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Abstract 

 
This paper introduces a system, called PolyCluster, 

which adopts state-of-the-art algorithms for data 
visualization and integrates human domain knowledge 
into the construction process of classification rules. By 
utilizing PolyCluster, users can obtain the visual 
representation for underlying datasets, and utilize that 
information to draw polygons to encompass well-
formed clusters. Each polygon, along with its 
corresponding projection plane and associated 
attributes (or dimensions), will be saved as a 
classification rule, called a PolyRule, for later 
prediction tasks. Experimental evaluation shows that 
PolyCluster is a visual-based approach that offers 
numerous improvements over previous visual-based 
techniques. It also can help users to obtain additional 
knowledge from current datasets. 
 
1. Introduction 
 

We are living in the age of digital information 
where all kinds of electronic data are growing rapidly 
without end in sight. However, the ability to analyze 
and extract useful knowledge from multifarious 
datasets lags far behind the capacity to create and store 
the data. It is critical to develop new data mining 
techniques and tools to help knowledge experts extract 
novel and useful information from raw data.  

As a burgeoning technique, visualization has 
received much attention recently, as shown in [1], [2], 
and [12]. Visualization may assist in the identification 
of structures, features, patterns, and relationships in 
datasets by illustrating the underlying data in various 
kinds of graphical figures. Most classification systems 
are not integrated with human intervention, but an 
emerging trend is to focus more on this important 
feedback mechanism. As an example, Fayyad et al. [7] 

noticed the importance of integrating user interaction 
and data visualization into the whole knowledge 
discovery process in order to help find understandable 
patterns for humans. Recently, Ankerst et al. [2] 
proposed strategies to assimilate human domain 
knowledge and integrate data visualization and user 
interaction into a knowledge discovery procedure. 
They identified three important reasons for including 
human domain knowledge:  

• With help from data visualization, the human 
capacities to find useful patterns can be greatly 
improved.  

• The users will have more confidence in the trust 
that they place in the created patterns generated 
from this interactive process.  

• Domain knowledge of users can steer the data 
mining process. In addition, visualization 
techniques act as a complement to the data 
mining procedure. Domain knowledge can 
assist in deciding the appropriate data mining 
technique to use, and the appropriate subsets of 
the data to be considered [6]. 

Visualization techniques have been applied 
predominantly to datasets that are multidimensional, 
where each record in the dataset has more than three 
distinct attributes. Due to the limitation of our living 
space, we can only imagine and illustrate datasets, 
which are less than or equal to three dimensions. In 
order to resolve this obstacle, many methods have been 
invented to represent multidimensional data on a two-
dimensional computer screen (e.g., scatter plots, 
parallel coordinates [11], star coordinates [18], and bar 
visualization [2]). The process for converting multi-
dimensional data into a two-dimensional space is 
called data projection.  

Alternatively, decision tree is a robust and effective 
classification technique that has been extensively 



adopted by several visual-based classification systems 
[1], [2], [18] and [17]. A representative visual 
classification system is PBC (Perception-Based 
Classifier), which is based on circle segments [1]. PBC 
provides an interactive decision tree construction 
mechanism to help users build classification models. 
More recently, Teoh et al [17] proposed PaintClass, a 
new interactive visual classification technique that can 
classify both categorical and numeric data. PaintClass 
allows users to visualize multidimensional data by 
projecting each record to a color line on a two-
dimensional display space using parallel coordinates 
[11]. The parallel coordinate system is a widely-used 
method for visualizing multidimensional data. For n-
dimensional data there are “n” equally spaced parallel 
axes (horizontal or vertical), and each data point is 
rendered as a line that crosses each axis at a position 
proportional to its value for that dimension. 
Additionally, PaintClass incorporates a new decision 
tree exploration method to give users understanding of 
the decision tree in addition to finding additional 
knowledge from underlying data. 

In this paper, an interactive classification rules 
construction and exploration system is introduced, 
called PolyCluster. The motivation for PolyCluster is 
taken from several existing popular visual-based 
visualization systems [1],[2],[9],[18]and[17]. 
PolyCluster offers several unique features as novel 
contributions: 

• PolyCluster uses classification rules as its 
classification mechanism. Classification rules 
are similar to decision trees and are a viable 
alternative. Compared to decision trees, 
classification rules have many advantages that 
will be enumerated in a later section. 

• PolyCluster introduces a new classification 
construction mechanism that can help users 
build a classification model interactively, as 
well as visualize records in multi-dimensional 
spaces. 

These features enable PolyCluster to be an effective 
and efficient data mining solution. PolyCluster applies 
classification rules to finding structure, identifying 
patterns, and pinpointing relationships via 
multidimensional data visualization techniques. This 
framework is a major contribution of PolyCluster. 

The rest of this paper is organized as follows. 
Section 2 reviews the visualization model of class-
preserving projections. The classification rules 
(PolyRules) construction process is introduced in 
Section 3. In Section 4, quality measurements of 
clusters are described and the analysis of PolyRules 
applied to Iris and segment datasets is documented. 

Finally, future work and a concluding summary are 
offered in the last two sections of the paper. 
 
2. Class-preserving projections 
 

Class-preserving projections were first introduced 
by Dhillon et al. [5] as a method for visualizing 
multidimensional clusters, centroids, and outliers by 
projecting multidimensional data onto a two-
dimensional plane that can then be illustrated on a 
visual display device. This projection method can 
maintain the multidimensional cluster distribution and 
class structures, and are quite similar to Fisher’s linear 
discriminants [8].  

When projecting data from multidimensional space 
to two-dimensional space, useful information is 
inevitably lost. This disadvantage can be alleviated by 
deliberately choosing an optimal two-dimensional 
plane of projection that could preserve original 
information as much as possible. In the clustering 
process, the intra-class distance should always be 
minimized, but the inter-class distance should be 
maximized. A key goal is to find those planes that can 
best preserve inter-class distance. 

In the canonical case, the data is classified into 
three classes, i.e. 1 2 3,C C and C . Let 1 2 3, , , nx x x x  be the 
d-dimensional data points where each point belongs to 
one of the three classes. The class means jm  are given 
by the following formula: 

1 1,2,3,
i j

j i
j x C

m x j
n

∈

= =∑ where jn is the number of data 

points in class jC (i.e., mathematically represented 

as j jn C= ). 

For the purpose of visualization, a two-dimensional 
plane should be ascertained onto which all data points 
can be projected. The position of the candidate 
projection plane can be determined by a pair of 
orthogonal unit vectors on the plane. Generally, an 
orthonormal basis of the candidate projection plane 
can be chosen as these two vectors. Given an 
orthonormal basis 1 2, dRω ω ∈ , where dR is d-
dimensional real space, a point x gets projected to the 

pair ( )1 2,T Tx xω ω , and likewise, each class mean jm is 

mapped to ( )1 2, ,T T
j jm mω ω  where 1, 2,3.j =  

In order to obtain superior contour of the projected 
classes, the distance between the projected class means 
(centroids) should be maximized. This can be can be 
accomplished by choosing vectors 1 2,ω ω  such that the 
objective objective functions, as the following, 
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Given A  is a column vector and &j km m are class 
means, the alternative expression for objective 
function can be rewritten as: 
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The positive semi-definite matrix BS  can be explained 
as the inter-class scatter matrix. Due to 

3 2 3 1 2 1{ , },m m span m m m m− ∈ − − scatter matrix BS has 
2.rank ≤ Searching for the maximizing 1ω and 2ω can be 

limited to the column space of .BS  In general, the 
vectors 2 1m m− and 3 1m m− determine the optimal 

1 2  andω ω which in turn compose an orthonormal basis 
of the visualization plane of projection. However, if 
class means 1 2,m m and 3m  are collinear, then scatter 
matrix BS degenerates to be of rank one and 1ω should 
be in the direction of 2 1m m− while any unit vector, 
which is orthonormal to 1ω , can be chosen as 2ω . It is 
easy to understand that geometrically, the optimal 
projection plane, determined by orthonormal 
vectors 1ω and 2,ω is parallel to the plane that contains 
the three class means 1 2 3,  and m m m .  

For computation purpose, two eigenvectors (or 

principal components) can be used to correspond to the 
two largest eigenvalues of BS as vectors 1ω and 2ω , 
which uniquely determines the position of a projection 
plane. The interested reader can look at [14] for 
discussion on how to compute eigenvectors and 
eigenvalues. Note that projecting class means to this 
optimal plane can precisely preserve the distances 
between the class means. In other words, the distances 
between the projected class means are exactly equal to 
the corresponding distances in the original d-
dimensional space. Thus, this kind of projection is 
defined as a class-preserving projection [5]. In Figure 
1(a), an illustration is given of an optimal class-
preserving projection on the Iris plant dataset [8]. In 
Figure 1(a), it should be noted that the three classes 
have their own clear contour and each class is well 
separated from the other two classes. However, if the 
chosen plane can not accomplish a class-preserving 
projection, induced class projections may be 
intermingled with each other. For instance, in Figure 
1(b), the distance between Iris versicolor and Iris 
virginica is lost and the contour of each class is 
difficult to distinguish. Thus, the desire is to find an 
optimal class-preserving plane on which data can be 
illustrated. 

As mentioned before, in the canonical case, the 
projection distance among three class means are 
exactly equal to the corresponding distances in the 
original d-dimensional space if the plane is chosen 
optimally. However, in most practical situations, it is 
more likely to find datasets that have more than three 
classes. The question is: ‘Can we examine the interplay 
among these classes?’ Fortunately, the answer can be 
given affirmatively. Similarly, a generalized method, 
which is similar to the method mentioned above, to 
differentiate more than three classes in the same view 
is presented in [5]. However, if projecting more than 
three class means in a plane, the distances between 
those class means will probably not be preserved 
faithfully.  

Alternatively, the other solution is to examine all 
classes three at a time by using the methods mentioned 
above. Thus, there are a total of 3

kC such 2-dimensional 
projections, where k is the number of classes and each 
projection is determined absolutely by three class 
means. Considering the real datasets, the number of 
classes each dataset has is not too large, so the 
algorithm complexity of this method is acceptable. In 
PolyCluster, the boundary and contour of classes are 
found by exploring the projected class distribution 
figures. Thus, the latter option was chosen for 
PolyCluster because it can be applied to create much 
clearer regions of classes. 

Figure 1. (a) An optimal projection of the Iris 
dataset. (b) A poor projection of the Iris dataset. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, there still exists a problem in this method. 

Note that if a given dataset has less than three classes, 
it is not possible to obtain three class means 

1 2 3,  and m m m to compute the position of projection 
plane. To solve this problem, the process can be 
initiated by clustering the given dataset and applying a 
state-of-the-art clustering algorithm to group records 
according to similarity. Then, it is feasible to use those 
centroids of generated clusters to compute optimal 
projection planes. Meanwhile, even for datasets with 
more than three classes, it is still possible to adopt this 
solution to provide more options and flexibility to find 
planes of class-preserving projection. 
 
3. Polyrules construction 
 

The major function of a classifier is to assign a class 
label to the newly created unlabeled objects. Training 

data is the data on which the classifier was built. 
Meanwhile, the unlabelled data, or the data whose 
class label is unknown to the classifier, is called testing 
data. Compared with decision trees, each classification 
rule represents a nugget of knowledge. New rules can 
be integrated into an existing rule system without 
destroying those already discovered, whereas to add a 
new branch to an existing tree structure, decision trees 
may need to reorganize the whole tree. This might be 
the major reason why classification rules are popular. 
In PolyCluster, classification rules are created, called 
PolyRules, as a classifier. 
 
3.1. Identify class regions 
 

After visualizing training data in PolyCluster with 
the method in Section 2, we construct a classifier by 
generating a group of PolyRules where each rule is 
composed of a pair of orthonormal vector 1 2 andω ω , 
which determine the position of projection plane, 
position of a polygon (drawn by users), which identify 
a certain class region, and used attributes (or 
dimensions). For each class region, one or several 
polygons can be drawn to identify the class contour 
such that in ideal cases each polygon encircles points 
exclusively belonging to the same class label. 

There exist several methods to identify the class 
regions. For example, in Figure 2, ID3 [16] partitions a 
set of points with axis-parallel hyperplanes. However, 
due to axis-parallel limitation, ID3 generally creates a 
decision tree that is much larger and less accurate than 
the SADT tree [10] in Figure 3, which is created with 
oblique lines. However, decision trees generated by 
oblique lines easily include outliers and noise. Another 
method to identify class regions is introduced by 
StarClass [18], which uses a brush to paint the regions 
in Figure 4. There are two disadvantages to this 
method. First, if the class region is very large, the 
whole painting process will be very boring and time 
consuming because users have to brush all areas within 
that region. Second, after painting the original image 
with a different color for identifying the class region, 
the new color will blur the underlying color points. By 
contrast, PolyCluster, which is more convenient and 
efficient compared with the above three existing 
approaches for identifying the class regions, uses 
polygons to mark the class regions. PolyCluster allows 
users to adjust the polygon contour by using the mouse 
to drag the polygon corner to a different location. If 
users are not satisfied with the created polygons, they 
can use the provided operation on a pop-up menu to 
delete selected polygons. 
 

Figure 2. Tree generated by ID3 

Figure 3. Tree generated by SADT 

Figure 4. Tree generated by StarClass 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. Polyrules construction and classification 
 

PolyCluster is founded on the following assump-
tion: Given a region ψ, which includes mostly objects 
belonging to a certain class σ, any new coming object, 
without class label, which is mapped on region ψ, is 
likely to be assigned to class σ. As mentioned in 
section 3.1, a PolyRule is composed of a pair of 
orthonormal vectors 1 2  andω ω determining the position 
of a projection plane, position of a drawn polygon and 
used attributes. If the current projection figure cannot 
differentiate the class boundary clearly, it is possible to 
redo this procedure and re-project data onto different 
projection planes for creating more effective 
PolyRules. Based on different projection planes, two 
groups of polygons are drawn in Figure 5 and 6. 

In PolyCluster, two kinds of PolyRules are defined: 
primary and associate. A primary rule is the rule that 
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can perform a classification task with high precision 
beyond a certain predefined threshold in the training 
dataset. PloyCluster normally chooses 95% as the 
threshold. Alternatively, if a rule performs a classifica-
tion task with low precision compared with that 
threshold, then it belongs to associate rules. For 
instance, in the (a) of Figure 7, PolyRules created by 
polygons 1, 2 and 3 are primary rules, but those 
created by polygon 4 are associate rules. Given a 
newly arrived unlabeled data, if there does not exist a 
classification contradiction among all primary rules, 
the new data is assigned the class label by the applied 

Figure 5. Based on a selected projec-
tion plane, the user draws three 
polygon areas where each polygon 
illustrates a class contour. 

Figure 6. After projecting dataset 
onto a different plane, the user 
draws the second group of polygons 
to identify the area of classes. Each 
of generated polygons combined 
with the position of used projection 
plane and attributes composes a 
PolyRule for classification purpose.  

Figure 7. Illustration of the Statlog Segment 
dataset. In (a), each polygon of 1, 2 and 3 combined 
with the position of the used projection plane and 
attributes represents a primary PolyRule. Although 
Polygon 4 can only compose an associate PolyRule 
because of its poor classification performance. The 
intermingled area, marked by a red ellipse in (a) 
image, is filtered out and reprojected onto the same 
plane without samples belonging to class PATH, 
SKY and GRASS and shown in (b) image. The 
images (c), (d) and (e) represent the conditional 
projections which resolve only part of intermingled 
samples by choosing subset of classes and 
reprojecting data samples onto different planes.  



PolyRule. However, if a rule set gives multiple 
classifications for a testing sample, the majority vote 
method can be used. For example, if 5 classification 
rules assign class label “A” to a testing sample Ď and 3 
rules assign class label “B” to Ď, then the sample Ď 
should choose “A” as its class label. On the other hand, 
we can choose the rule with the maximum coverage for 
classifying the new data sample. Finally, if a tie still 
remains, one class label can be randomly selected for 
the new data sample. Meanwhile, there is another 
major difference between primary rules and associate 
rules. Primary rules can be applied independently if 
they don’t introduce contradiction into classification 
results. However, associate rules must be used with 
other rules, and different groups of associate rules have 
to be applied in a certain sequence that can be called its 
priority order.  

Generally, for a complicated dataset, one optimal 
projection can not find clear boundaries for all classes. 
In such circumstance, intermingled areas should be 
filtered and re-projected onto different projection 
planes. For instance, in (a) of Figure 7, the area 
marked by the red ellipse is re-projected onto different 
projection planes with a different subset of class. The 
split process is repeated until users are satisfied with 
the induced results, or no more improvement can be 
made by continuing this procedure. 
 
4. Empirical evaluations 
 

The objectives of PolyCluster are: (1) to create a 
user-directed, interactive, and visual-based classifica-
tion system, (2) to integrate the powerful human pat-
tern recognition capabilities into a classification sys-
tem, and (3) to enable users to trust the created patterns 
from this interaction process. 
 
4.1. Measurement for quality of clusters 
 

After obtaining induced clusters from the 
interactive procedure, a method is needed to evaluate 
the quality of clusters. In [17], Song et al. propose a 
compactness measurement for evaluating the quality of 
a cluster by computing the ratio of external connecting 
distance (ECD) and internal connecting distance 
(ICD). However, a goal is to evaluate the overall 
quality of clusters and place greater emphasis on the 
size of clusters. Thus, an extended model of ECD and 
ICD was designed to evaluate the quality of clusters by 
computing the ratio of average external connecting 
distance (AECD) and average internal connecting 
distance (AICD) which are introduced below.  

A graph G consists of a finite set V of points 

where
1

n

i
i

V C
=

=∑ , iC V⊆  ,  if i jC C i jφ∩ = ≠  and each iC is 

a cluster in graph G, a finite set E of edges, and a 
function γ that assigns a positive number to a pair of 
points ( , )p q as the distance between point p and q. 
Let { ( , ) | ( , ) , , , }ij i jDist p q p q E p C q C i jγ= ∈ ∈ ∈ ≠ . The 

( , , )iECD C G γ  is defined as ( )ijMin Dist where 
, & 1... ,i j i j n≠ = and n is the number of generated 

clusters in current dataset. 
Let { | , , , ( , ) }i iDist l R p q C p q p q lγ+= ∈ ∈ ≠ ≤ . The 

( , , )iICD C G γ is defined as ( )iMin Dist and ICD is also 
named as the diameter of cluster .iC The AECD and 
AICD of Graph G is given by 
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where iN is the number of points in cluster iC and jN is 
the number of points in the nearest neighbor cluster of 
cluster iC . ( , )

( , )
AECD G
AICD G

γ
γ

is used as the measurement to 

evaluate quality of generated clusters for given dataset. 
Users can use this measurement as a criterion to 
choose a best clustering combination from several 
available options.  
 
4.2. Experimental setup 
 

The PolyCluster system is implemented in Java and 
compiled with Java JDK 1.4.2. An experimental 
evaluation of PolyCluster on two well-known 
benchmark datasets (Iris and Segment) was performed. 
Fisher’s Iris dataset is one of the most famous datasets 
used in data mining. It contains fifty records each of 
three types of plant: Iris setosa, Iris versicolor, and Iris 
virginica where each record has four distinct attributes: 
sepal length, sepal width, petal length and petal width. 
All attributes have values that are numeric. Meanwhile, 
records in the segment dataset are drawn randomly 
from a database of 7 outdoor images. The images are 
hand-segmented to create a classification for every 
pixel. It contains 36 numerical attributes and 2,310 
records where each record belongs to one of 7 distinct 
classes. All experiments were performed on a Pentium 
IV 2.53GHz Dell Desktop with 512 MB main memory.  
 



Table 1. Datasets descriptions 

Dataset Size Classes Attributes 

Iris 150 3 4 

Segment 2310 7 19 

Table 2. Accuracy of PolyCluster compared with 
C4.5, PBC and PaintClass 

 C4.5 PBC PaintClass PolyCluster 

Iris 94.6% n/a n/a 94.0% 

Segment 95.9% 94.8% 95.2% 94.8% 

 
4.3. Error measurement 
 
In PolyCluster, sum-minority error measurement was 
used to evaluate the experimental results. Consider a 
set of samples S, belonging to 3 distinct classes each of 
them has 1 2,S S , 3S  samples respectively 

where
3

1
i

i

S S
=

=∑ and ,i jS S φ∩ = , & 1, 2,3i j i j≠ = . The 

class Ci that appears most often in set S is found and 
chosen as majority category. If set S has most samples  
in its majority category, then it is relatively pure. It is 
always desirable to draw polygons that can encompass 
data samples to form pure subsets (or clusters). To 
guide users to generate relatively pure splits, the sum-
minority error measure is defined to be ( )iS Max S− . 
 
4.4. Experimental results 
 

The famous Statlog database [13] has been 
extensively used as a benchmark for evaluating 
numerous data mining classification tools. Iris and 
Segment [13] have been chosen as experimental 
datasets to evaluate PolyCluster. The description for 
these two datasets is illustrated in Table 1. The 
accuracy of the decision tree algorithm C4.5 is from 
[15], and visual-based classifiers PBC and PaintClass 
from [2] and [17], respectively.  

There are two common methods for evaluating the 
accuracy of a classifier. One is the holdout method, 
which reserves a certain amount of data for testing and 
uses the remainder for training. In practical 
circumstances, it is common to hold one-third of the 
data for testing and use the remaining two-thirds for 
training. However, this method is not applicable if the 
given dataset is too small, because the generated 
training dataset will contain inadequate data for 
building the classifier. In this situation, a cross 
validation method can be applied. All except one data 
subset are used to construct the classifier and the left 

one is used as testing dataset. Generally, the standard 
way of predicting the error rate of a learning technique 
given a single, fixed sample of data is to use stratified 
tenfold cross-validation. When evaluating PolyCluster, 
holdout method was used for the Segment dataset, and 
the ten-folder cross validation was used for the Iris 
dataset.  

Table 2 illustrates the results of performing a 
classification using PolyCluster compared with C4.5, 
PBC and PaintClass. From the experimental results, we 
can find PolyCluster perform quite well compared with 
those state-of-the-art classifiers. Because the 
classification rules are built by users manually rather 
than automatically built by underlying algorithms, the 
precision of the PolyCluster is quite dependent on the 
pattern-perception capabilities of humans. In 
particular, it seems that PolyCluster can obtain the 
same accuracy as that of the famous visual classifier 
PBC.  

Compared to traditional non-visual based 
classifiers, visual-based classifiers can help users 
obtain extra knowledge for current datasets and 
improve users’ trust into the induced classification 
results. With the techniques of class-preserving 
projections of the multidimensional data onto two-
dimensional planes, PolyCluster can give users a clear 
overview of the space distribution of high-dimensional 
data and the relationship among different classes. For 
example, in Figure 5, the class Iris Setosa appears 
well-separated from the other two classes, but there is 
a tiny overlap between the boundary of the class Iris 
Versicolor and Iris Virginica. As another example, in 
(a) of Figure 7, the class PATH, SKY and GRASS can 
be found to have obvious boundaries, whereas the 
class FOLIAGE, BRICKFACE and WINDOW 
intermingle with each other. 

Note that visualization is not a substitute for 
quantitative analysis; however, it is a very good 
complementary tool to understand fully the underlying 
dataset. It is a viable alternative to the application of 
traditional tools, such as C4.5 and CART [3]. 
Although experimental results from PolyCluster are 
not superior to that of some state-of-the-art 
classification techniques, PolyCluster demonstrates a 
different approach to explore and classify multi-
dimensional datasets in an effective and efficient way. 
 
5. Future work 
 

Although experimental results have shown that 
PolyCluster is an effective classification system, it is 
desirable to improve the capacities of PolyCluster by 
integrating facets of other state-of-the-art visual-based 



classifiers. For example, just as PBC [1] has included 
several levels of cooperation between human and 
computer (i.e. automatic, automatic-manual, manual-
automatic and manual), PolyCluster can be extended to 
support those options in cases where users can not 
apply PolyCluster to generate an effective classifier. 
Likewise, PolyCluster can be applied to other datasets, 
such as DNA sequences and microarray datasets, to 
extend its application areas. Finally, PolyCluster 
should be extended to handle both numerical and 
categorical attributes [4]. 
 
6. Conclusions 
 

The paper introduces PolyCluster, an interactive 
multidimensional data visualization and classification 
tool. In PolyCluster, users can obtain the visual 
representation for underlying datasets, utilize that 
information to draw polygons to encompass well-
formed clusters, and then build a classifier 
interactively. Experimental results have shown that 
PolyCluster is an effective and efficient approach to 
find structures, features, patterns, and relationships in 
underlying datasets. In addition, PolyCluster integrates 
a pair of novel and robust measurements, called AECD 
and AICD which users can adopt as a criterion to 
choose a best clustering combination from several 
available options. With further improvement such as 
the integration of automatic algorithms to build 
classifiers and the capabilities to handle categorical 
attributes, PolyCluster can become an even more 
powerful visual-based classification system. 
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