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Abstract

The emergence of crosscutting concerns can be observed in various representations of software artifacts

(e.g., source code, models, requirements, and language grammars). Although much of the focus of

AOP has been on aspect languages that augment the descriptive power of general-purpose programming

languages, there is also a need for domain-specific aspect languages that address particular crosscutting

concerns found in software representations other than traditional source code. This paper discusses the

issues involved in the design and implementation of domain-specific aspect languages that are focused

within the domain of language specification. Specifically, the paper outlines the challenges and issues

that we faced while designing two separate aspect languages that assist in modularizing crosscutting

concerns in grammars.

1 Introduction

Over the past decade, many aspect-oriented programming (AOP) languages have been proposed, designed

and implemented (e.g., AspectC [2], AspectC# [3], and AspectJ [4]). However, the majority of these efforts

are devoted to general-purpose aspect languages (GPALs), despite the fact that preliminary work in AOP

had its genesis with domain-specific aspect languages (DSALs) [18]. A DSAL is focused on the description of
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specific crosscutting concerns (e.g., concurrency and distribution) that provide language constructs tailored

to the particular representation of such concerns. Examples of DSALs include [9, 10, 26, 27]. In comparison,

a GPAL is an aspect language that is not coupled to any specific crosscutting concern and provides general

language constructs that permit modularization of a broad range of crosscutting concerns. The majority of

DSALs have been developed for languages that are general-purpose programming languages (GPLs) [26];

i.e., the aspect-language is focused on a specific concern, but it is applied to a GPL such as Java or C++.

The scope of this paper is focused on the concept of a DSAL that is applied to a domain-specific language

(DSL) [20]; i.e., the aspect language is focused on a specific concern and applied to a DSL that also captures

the intentions of an expert in a particular domain. The distinction is highlighted by the partitioning of the

aspect language (which can be either a GPAL or a DSAL) from the associated component language (which

can be either a GPL or DSL). In the DSAL/DSL combination explored in this paper, a different join point

model was needed. This paper discusses several issues associated with DSALs applied to DSLs, rather than

GPLs.

The focus of this paper is within the well-established domain of programming language definition and

compiler generation. Historically, the development of the first compilers in the late-1950s was implemented

without adequate tools, resulting in a very complicated and time consuming task. To assist in compiler and

language tool construction, formal methods for language specification and supporting tools were developed

that made the implementation of programming languages easier. Such formal methods contributed to the

automatic generation of compilers and interpreters. Several concepts from general-purpose programming

languages have been adopted into the formalisms used to specify languages, such as object-oriented techniques

[23]. To achieve modularity, extensibility and reusability to the fullest extent, new techniques such as aspect-

orientation are being used to assist in modularizing the semantic concerns that crosscut many language

components described in a grammar. Examples of new techniques include JastAdd [11], AspectStratego [14],

AspectASF [15], AspectLISA [24], and AspectG [32].

Within a language specification, modularization is typically based on language syntax constructs (e.g.,

declarations, expressions, and commands). Adding new functionality to an existing language sometimes can

be done in a modular way by providing separate grammar productions associated with the extension. For

example, additions made to specific types of expressions within a language can be made by changing only

those syntax and semantic productions associated with expressions. In such cases, a new feature does not
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crosscut other productions within the language specification. However, there are certain types of language

extensions (e.g., type checking, environment propagation, code generation) that may require changes in many

(if not in all) of the language productions represented in the grammar. Because language specifications are

also used to generate language-based tools automatically (e.g., editors, type checkers, and debuggers) [12],

the various concerns associated with each language tool are often scattered throughout the core language

specification. Such language extensions to support tool generation emerge as aspects that crosscut language

components [32]. As such, these concerns often represent refinements over the structure of the grammar [5].

This paper shows how application of aspect-oriented principles toward language specification can assist in

modularizing the concerns that crosscut the language grammar.

This paper describes two approaches to integrate AOP with specifications that describe language gram-

mars. Although the approaches are both focused on the common domain of language specification, the two

resulting aspect languages apply to different compiler generators; namely, LISA [22] and ANTLR [1]. LISA

relies on attribute grammars (AGs) and ANTLR uses syntax-directed translation. Furthermore, LISA speci-

fications enable higher modularity, extensibility, and reusability through concepts such as multiple attribute

grammar inheritance and templates in AGs [21]. These differences among LISA and ANTLR contribute to

proposing two DSALs that are quite different.

The organization of the paper is as follows. The various issues that are encountered when developing

domain-specific join point models are presented in Section 2. In Sections 3 and 4, two separate DSALs

for language definition (namely, AspectLISA and AspectG) are described. Section 5 discusses the lessons

learned from our experiences in designing AspectLISA and AspectG. The section compares the two languages

and also summarizes related work. The paper concludes with Section 6, which summarizes the contribution

of the paper and overviews some challenges representing future work in the area of aspect languages for

grammars.

2 Domain-Specific Join Point Models

When designing a new DSAL, a completely different join point model (JPM) might be needed as an al-

ternative to the JPM used by a GPAL like AspectJ. The main issues in designing a JPM for a DSAL

include:

3



1. What are the join points that will be captured in the DSAL?

2. Are the DSAL join points static or dynamic?

3. What granularity is required for these join points?

4. What is an appropriate pointcut language to describe these join points?

5. What are advice in this domain?

6. Is extension/refinement only about behavior, or also structure?

7. How is information exchanged between join points and associated advice (context exchange)? Is para-

metrization of advice needed?

In specific domains such as context-dependent computing (e.g., service-oriented and ubiquitous comput-

ing), an aspect language may need to address context passing concerns. Several specific approaches have

been proposed, such as: contextual pointcut expressions [8], temporal-based context aware pointcuts [13],

and context-aware aspects [28]. Such concerns are more easily addressed through DSALs than GPALs [7].

A DSAL designer must also consider the issue of aspect ordering (i.e., how inter-aspect dependencies are

handled) and if there is a need to dynamically add or remove aspects during the execution.

Another issue to be considered in the design of a DSAL is the degree that abstraction, reusability, modu-

larity, and extensibility are needed to specify a crosscutting concern that is domain-specific. An abstraction

is an entity that embodies a computation [30]. The abstraction principle shows that it is possible to construct

abstractions over any syntactic class, provided the phrases of that class specify some kind of computation

(e.g., function abstraction, procedure abstraction, and generic abstraction). A GPL provides a large set of

powerful abstraction mechanisms, whereas a DSL strives to offer the correct set of predefined abstractions.

This is reasonable because a GPL cannot possibly provide the right abstractions needed for all possible

applications. Because a DSL has a restricted domain, it is possible to provide some, if not all, of the de-

sired abstractions. Many DSLs do not provide general-purpose abstraction mechanisms because it is often

possible to define a fixed set of abstractions that are sufficient for all the applications in a domain. Hence,

we can expect that some DSALs will use fixed and predefined pointcuts and advice with limited possibility

for general abstraction. On the other hand, a DSAL that is applied to a general-purpose component lan-

guage should have more sophisticated constructs for pointcuts and advice. For example, pointcuts should
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be generic, reusable, comprehensible and not tightly coupled to an application’s structure. Tourwe et al.

proposed an annotation of inductively generated pointcuts as a solution to this problem [29].

3 AspectLISA

This section describes our own language definition tool called LISA and investigations into applying aspects

to its formal specification language. The first subsection introduces the LISA tool and its Domain-Specific

Component Language for language definition. A discussion of how AspectLISA extends a LISA language

specification through aspects that crosscut the language definition follows. The section is concluded with an

explanation of an example language defined in AspectLISA.

3.1 LISA: A Domain-Specific Component Language

LISA [17] is a tool (compiler-compiler) that automatically generates a compiler and other language related

tools from formal attribute grammar (AG) [16] based language specifications. LISA uses a special speci-

fication notation (i.e., a specially designed DSL) to define a new language. The specification language is

designed to support modularity, reusability and incremental language development through mechanisms like

multiple inheritance, templates in AGs and aspects. Specifications are stored in one or more .lisa files

(reusable language components) that are then transformed by multiple steps into a monolithic language

specification. The output from the last transformation phase are three separate monolithic specifications

(lexical, syntactic, and semantic) from which the source code (in Java) for a scanner, parser, and evaluator

are generated. One can use the LISA tool in textual mode, as a compiler generator, or LISA’s IDE can be

used to specify, generate, compile-on-the fly, and execute programs in a newly specified language. When

using LISA’s IDE the users can also benefit from various language-based tools that are generated from input

specifications [12]. LISA also generates a syntax-aware editor and various inspectors, such as a finite state

automata visualizer and syntax and semantic tree animators that are useful for understanding the behavior

of the newly specified language. Users of the generated compiler or interpreter also have the possibility to

visually observe the work of syntax and semantic analyzers by watching the animation of a parse and seman-

tic tree. The animation shows the parser in action and the values of the attributes as they change. Also, the

syntax and the semantic trees are automatically updated as the program executes. Animated visualizations
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help to explain the inner workings of programs and are a useful tool for debugging and teaching.

LISA uses a specially designed DSL to define a new language. The LISA specification language consists

of the following components:

Lexical definitions

The lexical part of a language definition is denoted by the reserved word lexicon. From this part,

LISA generates Java source code that implements a scanner for the defined lexicon. Tokens are defined

using named regular expressions (i.e, regular definitions). Each regular expression has a unique name

and can be extended or redefined in a derived language through inheritance. In the example shown

in Figure 1, there are two regular definitions: Commands and ReservedWord. Reserved word ignore is

used to define characters and tokens that are ignored by the scanner (i.e., not included in the token

list).

Generalized syntax rules

The syntax and semantic parts of a language specification are encapsulated into generalized syntax

rules that are denoted by the reserved word rule. LISA follows the well-known standard BNF notation

for defining the syntax of a programming language. Context-free productions are specified in the rule

part of a language definition (e.g., START ::= begin COMMANDS end ; where the first character of

non-terminal symbols must be a capital letter). Generalized LISA rules serve as an interface for

language specifications and may be extended or overriden in a derived language through inheritance.

The semantic part of a language specification is defined by an attribute grammar. Semantic actions

must be provided for every production in the compute part of generalized syntax rules. In order to

pass values in the syntax tree, non-terminals have attributes that define semantics forming a semantic

tree. Attribute evaluation rules are associated with each context-free production. Semantic rules (i.e.,

attribute calculations) are defined in Java (i.e., the right-hand side of the semantic equation) and can

take advantage of all standard Java libraries.

Attribute definitions

Using an attribute grammar approach, the semantics of a programming language are defined by

attributes that are provided for each non-terminal symbol. The type of an attribute in LISA can be
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any valid Java type. Usually, the same attribute name is attached to many different non-terminals.

For that reason, the wildcard * can be used. The attribute definition part of a language specification

is denoted by the reserved word attributes.

Operations on semantic domains

Semantic domains and operation on these domains in LISA can be written in the method section

of specifications (denoted by reserved word method; depicted at the end of the example in Figure 3).

Because LISA generates the source code of a parser and compiler in Java, it is natural to define the

semantic domain in the same programming language. Operations on semantic domains can also be

imported from existing packages (e.g., import Robot.calculations.* ;).

In order to illustrate the LISA specification language, the definition of a toy language for robotic control

is depicted in Figure 1. The robot can move in different directions (left, right, down, up) and the task is

to compute its final position. An example Robot program is begin up right up end with the result

{outp.x=1, outp.y=2} (assuming robot position is initialized to 0).

LISA enables modular and incremental language development with a mechanism called multiple attribute

grammar inheritance. A new language specification can inherit the existing features of its ancestor(s) and may

introduce new features that extend or override its inherited features. All features in the language definition

provided in LISA (e.g., lexical definitions, generalized syntax rules, attribute definitions, and operations

on semantic domains) are the subject of inheritance. One can reuse or modify (reserved word extends)

or redefine (reserved word override) some of the features of ancestor language(s). Further discussion on

multiple attribute grammar inheritance is outside of the scope of this paper. Additional information about

LISA, and its features (including software, tutorial, and examples), can be found on LISA’s web page [17]

and in [21, 22].

3.2 AspectLISA: A Domain-Specific Aspect Language

In language specification there are situations when new semantic aspects crosscut basic modular structure.

For example, when the same semantic rules have to be repeated in different productions; i.e., the intro-

duction of an assignment statement requires variables, which imply definition of the environment and its

propagation in all defined productions. Changes of such magnitude are hard to implement with conventional
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language Robot {
lexicon {
Commands left | right | up | down
ReservedWord begin | end
ignore [\0x0D\0x0A\ ]

}
attributes java.awt.Point *.inp, *.outp;
rule start {
START ::= begin COMMANDS end compute {

START.outp = COMMANDS.outp;
COMMANDS.inp = new java.awt.Point(0, 0);

};
}
rule commands {
COMMANDS ::= COMMAND COMMANDS compute {

COMMANDS[0].outp = COMMANDS[1].outp;
COMMAND.inp = COMMANDS[0].inp;
COMMANDS[1].inp = COMMAND.outp;

} | epsilon compute {
COMMANDS.outp = COMMANDS.inp;

};
}
rule command {
COMMAND ::= left compute {

COMMAND.outp =
new java.awt.Point(( int)COMMAND.inp.getX()-1, ( int)COMMAND.inp.getY());

};
COMMAND ::= right compute {

COMMAND.outp =
new java.awt.Point(( int)COMMAND.inp.getX()+1, ( int)COMMAND.inp.getY());

};
COMMAND ::= up compute {

COMMAND.outp =
new java.awt.Point(( int)COMMAND.inp.getX(), ( int)COMMAND.inp.getY()+1);

};
COMMAND ::= down compute {

COMMAND.outp =
new java.awt.Point(( int)COMMAND.inp.getX(), ( int)COMMAND.inp.getY()-1);

};
}

}

Figure 1: Specifications for the Robot language in LISA
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inheritance, because each change crosscuts all parts of the language. In order to increase modularity and

improve reusability of language components, we introduced aspect-oriented features into LISA’s specifica-

tion language, called AspectLISA. Because LISA uses attribute grammars as a formal model for language

definition, we call this extension Aspect-Oriented Attribute Grammars (AOAGs) [24].

In order to introduce aspect-oriented features into LISA, we extended the original language with pointcut

definitions, advice, and advice application. One of the crucial parts of an aspect-oriented language is the

join point model (JPM). In consideration of the questions stated in Section 2 regarding the JPM for specific

domains, join points in AspectLISA are static points in a language specification where additional semantic

rules can be attached. These points in AspectLISA are production rules.

Pointcut

A set of join points in AspectLISA is described by a pointcut that matches rules or productions in

the language specification. To define a pointcut in AspectLISA, two different wildcards are available.

The wildcard ‘..’ matches zero or more terminal or non-terminal symbols and can be used to specify

right-hand side matching rules. The wildcard ‘∗’ is used to match parts or whole literals representing a

symbol (terminal or non-terminal symbol). Some examples of pointcut specifications are shown below:

*.* : * ::= .. ; matches any production in any rule in all languages across the current

language hierarchy

Robot.m* : * ::= .. ; matches any production in all rules that start with m in the Robot lan-

guage

Robot.move : COMMAND ::= left ; matches only a production COMMAND ::= left in the rule move of the

Robot language

Pointcuts in AspectLISA are defined using the reserved word pointcut. Each pointcut must have a

unique name. An example of a pointcut that identifies all productions with COMMAND as the left-hand

non-terminal in the generalized LISA rule move is:

pointcut Command *.move : COMMAND ::= .. ;

Advice

In AspectLISA, advice are polymorphic abstractions of semantic rules parametrized with any

number of terminals, non-terminals or attributes. These parameters can be associated with many

production rules with different non-terminal and terminal symbols. The mechanism for specifying
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semantics in advice is similar as templates in AGs [19, 21]. Advice define additional semantics through

extension or refinement, and do not impact the structural (i.e., syntax) level of a language specification,

which is a crucial difference between templates in AGs and advice. Advice can be applied at join points

specified by one or more pointcuts. In AspectLISA, there is only one way to apply advice on a specific

join point due to the fact that AGs are declarative. The order of semantic rules is calculated during

compilation or evaluation time when dependencies among attributes are identified. Therefore, applying

advice before or after a join point is not applicable. For the same reason, ordering of different aspects

is not necessary. Advice are defined using reserved word advice. Each advice has a unique name and

a list of formal parameters.

Suppose that the Robot language needs to be extended to incorporate the concept of time (i.e., language

RobotTime). An example advice for time calculation is shown as follows:

advice CommandTime<C> { C.time = 1; } ;

The above advice can be applied to several different pointcuts using the apply construct in AspectLISA.

The abstractions of semantic rules that are independent of the structure of production rules can be

specified in AspectLISA. These abstractions can be used for specifying common patterns in language

specifications, such as value distribution, value construction, bucket brigade, list distribution, and

many others. As an example, a bucket brigade left pattern is described as follows:

Y ::= X1 X2 ... XN
{ X1.in = Y.in; X2.in = X1.out;
...
XN.in = XN-1.out; Y.out = XN.out; }

An advice describing this pattern is as follows:

if (empty(RHS)) {
LHS.outAtt = LHS.inAtt ;

}
else {
first(RHS).inAtt = LHS.inAtt;
RHS.inAtt = pred(RHS).outAtt;
LHS.outAtt = last(RHS).outAtt;

}
}

Reserved words LHS and RHS denote a left-hand side non-terminal, and a list of right-hand side non-

terminals of a production. Together with a list of arguments, some functions are defined that can be
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used for variable list manipulation (first, last, succ, and pred). A successor (function succ) for

the last argument, and predecessor for the first argument (function pred) do not exist; therefore, a

semantic rule is not generated in that case.

Advice application

The advice application part of a language specification in AspectLISA is the part where advice are

applied to join points. This can be done using the reserved word apply followed by the advice name

with actual parameters, reserved word on, and a list of pointcuts. The first step of applying advice is

to lookup and compare actual parameters of each advice. The lookup for appropriate pointcuts follows

similarly. After pointcuts are known, the next step is to apply the semantics defined in each advice as

bound by a pointcut. This will be explained in more detail in subsection 3.2.2. As an example:

apply CommandTime<COMMAND> on Command ;

defines an application of aspect CommandTime, where pointcut Command affects all productions in rule

move. Without aspect-oriented constructs, it is necessary to repeat and manually add several semantic

actions in many productions. The “original” specifications of this part of the language would be:

rule extends command {
COMMAND ::= left compute {

COMMAND.time = 1;
};
COMMAND ::= right compute {

COMMAND.time = 1;
};
COMMAND ::= up compute {

COMMAND.time = 1;
};
COMMAND ::= down compute {

COMMAND.time = 1;
};

}

When advice is applied to join points, the semantic rule for a particular attribute may already be

defined. The question arises, whether to overwrite this semantic rule or ignore its application? By

default, the application of such semantic rules defined in advice is ignored. For that reason we introduce

reserved word overwrite that serves as a flag to the aspect weaver to redefine already defined semantic

rules in a production rule. For an example, if we would use overwrite in the following statement:

apply overwrite bucketBrigadeLeft<inEnv, outEnv> on *.* : * ::= .. ;
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some already defined semantic rules in productions that match pointcut *.* : * ::= .. ; (i.e., in

this case, all productions) would be overwritten.

3.2.1 Multiple Aspect-Oriented Attribute Grammar Inheritance

Modularity, reusability and extensibility of language specifications have been much improved in LISA using

multiple attribute grammar inheritance [21]. In order to increase reusability and modularity of aspect-

oriented features in AspectLISA, pointcuts and advice are also subjects of inheritance. Formal definition of

multiple AG inheritance needs to be adopted to integrate aspect-oriented features - we call this extension

multiple aspect-oriented attribute grammar inheritance. An explanation of how multiple aspect-oriented

attribute grammar inheritance works for each aspect-oriented feature of AspectLISA is out of the scope of

this paper.

3.2.2 Aspect Weaving in AspectLISA

The crucial part of every aspect-oriented compiler is an aspect weaver that is responsible for appending

advice code into appropriate places described by pointcuts. We extend LISA’s compiler in order to implement

weaving in AspectLISA. Therefore, from a user point of view, the weaving process in AspectLISA is hidden

within the compile phase of LISA’s compiler generator. The main weaving algorithm is described as follows:

method weaveAll(lastLanguage)
// lastLanguage is last language in hierarchy, where starting production is defined
for each defined_apply_statement do
apply_st = next(defined_apply_statement);
advice_pointcuts_set = find_matching_pairs(apply_st); // (advice, set of pointcuts)
// lookup for advice and pointcuts is implemented in similar manner as in all OO languages
for each advice_pointcuts_set do
advice = next(advice_pointcuts_set).advice;
pointcuts = next(advice_pointcuts_set).pointcuts;
apply(advice, pointcuts);

endfor
endfor

endmethod

method apply(advice, pointcuts)
for each pointcuts do
pointcut = next(pointcuts);
// 1. find all sets of production rules
// 2. substitute formal parameters of advice with actual parameters
// 3. apply semantic rules to each production rule
apply_advice(advice, pointcut);

endfor
endmethod
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Weaving starts with the language production that is at the highest level in the language components

hierarchy. The same algorithm is applied to each apply statement that defines a unique advice–pointcut

pair. The first step is to find1 all advice and matching set of pointcuts (due to pointcut inheritance, each

pointcut can define a set of pointcuts). Then, semantic rules of each advice are merged with semantic rules of

production rules. If overwrite is defined, then all semantic rules are copied to the production rule. Already

existing (duplicated) semantic rules for a particular attribute are substituted with semantic rules defined

in advice. When override is not specified, the semantic rules from the advice are ignored. The search for

appropriate join points (i.e., production rules) also take place at weaving time.

3.3 AspectLISA Illustrative Example

In the example of extending the Robot language with the semantics for time calculations (e.g., the language

RobotTime example from section 3.2), it can be observed that aspect-oriented features are very useful for

extending language semantics. In this example, we need to extend (i.e., redefine in derived language compo-

nent) all seven production rules in three generalized LISA rules and add a new semantic rule to each of them.

Because the same semantic rule has to be applied several times, this emerges as a crosscutting concern and

can be solved more effectively using aspects. In this case the semantic rule is specified only once in advice

and can be easily changed or removed.

Another benefit of the same advice–pointcut definition can be noticed on the RobotCalc example in

Figure 2. In this case we integrate features from another language component in order to extend the original

language through multiple inheritance. Because we changed the syntax of the language, all the productions

where syntax is changed have to be extended with new semantic rules in order to take into account new

attributes from the parent language(s). A semantic rule for time calculation defined in the advice does

not have to be redefined in derived production rules because a pointcut match from an ancestor language

component also changes the production rules of a new extension. With a manual approach using only

inheritance, all semantic rules for time calculation would have to be redefined (i.e., written once more) in all

redefined production rules, which is a time consuming and error-prone task. A fragment of the specifications

for language RobotCalc is depicted in Figure 2. The non-terminal EXPR is inherited from language component

Expressions, which implements a language for arithmetic expressions. An example of a program written
1Advice and pointcut lookup works the same as in most compilers for object-oriented languages with multiple inheritance.
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language RobotCalc extends RobotTime, Expressions {
...
rule command {
COMMAND ::= left EXPR compute {

COMMAND.outp = new java.awt.Point(( int)COMMAND.inp.getX()-EXPR.val, ( int)COMMAND.inp.getY());
};
COMMAND ::= right EXPR compute {

COMMAND.outp = new java.awt.Point(( int)COMMAND.inp.getX()+EXPR.val, ( int)COMMAND.inp.getY());
};
...

}
...

}

Figure 2: Specifications for the RobotCalc language

in the RobotCalc language is: begin down 5 right 3*(2+1) end with the result of {time=2; outp.x=9;

outp.y=-5}.

In Figure 3, we introduce an assignment statement into the RobotCalc language. An example of

such a program is: begin left ID=10*(5+2) up ID-10 end with the meaning {time=2; outp.x=70;

outp.y=60}. An assignment statement requires variables that imply the definition of an environment and

its propagation in all defined production rules. From a developers point of view, this means all generalized

LISA rules have to be extended in all production rules (i.e., 17 rules; from all ancestor language components)

where new semantics for environment propagation have to be added. Because environment propagation can

be identified as a bucketBrigadeLeft pattern, the implementation should be simplified. One of the im-

provements can be achieved using templates in AGs. The semantics for environment propagation is in this

case defined in a template that is further instantiated at appropriate production rules. The drawback of

this approach (at least in this particular case) is instantiation of a template that has to be defined in all

production rules. The developer must therefore extend all generalized LISA rules, redefine all production

rules and instantiate a template in each of them. In this case lines of code (LOC) decrease, but number of

(re)defined production rules remain the same. Using an aspect-oriented approach, environment propagation

(e.g., bucketBrigadeLeft pattern) can be defined in an advice and further applied at appropriate production

rules (i.e., join points in AspectLISA) that can be defined also in ancestor language component(s). Only pro-

duction rules with additional semantics (i.e., additional to environment propagation), and production rules

for assignment statement with some specific semantics for environment propagation have to be (re)defined

in this case (i.e., two additional production rules and starting production). Only three production rules have
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language RobotExpressions extends RobotCalc {
lexicon {

extends Operator \=
extends Separator \;
Identifier [A-Z]+

}
attributes java.util.Hashtable *.inEnv, *.outEnv;
attributes int STMT.val;
pointcut EnvPropagate *.* : * ::= .. ; // all productions in the language
advice bucketBrigadeLeft<inAtt, outAtt> {
if (empty(RHS)) {
LHS.outAtt = LHS.inAtt ;

}
else {
first(RHS).inAtt = LHS.inAtt;
RHS.inAtt = pred(RHS).outAtt;
LHS.outAtt = last(RHS).outAtt;

}
}
apply bucketBrigadeLeft<inEnv, outEnv> on EnvPropagate;
pointcut ValEXPR RobotExpressions.ExprStart : EXPR ::= STMT ;
pointcut ValSTMT RobotExpressions.Statement : STMT ::= .. E ..;
advice ValPropagate<RSide> {
LHS.val = RSide.val;

}
apply ValPropagate<STMT> on ValEXPR;
apply ValPropagate<E> on ValSTMT;
rule extends start {
START ::= begin COMMANDS end compute {

COMMANDS.inEnv = newEnvironment();
};

}
rule Statement {
STMT ::= #Identifier \= E compute {

STMT.outEnv = putEnvironment(E.outEnv, #Identifier.value(), new Integer(E.val));
};

}
rule extends Expression {
E ::= #Identifier compute {

E.val = ((Integer)getEnvironment(E.inEnv, #Identifier.value())).intValue();
};
method EnvironmentOperations {
import java.util.Hashtable;
Hashtable putEnvironment(Hashtable aEnv, String aName, Object aValue) {

Hashtable Env = (Hashtable)aEnv.clone();
Env.put(aName, aValue);
return Env;

}
Hashtable newEnvironment() {

return new Hashtable();
}
Object getEnvironment(Hashtable aEnv, String aName) {

return aEnv.get(aName);
}

}
}

Figure 3: Specifications for the RobotExpressions language
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Table 1: Metrics for RobotExpressions example
LISA specs ELOC NOP DP RDE
Original 123 17 43 /

Templates 99 17 43 19.5 %
Aspects 67 17 25 45.5 %

to be redefined, instead of 17, when an aspect-oriented approach is used.

In Table 1, some metrics for our example are summarized (ELOC = Effective Lines of Code, NOP =

Number Of Productions, DP = Defined Productions in AspectLISA, RDE = Reduced Developer Effort).

As can be seen from the results, only 25 productions, instead of 43 defined productions in all language

components have to be defined if one uses an aspect-oriented approach. This reduces the language developer

effort by 45.5% in our example and reduces the possibilities to make mistakes when a language is reused or

extended. Note, these evaluation metrics are for a toy Robot language. We believe that the benefits are

more extensive for larger languages.

4 AspectG

This section describes our second investigation into a DSAL for language specification. The first subsection

introduces ANTLR as the DSL representing the component language. The second subsection provides a

discussion of AspectG, which is our DSAL that weaves crosscutting concerns into ANTLR grammars.

4.1 ANTLR: A Domain-Specific Component Language

ANTLR (ANother Tool for Language Recognition) is a parser generator that provides a framework for

constructing various programming language related tools (e.g., recognizers, compilers, and translators) from

grammatical specifications [1]. The ANTLR specification language is based on EBNF notation and enables

syntax-directed generation of a language translator. The tokens comprising the lexical part of the grammar

for the new language are defined using named regular expressions. The parser representing the semantic part

of the language specification is defined as a subclass of the grammar specification and encapsulates semantic

rules within each grammar production. The semantic actions within each production rule are written in a

GPL (e.g., Java, C#, C++, or Python). Additional information about ANTLR can be found on the ANTLR
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web page [1].

The Robot language described in Section 3 has been rewritten in ANTLR and partially provided in

Figure 4. This simple example illustrates the ANTLR specification language with semantic rules defined

in Java. From the language specification in Figure 4, ANTLR generates Java source code representing the

scanner and parser for the Robot language. The Robot language follows the DSL implementation pattern

using a pre-processor that serves as a compiler and application generator to perform a source-to-source

transformation [20] (i.e., the DSL source code is translated into the source code of an existing GPL). The

ANTLR specification of the Robot language translates Robot code into the equivalent Java code (e.g.,

Robot.java) that can be compiled and executed on the Java Virtual Machine.

4.2 AspectG: A Domain-Specific Aspect Language for Grammars

In our past work [32], we noticed that crosscutting concerns emerged within the grammar of the language

specification. In particular, the implementation hooks for various language tools (e.g., debugger and testing

engine) required modification to be made to every production in the grammar. Manually changing the

grammar through invasive modifications proved to be a very time consuming and error-prone task. It is

difficult to build new testing tools for each new language of interest and for each supported platform because

each language tool depends heavily on the underlying operating system’s capabilities and lower-level native

code functionality [25]. In this section, the syntactical extension of a language (as demonstrated with

AspectLISA in the previous section) is not the primary focus. The motivation for AspectG is to assist in

modularizing grammar adaptations that enable new tools (e.g., debugger and testing engine) for a language.

We developed a general framework called the DSL Testing Tool Studio (DTTS), which assists in debugging

and testing a program written in a DSL [31]. Using the DTTS, a DSL debugger and unit test engine can

be generated automatically from the DSL grammar provided that an explicit mapping is specified between

the DSL and the translated GPL. To specify this mapping, additional semantic actions inside each grammar

production are defined. A crosscutting concern emerges from the addition of the explicit mapping in certain

grammar productions. The manual addition of the same mapping code in the grammar productions results

in much redundancy that can be better modularized using an aspect-oriented approach applied to grammars.

In the case of generating a debugger for the Robot language, the debug mapping for the Robot DSL debugger

was originally specified manually within the Robot DSL grammar, as shown in Figure 5. For example, lines
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// The following class represents the Robot parser in ANTLR
class P extends Parser; {FileIO fileio=new FileIO();}
root:(

BEGIN
{
fileio.print("public class Robot");
fileio.print("{");
fileio.print("public static void main(String[] args) {");
fileio.print("int x = 0;");
fileio.print("int y = 0;");
}

commands
END EOF!
{
fileio.print("System.out.println(\"x coord= \" + x +

\" \" + \"y coordinator= \" + y);");
fileio.print(" }");
fileio.print("}");
fileio.end();
}

);
commands:( command commands

|
);

command :(
LEFT {fileio.print("x=x-1;");

fileio.print("time=time+1;");}
|RIGHT {fileio.print("x=x+1;");

fileio.print("time=time+1;");}
|UP {fileio.print("y=y+1;");

fileio.print("time=time+1;");}
|DOWN {fileio.print("y=y-1;");

fileio.print("time=time+1;");});

// The following class represents the Robot lexer in ANTLR
class L extends Lexer;
BEGIN : "begin";
END : "end";
LEFT : "left";
RIGHT : "right";
UP : "up";
DOWN : "down";
// whitespace
WS : ( ’ ’

| ’\t’
| ’\r’ ’\n’ { newline(); }
| ’\n’ { newline(); }
) {$setType(Token.SKIP);} ;

Figure 4: Specifications for the Robot language in ANTLR
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12 to 17 represent the semantic rule of the LEFT command. Line 12 keeps track of the Robot DSL line

number; line 14 records the first line of the translated GPL code segment; line 16 marks the last line of

the translated GPL code segment; line 17 generates the mapping code statement used by the DTTS. These

semantic actions are repeated in every terminal production of the Robot grammar. Note that lines 13 and

15 represent the original semantic actions of the Robot language.

...
10 command
11 :( LEFT {
12 dsllinenumber=dsllinenumber+1;
13 fileio.print(" x=x-1;");
14 gplbeginline=fileio.getLinenumber();
15 fileio.print(" time=time+1;");
16 gplendline=fileio.getLinenumber();
17 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," + gplbeginline +

"," + gplendline + "));");}
18 |RIGHT {
19 dsllinenumber=dsllinenumber+1;
20 fileio.print(" x=x+1;");
21 gplbeginline=fileio.getLinenumber();
22 fileio.print(" time=time+1;");
23 gplendline=fileio.getLinenumber();
24 filemap.print("mapping.add(newMap(" + dsllinenumber + ",\"Robot.java\"," + gplbeginline +

"," + gplendline + "));");}

Figure 5: Specifications for the Robot language in ANTLR (with debug concern added)

The same mapping statements for the RIGHT command appear in lines 19 through 24. Although the

Robot DSL is simple, it is not uncommon to have grammars with hundreds of production rules. In such

cases, much redundancy will exist because the mapping code is replicated across each production. Of course,

because the mapping concern is not properly modularized, changing any part of the mapping has a rippling

effect across the entire grammar. An aspect-oriented approach can offer much benefit in such a case. We

have created AspectG as a tool to help manage crosscutting concerns in ANTLR language specifications.

The AspectG pointcut model can match on both the syntax of the grammar and the semantic rule within

each production, which is written in Java. Join points in ANTLR are static points in the language specifi-

cation where additional semantic rules can be attached. A set of join points in AspectG is described with

pointcuts that define the location where the advice is to apply. A wildcard can be used within the signature
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of a pointcut. The wildcard ‘∗’ matches zero or more terminal or non-terminal symbols to represent a set of

qualified join points. Some examples of pointcut specifications are shown below:

*.*; matches any production in the entire Robot language

command.*; matches any production in a command production set in the Robot language

Pointcuts in AspectG are defined using the reserved word pointcut and two keywords representing point-

cut predicates (e.g., within and match). The within predicate is used to locate grammar productions at

the syntax level and match is used to define the location of a GPL statement within a semantic rule. Each

pointcut has a unique name and a list of actual patterns (composed by terminals, non-terminals, and wild

cards) and semantic rules. The patterns are used to identify the location of join points. They are passed into

weaving functions to weave the semantic rules into the language grammar. Consider the following pointcut:

pointcut productions(): within(command.*);

The pointcut called productions is defined with the wildcard command.* and matches command pro-

ductions in the Robot grammar (e.g., RIGHT and LEFT). As an example of a pointcut that combines both

predicate types, consider the following:

pointcut count_gpllinenumber(): within(command.*) && match(fileio.print("time=time+1;"));

The pointcut count_gpllinenumber is a pattern specification corresponding to command productions

having a semantic action with a statement matching the signature fileio.print("time=time+1;"). The

advice in AspectG is defined in a similar manner to AspectJ, which brings together a pointcut that selects

join points and a body of code representing the effect of the advice [4]. The advice are semantic rules written

as native Java statements that can be applied at join points specified by pointcuts. Unlike LISA, in ANTLR

the order of GPL statements in semantic rules is very important. Therefore, in AspectG the ability to apply

advice before or after a join point is necessary, as shown in the example below.

before(): productions() { dsllinenumber=dsllinenumber+1; }
after(): count_gpllinenumber() { gplendline=fileio.getLinenumber(); }

The before advice defined on the productions pointcut means that before the parser proceeds with execu-
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tion of each command production, the DSL line number is incremented (i.e., dsllinumber=dsllinenumber

+ 1; ). The after advice associated with the count_gpllinenumber means that line numbers for the GPL

are updated (i.e., gplendline=fileio.getLinenumber();) after the parser matches a timer increment (i.e.,

fileio.print ("time =time+1;"); ).

4.2.1 Aspect Weaving at the DSL Grammar Level

We have used a program transformation system (e.g., DMS - the Design Maintenance System [6]) to weave

crosscutting concerns into the actual language grammar. To modularize concerns in a grammar, DMS is

used to weave the debugging concern directly into the grammar itself, rather than the ANTLR generated

GPL source code. In order to transform language grammars written in ANTLR, a DMS language domain

was created that is capable of parsing and transforming grammars specified in ANTLR. Using DMS, we

created a parser for ANTLR and developed a series of lower level general transformations on the ANTLR

representation. The debugging concern is weaved at an earlier stage in the grammar itself before the lexing

and parsing. The changes that are encapsulated as aspects are propagated into the generated parser through

the modified grammar productions. After weaving a grammar aspect and parsing the Robot DSL program,

the new Robot grammar can generate the mapping information that contains the information needed by

the DTTS (i.e., each Robot DSL code statement line number along with its corresponding generated Java

statement line numbers are recorded in the grammar).

We have developed a domain-specific aspect language called AspectG, which weaves the aspects into

grammars by generating low-level transformation rules written in DMS that use pattern matching and rewrite

specifications on the AST of a source program (in this case, the source is actually an ANTLR grammar file).

This approach has the side benefit of language independence. It does not matter which GPL serves as the

generated target and also does not matter which GPL serves as the embedded semantic code. The DMS

ANTLR domain is capable of parsing the grammar and weaving the aspects for a large set of programming

languages that are pre-defined in DMS (e.g., Ada, C, C++, C#, COBOL, FORTRAN, HTML, Java, PHP,

SQL, and XML).

In order to weave the aspects into DSL grammars, the first step is to construct a parser for ANTLR.

As shown in Figure 4, the Robot DSL syntax is specificed in ANTLR notation where the semantic actions

are written in Java by separating the action code within each production with curly brackets. This is
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an example of an embedded DSL where a host language (e.g., ANTLR) has another language (e.g., Java)

embedded within it. The embedded Java within ANTLR presents a challenge because two different syntactic

constructs (i.e., ANTLR and Java) must be parsed using any one particular parser. A simplified solution

would be to include all the tokens and productions from both language domains to form a combined grammar

and then generate the parser using the DMS parser generator. However, this approach does not make use

of the existing DMS Java grammar or parser. A better approach that we adopted reuses the existing DMS

Java tools and separates the ANTLR grammar productions from the Java grammar productions, but still

parses the input source containing tokens from both languages. The ANTLR parser that we created in DMS

has the ability to switch between different parse modes based on whether an ANTLR production has the

focus, or if control has passed to a semantic action written in Java.

A grammar aspect can be specified in AspectG, which generates DMS transformation rules to configure

the low-level transformation functions. Before the grammar is even processed by the ANTLR parser, it is

first pre-processed by AspectG using DMS in order to weave the grammar aspect into the original grammar

productions. The transformed grammar is then submitted to ANTLR in order to generate the parser and

lexer for a specific GPL. The contribution of this approach is the transformation of the grammar itself, rather

than the generated parser code. The specification of the debug mapping is modularized in a single place -

the AspectG specification.

4.2.2 AspectG Implementation

Unlike AspectLISA’s compiler approach, AspectG uses a program transformation system to perform the un-

derlying weaving on the language specification. The AspectG abstraction hides the details of the accidental

complexities of using the transformation system from the users; i.e., a user of AspectG focuses on describing

the crosscutting grammar concerns at a higher level of abstraction using an aspect language, rather than

writing lower level program transformation rules [32]. In AspectG, each of the crosscutting concerns is mod-

ularized as an aspect that is weaved into an ANTLR grammar using parameterized low-level transformation

functions.

We have developed four weaving functions to handle four different types of join points that may occur

within a grammar. The four possible join points provided by AspectG are: before a semantic action (i.e.,

before the first statement of one semantic action code segment); after a semantic action (i.e., after the last

22



statement of one semantic action code segment); before a specific statement that is inside a semantic action;

and, after a specific statement that is inside a semantic action. These join points are represented in AspectG

by before and after keywords within the context of a semantic action or specific statement. Weaving takes

place after the initial phase of AspectG, which is responsible for parsing the AspectG specification and

generating the program transformation rules. The generated program transformation rules provide bindings

to the appropriate weaving function parameters corresponding to the pointcut and advice defined in the

aspect language.

4.2.3 AspectG Illustrative Example

This sub-section illustrates the process of using AspectG to weave a debugging aspect into the Robot language

grammar. The mapping between the DSL (in this case, ANTLR) and the generated GPL (in this case, Java)

is represented by a line number counter that keeps track of which DSL line number corresponds to the

current line of GPL code being debugged. Figure 6 shows the DSL line number counter aspect in AspectG

notation. The DSL line number counter update statement (dsllinenumber=dsllinenumber+1;) must be

inserted after each Robot language statement [31]. The pointcut called productions (shown earlier) matches

the production rules of the Robot language grammar within any instance production whose name begins

with command. It specifies code (dsllinenumber=dsllinenumber+1;) to run at a join point matched by the

pointcut productions to update the DSL line number counter every time there is a DSL statement defined

in the command production rule set.

...
5 aspect dsllinenumber (
6
7 pointcut productions(): within(command.*);
8
9 after(): productions() {dsllinenumber=dsllinenumber+1;}
...

Figure 6: DSL Line Number Counter Aspect in AspectG Notation

From the high-level aspects specified in AspectG, a series of low-level transformation rules are generated

that are executed on the DMS transformation engine in order to weave changes into an ANTLR grammar.

Specifically, rules are generated in the Rule Specification Language (RSL) of DMS. A series of template RSL
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rules have been designed that correspond to the four types of weaving that may occur within AspectG (i.e.,

weaving before or after a production, and weaving before or after a semantic action). Figure 7 shows the

low-level RSL specification generated from the productions pointcut shown earlier, which is used to weave

a debugging DSL line number into the the Robot grammar specified in ANTLR. The weaving process will

insert the statements that map the DSL line number statement into the appropriate places of the Robot

grammar. The first line of the rule establishes the default base language domain to which the transformations

are applied (in this case, ANTLR). In this example, the pattern after_advice (line 3) is an external library

function that was written to perform the actual process of sub-typing, naming, and weaving. The rule

print_after_tree on line 8 triggers the transformation on the Robot grammar by invoking the specified

external pattern. Notice that there is a condition associated with this rule (line 10), which describes a

constraint stating that the rule should be applied only to those join points where a transformation has not

occurred already. This is because the DMS re-write engine will continue to apply all sets of rules until no rules

can be fired. It is possible to have an infinite set of rewrites if the transformation results are monotonically

increasing (i.e., when one stage of transformation continuously introduces new trees that can also be the

source of further pattern matches). After applying this rule to the Robot language grammar, a new semantic

segment will be generated with the line number update statement inserted at the end of every production

in the command set (i.e., RIGHT, LEFT, DOWN UP). The essence of the transformation can be seen in line 9

of the transformation, which states that a java_seq is rewritten ("->") with a parameterized call to the

after_advice external function.

After the DSL line number counter aspect is weaved into the Robot language grammar, during the

parsing phase of this modified grammar the inserted line number counter of the advice executes throughout

the command production propagation. This line number information helps keep track of each Robot statement

and is also passed to the source code mapping component for Robot language debugger generation [31].

5 Lessons Learned and Related Work

This section summarizes some of the lessons that we learned from designing AspectLISA and AspectG. The

section also compares our two DSALs to related work in the area of aspects for language specification.
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1 default base domain Antlr.
2
3 external pattern after_advice(af_adv:statement_string,
4 lefthandside: IDENTIFIER,
5 orig_stmt:semantic):
6 semantic = ’after_advice’ in domain Antlr.
7
8 rule print_after_tree(java_seq: semantic): semantic -> semantic
9 = " \java_seq " -> "\after_advice\(\aft_advice\(\) \, \lefths\(\)\, \java_seq\)"
10 if java_seq ~= "\:semantic \after_advice\(\aft_advice\(\) \, \lefths\(\)\, \java_seq\)".

11 pattern aft_advice(): statement_string = "dsllinenumber=dsllinenumber+1".
12
13 pattern lefths(): IDENTIFIER ="command".
14
15 public ruleset a = print_after_tree .

Figure 7: Low-level DMS Transformation Rule Generated from AspectG

5.1 Lessons Learned

Some DSLs are executable (e.g., the Robot language introduced in this paper), but many DSLs are non-

executable [20]. The syntax specification formalism BNF is an example of a DSL with a purely declarative

character that can also act as an input language for a parser generator. Moreover, BNF is not primarily meant

to be executable but nevertheless useful for application generation. This is the main reason that we used

static join points in both AspectLISA and AspectG. Because concerns that crosscut language specifications

are mainly of a semantic nature addressing behavior, we decided not to support syntactic structural changes.

However, syntax extensions are effectively covered by inheritance in AspectLISA. This decision helped us

to identify what advice and join points should be in each of our two languages. Advice in AspectLISA and

AspectG are additional semantic rules that have to be attached to particular productions. Hence, join points

are syntax production rules and the designed pointcut language should be able to match arbitrary syntax

production. Because AspectLISA uses a more complicated specification structure due to inheritance, the

pointcut language is richer with respect to wildcards and from selection on hierarchy of syntax productions.

However, AspectG uses ANTLR, which is a syntax directed translator where the order of semantic rules are

important (i.e., defined by language designer). This has the consequence that new semantic rules specified

in advice have to be weaved at join points that are between semantic rules of particular syntax production.

Hence, the pointcut language in AspectG consists of predicate match to locate an appropriate point in the
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Table 2: Summarized design decisions for AspectLISA and AspectG
Q AspectLISA AspectG
1 Production rules Semantic rules with particular production rules
2 Static Join Points Static Join Points
3 Coarse-grained (rule and production level only) Fine-grained (within, match, before, after)
4 Matching rules on hierarchy of BNF productions

(two wildcards: *, ..)
Matching rules on BNF production and semantic
rules (one wildcard: *)

5 Semantic rules Semantic rules
6 Refinement/extension on behavior Testing tools generation
7 Advice are parametrized No parametrization

language specification. Moreover, in AspectG it must be specified whether new semantic rules are weaved

before or after the matched location. This is the reason that a full pointcut pattern language in AspectG

is more complicated than in AspectLISA which uses attribute grammars (AG). The order of semantic rules

is not important in AG because the order is computed by the AG evaluator at compiler generation time.

Hence, only appropriate syntax production need to be specified by the AspectLISA pointcut language. This

also simplifies the implementation of weaving. It can be said that AspectLISA uses coarse granularity for

join points and AspectG uses fine granularity. A primary goal of LISA was to achieve improved reusability of

language specifications. This was achieved by inheritance and templates in AGs. In AspectLISA, advice are

also parametrized. Enhanced reusability is also achieved by separating advice from the specific application

of advice (i.e., using the apply construct in AspectLISA).

Table 2 lists the questions that were posed in Section 2, and the specific way each question is addressed

in AspectLISA and AspectG. As can be seen from the results presented in this table, DSALs from the same

domain can be designed and implemented quite differently. Our main lessons learned from designing these

two DSALs are as follows:

• AOP can be beneficial in language specifications and other specification languages. DSAL design

depends on the component language, which can be a GPL or DSL.

• Similar problem domains might require a different design approach, including a different JPM.

• Decision to use static or dynamic join points in DSALs depends also on the executability level of the

component language (DSL). Many DSLs are not meant to be executable.

• The structure and behavior of the DSL component language must be understood well. Advice and join
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points belong to the component language.

• Different problems might be solved in similar domains. AspectLISA’s intent is to refine and extend a

target language’s behavior and AspectG’s motivation is to generate testing tools for target languages.

• Weaving of a fine-grained pointcut language (e.g., AspectG using DMS) is harder to implement than

a coarse-grained pointcut language (e.g., AspectLISA extends LISA compiler).

• For weaver implementation, existing language transformation tools (e.g, DMS, Stratego, ASF+SDF,

LISA) can be used.

5.2 Related work

AspectASF [15] is a simple DSAL for language specifications written in the ASF+SDF formalism. Only

rewrite rules are supported. Therefore, join points in AspectASF are static points in equation rules describing

semantics of the language. The pointcut pattern language in AspectASF is a simple pattern matching

language on the structure of equations where only labels and left-hand sides of equations can be matched.

Pointcuts can be of two types: entering an equation (i.e., after a successful match of left-hand side) and

exiting an equation (i.e., just before returning the right-hand side). Advice specify additional equations that

are written in the ASF formalism. The AspectASF weaver transforms the original language specifications

by augmenting the base grammar with new concerns (i.e., additional equations are appended to appropriate

places in the grammar).

An early approach of aspect-orientation in language specifications is presented in the compiler generator

system JastAdd [11]. The JastAdd system is a class weaver: it reads all the JastAdd modules (i.e., aspects)

and weaves the fields and methods into the appropriate classes during the generation of the AST classes. This

approach does not follow the conventional join point model where join points are specified using a pointcut

pattern language. However, it can be seen as inter-type declarations in AspectJ where join points are all

non-anonymous types in the program and pointcuts are the names of classes or interfaces. Hence, JastAdd

uses implicit join points while AspectLISA and AspectG use explicit join points described by pointcuts.

Moreover, JastAdd does not enable inheritance on advice and pointcuts as AspectLISA does.
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6 Conclusion

Domain-specific aspect languages (DSALs) represent a focused approach toward providing a language that

allows a programmer or end-user to define a specific type of concern. DSALs can be contrasted with general-

purpose aspect languages (GPALs) that provide a more general language for capturing a broader range of

crosscutting concerns. Within the research on DSALs, much of the application is centered on specific concerns

for a language like Java or C++. This paper differs from the scope of general research by describing our

investigation into DSALs for DSLs, such as language specification.

The paper summarized the challenges of DSAL development and presented two separate case studies

of different DSALs applied to two different languages from the same domain. Future work includes new

pointcut predicates that assist in specifying the control flow within a grammar, which would allow aspects

associated with various forms of run-time analysis to be specified and captured.
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