have been investigated to detect duplicated
source code. The intention of applying clone detection for
aspect mining is to reveal the unknown crosscutting
concerns through full automation of the aspect mining
process. In terms of modeling, clone detection identifies the
similar (clone) model fragments throughout the model
hierarchy. The similarity of elements of sub-models is
determined based on one of the three levels of similarity
among metamodeling concepts.

In the context of metamodeling, an atomic modeling
element (e.g., an atom in GME) is defined by a combination
of its type, name, and set of attributes. Correspondingly, a
model consists of a set of elements, including atoms, sub-
models or connections. Three levels of similarity are
defined based on the type, name, and attribute of the model
elements (see Table 1):

• Level 1 indicates the most liberal policy (i.e., two

atoms are considered clones as long as they have the
same type; two models are clones if they own the
same type and all of their elements are
correspondingly Level 1 clones).

• Level 2 represents a moderate clone detection
philosophy, which is based on type and name
similarity (e.g., two connections are considered

clones if their source and targets are Level 2 clones,
in addition to each connection having the same type
and name).

• Level 3 defines the most stringent rule (i.e., two
models are considered clones only when they hold
the same type, name, and attribute set; furthermore,
all of their elements should be correspondingly
recognized as Level 3 clones.)

Table 1 Three levels of similarity

Atom Model Connection

Level 1 • Type • Type
• Elements

• Type
• Source
• Target

Level 2 • Type
• Name

• Type
• Name
• Elements

• Type
• Name
• Source
• Target

Level 3
• Type
• Name
• Attributes

• Type
• Name
• Attributes
• Elements

• Type
• Name
• Attributes
• Source
• Target

Based on the above levels of similarity, the four steps of the
clone detection algorithm for models are presented below.

Step 1. Metamodel preprocessing

We perform an initial step of evaluating the metamodel in
an effort to reduce the number of model instance
comparisons that will be needed in the latter steps. This
involves the partitioning of the metamodel entities into
different groups that need to be compared. Each group
includes a set of the type pairs, such as:

{Type-model} : {Type-element}

where {Type-model} is a collection of types whose
model instances comprise some common elements, and
{Type-element} is the collection of model elements
that {Type-model} share. Because {Type-element}
is contained by more than one model, it has the potential to
become one of the selected crosscutting concerns.

In Figure 2, the type “ModelA” and “ModelB” share the
element “AtomAB”. “ModelB” and “ModelC” both
contain “AtomBC”. In this case, the partition of the
illustrated fragment of the metamodel would be:

{ModelA, ModelB} : {AtomAB}
 {ModelB, ModelC} : {AtomBC}

The preprocessing of the metamodel partition will

facilitate the desired steps of the algorithm, because only
those models that have the same type or fall into the same

ASPECT MINING FROM A MODELING PERSPECTIVE 5

group will be compared. Furthermore, only the shared
elements of the two models should be compared. For
example, imagine that there is one instance of “ModelA”
and one instance of “ModelB”. In such a case, we only
need to consider whether their shared atoms (instances of
“AtomAB”) are clones. Any other irrelevant elements will
not be considered

Step 2. Model fragments comparison

The second step of clone detection in models determines if
the elements of a sub-model pair are clones by comparison.
From the root of the model hierarchy, each sub-model is
compared with the other sub-models that either have the
same type or fall into the same group in step 1. As an
example, suppose a comparison is to be made between sub-
model instance X and sub-model instance Y:

• If X and Y are of the same type, every element inside
should be compared correspondingly. The comparison
is based on the choice of the level of similarity as
defined in Table 1. Each time, the atoms are compared
first, then the models, followed by the connections.

• If X and Y are in the same group, only their shared
elements need to be compared.

• If X and Y do not have the same type, and do not fall
into the same group, it means that they cannot have an
intersection; thus, further comparison is not necessary.

Step 3. Maximally similar model fragments grouping

For all of the clone elements that sub-model instance X and
Y share, we group them together as a common property
named P. P is considered as the maximally similar model
fragments of X and Y. If P is not null, the next task is to
find out whether P is already stored in the list of maximally
similar fragments. An efficient way to search for
commonalities on a list is to construct a hash function
h(P), which computes the number of a bucket (hash value)

based on P (Baxter et al., 1998). The hash function will
always return the same bucket number given the same P. If
P is not in the bucket h(P), then X, Y, and P will be added
to this bucket. If P is already in such a bucket, only X or Y
will be added into the collection of the sub-models that
share the same property P.

Step 4. Aspect filtering

The maximally similar model fragments generated from the
above steps (i.e., the initial result of the clones) may contain
too much noise and need to be refined further (i.e., many
false positives could be suggested, which can be removed
on further analysis). For instance, based on our
experimentation we found that if one model entity in a
maximally similar model fragment group has a connection
(in or out) that does not fall into the same group, then this
model entity is seldom considered as an aspect and can be
filtered out.

5 ASPECT MINING IN EMBEDDED SYSTEM MODELS

This section presents a case study that applies clone
detection for aspect mining on the Embedded Systems
Modeling Language (ESML) (Neema et al., 2005), which is
a domain-specific graphical language for modeling real-
time mission computing embedded avionics applications.
The ESML has been defined within the GME and used on
several DARPA funded research projects to provide the
following modeling categories that allow representation of
an embedded system: a) Components, b) Component
Interactions, and c) Component Configurations. The
primary use of the ESML is to model Boeing’s Bold Stroke,
which is a product-line architecture for a variety of military
aircraft written in several million lines of C++ (Sharp,
2000). There are over 20 representative ESML models for
all of the Bold Stroke usage scenarios that exist. For each
specific scenario within Bold Stroke, the components and
their interactions are specified as ESML models.

In our previous work (Gray et al., 2004), we manually
performed aspect mining on ESML models based on our
own domain experience. The manual approach was a
tedious process that identified crosscutting concerns such as
concurrency and state management. We manually extracted
these concerns from the ESML one by one in order to
demonstrate aspect weaving at the modeling level, which
led to the concept of model-driven program transformation.
Much time was spent in understanding the ESML model
ontology to support the manual process of searching the
model for crosscutting concerns. In this section, we show
how an automated approach to aspect identification assists
in discovering some of the aspects that were previously
identified manually.

Figure 2 A metamodel fragment

6 J. ZHANG, J. GRAY, Y. LIN AND R. TAIRAS

In general, an ESML model has a tree-like hierarchical
structure. Figure 3 partially illustrates the internal
representation of an ESML model named
“InteractionModel”. The model on the first layer is
the root of “InteractionModel”, which specifies a
particular scenario that involves certain configurations of
various sub-models. These sub-models belong to the second
layer. In this figure, only three component sub-models are
depicted on the second layer (e.g.,
“BM_UserInputComponentImpl”, “BM_OpenED-
ComponentImpl”, and “BM_DeviceComponent-
Impl”. Several models and atoms representing the
containment of the second layer models are depicted
separately on the third layer (e.g.,
“BM_OpenFunctionalFacetInterface” represents
an interface for the component “BM_UserInput-
ComponentImpl”). The fourth layer is the last layer
shown in Figure 3 (e.g., the “SetData1” atom denotes a
method object that is contained by the corresponding

component interface model “BM_OpenFunctional-
FacetInterface” and “BM_OpenFunctional-
Facet”). A solid line between any two layers represents
containment, and a dotted line with an arrow represents
connections that may occur on the same layer or across
layers.

In the case where users have no knowledge of the system
(or, they have some knowledge, but not enough to express
textual or graphical patterns), the clone detection technique
for aspect mining may be applied to suggest possible
aspects within an ESML model. The level of similarity is
set to Level 2 (i.e., only compare the type and the name,
without considering the attributes) for this particular case
study. After applying the algorithm, the maximal similar
model fragments of “BM_OpenEDComponentImpl”,
“BM_UserInputComponentImpl”, and
“BM_DeviceComponentImpl” are:

Figure 3 Sample crosscutting concerns in an ESML model

Invoke

…...

data2_

SetData1

Action2ReceptacleMethod

AddCondition

SetData2

Data2Cond

Action_1

SetData1

SetData2

data2_
AddCondition

Data2Cond
InteractionModel

BM__UserInputComponentImpl

BM__OpenEDComponentImpl

FacetMethod2Action

…...

BM__DeviceComponentImpl

BM__OpenFunctionalFacetInterface

Action

BM__OpenFunctionalFacet

Action_x

GetData1

GetData2

data2_
AddCondition

Data2Cond

BM__ClosedFunctionalFacetInterface

ASPECT MINING FROM A MODELING PERSPECTIVE 7

 {data2_, Data2Cond, AddCondition}
 {data1_, LogOnRead, AddLog}
 {InternalLock}
 {ANY_sub, ANY_ref, EventTyping}
 {ANY_pub, ANY_ref, EventTyping}

These concerns are circled with different patterns of lines

in Figure 3, representing 5 different concerns. The last two
groups both contain model entities that carry connections
out of the group (e.g., “ANY_sub” in
“BM_UserInputComponentImpl” and “ANY_pub” in
“BM_OpenEDComponentImpl”). Therefore, these two
elements (as well as their relationships in the group) should
be filtered out. Thus, the algorithm identifies the resulting
aspect candidates for the three component models as:

 {data2_, Data2Cond, AddCondition}
 {data1_, LogOnRead, AddLog}
 {InternalLock}

These three concerns correspond to the same aspects (i.e.,

pre/post conditions, state management and concurrency)
that were manually identified in our previous research on
aspect weaving and model-driven program transformation
(Gray et al., 2004).

As the additional concerns that were identified
automatically by our algorithm, consider the interface
models “BM_OpenFunctionalFacetInterface”
and “BM_OpenFunctionalFacet”, whose maximal
similar model fragments are:

 {SetData1}
 {SetData2}
 {operator new}
 {operator delete}
 {SetMemoryStore}
 {GetMemoryStore}

In this example, “SetData1” will be removed in the
filtering process because it has connections coming into or
going out from the group. Consequently, the rest of the five
atoms indicate the clone methods in the interface models
and can be regarded as the potential aspect candidates (as a
matter of fact, these five atoms appear in 7 different
interface models).

6 RELATED WORK

The topics of clone detection and aspect mining have
received considerable attention in the research literature. In
fact, there are workshops that are dedicated to discussing
these research issues (TEAM, 2006; CLONES, 2003).
However, the existing research literature has focused on
clone detection and aspect mining at the source code level.
To our knowledge, no other research has been presented
that focuses on the implications of aspect mining from a
modeling perspective. Our approach can be distinguished

from all of the related work summarized below by the
simple observation that we have applied clone detection to
search for aspects at the model level. The primary benefit
our approach offers over the existing techniques is that
modularization of a design through aspects is done even
before proceeding to the implementation level.

6.1 Related work in clone detection

Various clone detection techniques have been developed
and implemented. Baker (Baker, 1995) applies a token-
based analysis to locate the duplication in large software
systems. CCFinder (Kamiya et al., 2002) is a tool that also
uses a token-based representation of source code to find
clones. Mayrand et al. (Mayrand et al., 1996) use metrics
that are calculated from the source fragment to find clones.
Similarity analyses based on metrics and dynamic
programming are used by Kontogiannis et al. (Kontogiannis
et al., 1996) to search for clones.

Baxter et al. (Baxter et al., 1998) use the abstract syntax
tree (AST) representation of a source program to find
clones through the discovery of similar sub-trees. Our
approach is similar to Baxter’s technique for determining
similarity by identifying shared and different elements.
However, since these two approaches are working at
different levels of abstraction, they differ on what are
compared. Baxter’s approach determines the similarity of
sub-trees based on the number of shared and different nodes
of the sub-trees. Our approach determines the similarity of
elements of sub-models based on one of the three levels of
similarity described in Table 1. CloneDR™ is a
commercially available tool based on this approach
(CloneDR, 2006).

As it relates to aspect mining, three clone detection tools
are evaluated by Bruntink et al. (Bruntink et al., 2005) to
determine how well suited they are in detecting
predetermined crosscutting concerns in a program.

6.2 Related work in aspect mining

Several existing aspect mining tools have been described in
the literature, including a comparison of three approaches
(Ceccato et al., 2005). The current state of aspect mining is
represented by the collection of tools described below. All
of these tools are focused on source code analysis.

The Aspect Browser (Griswold et al., 1999) enables users
to enter regular expressions as patterns to identify aspects.
An early contribution of Aspect Browser was an aspect
visualizer that graphically conveyed a visual overview of
the crosscutting effect of a specific aspect. The Aspect
Mining Tool (AMT) (Hannemann and Kiczales, 2001)
augments the Aspect Browser with type-based mining.

In the Prism tool (Zhang and Jacobsen, 2004), users
define a fingerprint that captures a certain property of a
crosscutting concern in code. The Prism advisor
autonomously computes the crosscutting property of the
mining target and returns all of the matches, which are
called footprints.

8 J. ZHANG, J. GRAY, Y. LIN AND R. TAIRAS

FEAT (Robillard and Murphy, 2002) introduces the
concept of a concern graph that localizes an abstracted
representation of program elements contributing to the
implementation of the concern. FEAT enables users to
perform maintenance tasks that involve non-localized
changes. Users initiate the search process by providing a
seed, which is expressed through a text file using a
declarative language to describe a concern. FEAT generates
the concern graph automatically according to the declared
concern. Users can visit the source file corresponding to
each class in the concern graph.

Ophir (Shepherd et al., 2004) is a fully automatic mining
and refactoring tool based on the combination of a program
dependence graph (PDG) and abstract syntax tree (AST).
Ophir’s aspect identification algorithm starts only at
specific points of each method in order to speed up the
processing time. However, this approach may overlook
some potential aspects.

ER-Miner (Sampaio et al., 2005) provides automated
support for identifying crosscutting concerns within
requirements documents by using natural language
processing techniques. Although it is intended to be applied
at the requirements level, our approach is performed on the
design of domain-specific models.

Breu and Zimmermann (Breu and Zimmermann, 2006)
use version history to mine aspect candidates. Their
approach yields a high precision for large projects with a
long history but suffers from the much fewer available data
for small projects.

Aspect Browser, AMT, Prism, and FEAT all require user
interaction. Users must understand the application domain
and provide the pattern seed from their knowledge of the
code. This limitation is in addition to the fact that these
tools only look for source code level aspects. A further
shortcoming is shared by our own work in that the first
phase of aspect identification is the primary focus, with the
challenges of extraction and refactoring given less attention.

7 CONCLUSION AND FUTURE WORK

From our experience, it is advantageous to perform
reengineering techniques, such as aspect mining, at
different stages throughout the software development
lifecycle and on software artifacts other than source code.
This article presented our initial investigation into aspect
identification on domain-specific models.

We investigated two approaches to aspect identification -
pattern matching is useful for identifying the location of
pre-known aspects, and clone detection assists in
identifying unknown aspect candidates. The pattern
matching technique is useful only when the users are able to
offer a concern pattern (i.e., the “seed”), but the clone
detection technique is more powerful because it can suggest
multiple unknown aspects with little human interaction.

There are several areas that need additional investigation
to further the maturity of model-driven aspect mining:

Noise Filtering: The result of the clone detection is
usually adulterated with too much undesired noise.
Currently, we only use one filter layer that is based on
model connections. We are considering other metrics that
will be integrated into the filtering analysis.

Visualization of Modeling Aspects: An aspect mining
tool enables identification of the potential aspects and often
provides the capability to visualize the various locations
affected by an aspect. Traditional aspect mining techniques
work on the source code level, thus their corresponding
visualization tools are based on a graphical notation that is
particular for line-oriented software statistics (Griswold et
al., 1999). Because a model is a containment hierarchy of
entities, it is necessary to develop a specific means to
visualize the crosscutting aspects over different levels of
models. Our future visualization tool will use a tree
structure to display the model hierarchy natively with
potential aspects highlighted across the whole structure.
Users will have the option to expand or collapse any level
of a specific model.

Aspect Extraction and Refactoring: With respect to
general model refactoring, we have already implemented a
model refactoring browser in GME by means of a model
transformation engine (Zhang et al., 2005). The research on
aspect-oriented refactoring is still under investigation,
which aims to extract the mined crosscutting concerns into
the separately described aspects. For instance, these aspects
can be represented by aspect-oriented model transformation
rules written in the Embedded Constraint Language (ECL)
(Gray et al., 2006a).

ACKNOWLEDGEMENTS

This project was previously supported by the DARPA
Program Composition for Embedded Systems (PCES)
program and is currently supported by the National Science
Foundation under CSR-SMA-0509342.

REFERENCES

Agrawal, A., Karsai, G., and Lédeczi, A. (2003), 'An End-to-End
Domain-Driven Software Development Framework', Domain-
Driven Development track, 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Anaheim, CA,
October, pp. 8-15.

AOM Workshop, International Workshop on Aspect-Oriented
Modeling, http://aspect-modeling.org.

Baker, B. S. (1995), 'On Finding Duplication and Near-
Duplication in Large Software Systems', Second Working
Conference on Reverse Engineering, Toronto, Ontario, July,
pp. 86-95.

Batory, D. (2006), 'Multi-Level Models in Model-Driven
Development, Product-Lines, and Metaprogramming', IBM
Systems Journal, Vol. 45, No. 3, pp. 527-540.

ASPECT MINING FROM A MODELING PERSPECTIVE 9

Baxter, I. D., Yahin, A., Moura, L., Anna, M. S., and Bier, L.
(1998), 'Clone Detection Using Abstract Syntax Trees', in
Proceedings of IEEE International Conference of Software
Maintenance (ICSM), Bethesda, MD, November, pp. 368-377.

Breu, S., and Zimmermann, T. (2006), 'Mining Aspects from
Version History', in Proceedings of 21st IEEE/ACM
International Conference on Automated Software Engineering
(ASE), Tokyo, Japan, September.

Bruntink, M., van Deursen, A., Engelen, R. v., and Tourwé, T.
(2005), 'On the Use of Clone Detection for Identifying
Crosscutting Concern Code', IEEE Transactions on Software
Engineering, Vol. 31, No. 10, October, pp. 804-818.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., and
Tourwé, T. (2005), 'A Qualitative Comparison of Three Aspect
Mining Techniques', in Proceedings of the 13th International
Workshop on Program Comprehension, a workshop held at the
International Conference on Software Engineering (ICSE), St.
Louis, MO, May, pp. 13-22.

Clarke, S. and Baniassad, E. (2005), Aspect-Oriented Analysis and
Design: The Theme Approach, Addison Wesley.

CloneDR (2006), Clone Doctor: Software Clone Detection and
Removal, Semantic Designs, Inc.,
http://www.semdesigns.com/Products/Clone/

CLONES (2003), International Workshop on Detection of
Software Clones, Victoria, BC, November. http://www.iste.uni-
stuttgart.de/ps/clones/

Ettinger, R. and Verbaere, M. (2004), 'Untangling: A Slice
Extraction Refactoring', in Proceedings of International
Conference on Aspect-Oriented Software Development
(AOSD), Lancaster, UK, March, pp. 93-101.

Filman, R. E., Elrad, T., Clarke, S., and Aksit, M. (2004), Aspect-
Oriented Software Development, Addison-Wesley.

Gray, J., Bapty, T., Neema, S., and Tuck, J. (2001), 'Handling
Crosscutting Constraints in Domain-Specific Modeling',
Communications of the ACM, Vol. 44, No. 10, October, pp. 87-
93.

Gray, J., Zhang, J., Lin, Y., Wu, H., Roychoudhury, S., Sudarsan,
R., Gokhale, A., Neema, S., Shi, F., and Bapty, T. (2004),
'Model-Driven Program Transformation of a Large Avionics
Framework', in Proceedings of Generative Programming and
Component Engineering (GPCE), Vancouver, BC, October,
pp. 361-378.

Gray, J., Lin, Y., and Zhang, J. (2006a), 'Automating Change
Evolution in Model-Driven Engineering', IEEE Computer, Vol.
39, No. 2, February, pp. 51-58.

Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., and
Sprinkle, J., (2006b), 'Domain-Specific Modeling', Handbook
on Dynamic Systems Modeling, CRC Press.

Griswold, W. G., Katoy, Y., and Yuan, J. J. (1999), 'Aspect
Browser: Tool Support for Managing Dispersed Aspects', First
Workshop on Multi-Dimensional Separation of Concerns, a
workshop held at OOPSLA, Denver, CO, November.

Hannemann, J. and Kiczales, G. (2001), 'Overcoming the
Prevalent Decomposition in Legacy Code', Workshop on
Advanced Separation of Concerns, a workshop held at the
International Conference on Software Engineering (ICSE),
May.

Kamiya, T., Kusumoto, S., and Inoue, K. (2002), 'CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for
Large Scale Source Code', IEEE Transactions on Software
Engineering, Vol. 28, No. 2, July, pp. 654-670.

Karsai, G., Maroti, M., Lédeczi, Á., Gray, J., and Sztipanovits, J.
(2004), 'Composition and Cloning in Modeling and Meta-
Modeling Languages', IEEE Transactions on Control System
Technology, Vol. 12, No. 2, March, pp. 263-278.

Kontogiannis, K., DeMori, R., Merlo, E., Galler, M., and
Bernstein, M. (1996), 'Pattern Matching for Clone and Concept
Detection', Automated Software Engineering, Vol. 3, No. 1-2,
June, pp. 77-108.

Lédeczi, Á., Davis, J., Neema, S., and Agrawal, A. (2003),
'Modeling Methodology for Integrated Simulation of
Embedded Systems', ACM Transactions on Modeling and
Computer Simulation, Vol. 13, No. 1, January, pp. 82-103.

Mayrand, J., Leblanc, C., and Merlo, E. M. (1996), 'Experiment on
the Automatic Detection of Function Clones in a Software
System Using Metrics', in Proceedings of the International
Conference on Software Maintenance (ICSM), Monterey, CA,
November, pp. 244-253.

Neema, S., Bakay, A., and Karsai, G. (2005), 'Embedded Systems
Modeling Language', Institute of Software Integrated Systems,
Vanderbilt University, Technical Report.
http://www.escher.isis.vanderbilt.edu/tools/get_tool?ESML

Robillard, M. P. and Murphy, G. C. (2002), 'Concern Graphs:
Finding and Describing Concerns using Structural Program
Dependencies', In Proceedings of the 24th International
Conference on Software Engineering (ICSE), Orlando, FL,
May, pp. 406-416.

Sampaio, A., Chitchyan, R., Rashid, A., and Rayson, P. (2005),
'EA-Miner: A Tool for Automating Aspect-Oriented
Requirements Identification', in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Long Beach, CA, pp. 352-355.

Schmidt, D. (2006), 'Model-Driven Engineering', IEEE Computer,
Vol. 39, No. 2, February, pp. 25-31.

Sharp, D. (2000), 'Component-Based Product Line Development
of Avionics Software', in Proceedings of the Software Product
Lines Conference (SPLC), Denver, CO, August, pp. 353-369.

Shepherd, D., Gibson, E., and Pollock, L. (2004), 'Design and
Evaluation of an Automated Aspect Mining Tool',
International Conference on Software Engineering Research
and Practice, Las Vegas, NV, June, pp. 601-607.

Sudarsan, R. and Gray, J. (2006), 'Meta-Model Search: Using
XPath to Search Domain-Specific Models', Journal of
Research and Practice in Information Technology, Fall 2006.

TEAM (2006), Towards Evaluating Aspect Mining, a workshop
held at the European Conference on Object-Oriented
Programming (ECOOP), Nantes, France, July.
http://www.st.cs.uni-sb.de/TEAM/2006/

Zhang, C. and Jacobsen, H.-A. (2004), 'PRISM is Research In
aSpect Mining', Software Demonstration at OOPSLA 2004,
Vancouver, BC, October.

Zhang, J., Lin, Y., and Gray, J. (2005), 'Generic and Domain-
Specific Model Refactoring using a Model Transformation
Engine', in Model-Driven Software Development, (S. Beydeda,
M. Book, and V. Gruhn, eds.), Springer, pp. 199-218.

