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ABSTRACT 

 

Model-Driven Engineering (MDE) is a promising approach for addressing the issues of 

complex and large software system development that enables software engineers to develop 

software systems with high-level abstract models. In MDE, models are first-class entities of 

software system development and can improve the understanding of problem domains. In 

addition, models are used to predict the quality and performance of software systems. 

Within the context of MDE, Domain-Specific Modeling Languages (DSMLs) are 

developed to describe notions of a specific domain using either textual or graphical syntax. 

DSMLs provide a language that has abstractions and notations, as well as precise and concise 

modeling constructs, for specific domains (e.g., automotive, avionics, finance, and etc). DSMLs 

assist domain experts in describing their problems closer to the problem domain when compared 

to General-Purpose Modeling Languages (GPMLs), such as Unified Modeling Language (UML) 

or programming languages.  

DSMLs have been shown in the literature to provide several benefits, such as 

productivity improvement, quality improvement, and reduction of miscommunication. However, 

development of new DSMLs can be challenging and requires much time and effort. In addition, 

the current state of DSML is still in its infancy compared to the tools and resources available for 

creation of programming language environments. 
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This dissertation investigates a new approach for DSML creation that allows domain 

experts to have a more prominent role in describing the languages that they use. The core 

contributions of the dissertation are focused on three aspects related to domain-specific modeling 

language creation: 1) enable the creation of DSMLs in a demonstration-based approach by 

recording and analyzing the operational behavior exhibited by a domain expert as they model 

notions of their domain, 2) enable domain expert verification of the inferred language by 

exploring the model space, and 3) enable domain expert verification of the inferred language by 

exploring the model space. 

The objectives and contributions of the research will be explained in detail in this 

dissertation, combined with case studies from several domain modeling languages to 

demonstrate how a domain expert can build their own DSMLs in practice. 
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CHAPTER 1  

INTRODUCTION 

 

Along with the advances in hardware and software technology, end users’ demands for 

computer systems have also increased. Consequently, software size is continually growing and 

software is becoming more complex than ever before. As a result, many software development 

projects are often unmanageable, run over planned budget and schedule. In addition, software 

can become challenging to maintain and may even fail to satisfy the desired level of quality and 

miss the stated customer requirements. The term “software crisis” [Naur and Randell, 1969] was 

coined several decades ago, but is still appropriate for describing the current state of software 

development. 

In connection with the software crisis, Fred Brooks mentioned in his book, The Mythical 

Man-Month: Essays on Software Engineering, that software development is an inherently 

challenging process due to both essential and accidental complexity [Brooks, 1987]. The 

essential complexity represents the core of the difficult problems that software developers have 

to solve. The difficulties of understanding the problem domain and identification and 

development of the conceptual constructs (e.g., core data structures and their interrelationships, 

as well as algorithms and the behavioral consequences of their combination) that compose the 

abstract software entity are examples of essential complexity. In addition, the inherent 

characteristics of software that Brooks identifies (e.g., invisibility, changeability and conformity) 
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are the other parts that contribute to the essential complexity. The accidental complexities are the 

challenges regarding concrete software development and testing processes (e.g., specific 

languages and platforms that must be used to represent the software). In the past several decades, 

much effort has been made to help software engineers address these complexities in order to 

develop quality software systems while achieving quality attributes (e.g., productivity, simplicity, 

reliability, and maintainability). 

Developing higher levels of abstraction in programming languages is one of the strategies 

that has been put forth to address the issues of accidental complexity. The history of 

programming languages can be traced back to the mid-1940s. In 1945, von Neumann proposed a 

computer architecture that can perform different tasks by storing programs in memory [Backus, 

1978]. Since then, many programming languages have been proposed, evolved, and disappeared. 

For example, machine languages are typically hardware dependent and required programming at 

a low-level of abstraction. Thus, machine languages are rarely used in modern software 

development environments due to an average software engineer’s difficulty in understanding the 

language, which can contribute to increased software complexity. As a result, machine language 

code is generated by high-level language compilers. The idea of low-level representations being 

generated from higher level specifications has been a constant trend over the past decades. The 

notion of generative programming allows expression of core problem concepts in languages that 

are closer to the abstractions of the problem domain, rather than the solution space [Czarnecki 

and Eisenecker, 2000]. 

Among all the efforts in the history of programming languages, Brooks states that raising 

the level of programming language abstraction is the “most powerful stroke for software 

productivity, reliability and simplicity” [Brooks, 1987]. This is because the raised level of 
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abstraction assists in capturing only the details relevant to the target computing environment, and 

as a consequence, hides the underlying implementation information [Lenz and Wienands, 2006].  

As shown in Figure 1.1, the level of abstraction is raised from machine language to 

assembly language, to high-level and object-oriented programming languages. As the level of 

abstraction is increased, software engineers generally lose fine-grained control of the underlying 

computing environment (e.g., direct memory access and device control), but they can be isolated 

from irrelevant low-level implementation details. Therefore, software engineers can become 

more immersed in the problems they need to solve. 

On the other hand, the flexibility of the programming languages, in terms of applicable 

domains, is slightly narrowed as the level of abstraction is raised. High-level languages tend to 

offer a very narrow set of language constructs to solve a specific domain problem, and may not 

support certain features (e.g., controlling underlying details of the execution platform). For 

example, Java could be said to be less flexible than C because Java does not provide core 

language constructs to access the execution environment (e.g., memory and devices), which 

makes it more challenging to use Java to develop software that can utilize and manipulate 

hardware resources. 

Domain-Specific Modeling Languages (DSMLs), which are placed at the top of the 

hierarchy in Figure 1.1, are languages designed and implemented to satisfy specific domain 

needs [Gray et al., 2007; Lédeczi et al., 2001]. DSMLs are widely used as a concrete and 

mainstream Model-Driven Engineering (MDE) methodology [Schmidt, 2006], which considers 

models as first-class entities instead of program codes. MDE has been applied to develop 

complex and large-scale software systems by decoupling the description of the essential 
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characteristics of a problem from the details of a specific solution space (e.g., middleware and 

programming languages). 

 

 

Figure 1.1 Flexibility vs. Abstraction of Languages 

 

DSMLs allow software engineers, or even end-users (e.g., domain experts), to describe 

requirements, design, and test cases of a software system while focusing on specific domain 

concepts, rather than solutions that are intertwined with the underlying computing environment 

[Schmidt, 2006]. In addition, integration with model transformation and code generators allow 

DSMLs to generate automatically the desired software artifacts (e.g., programming code, 

simulation scripts, and XML deployment description).  

Models help software engineers and domain experts to understand a problem domain. 

Software engineers are not able to see every aspect of a system at once. It can be difficult to 

understand both the behavior and structure of a large software system solely through a 
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programming language. However, if the software system is described using models, a software 

engineer can understand a system more as a whole because models can abstract and visualize 

notions of the domain at higher levels. With increased understanding of a software system, 

software engineers and other stakeholders are able to predict quality, performance, and patterns 

of the software system evolution at early development phases, without the need for code. In 

addition, software engineers and customers can make more accurate and valuable decisions in 

software design, implementation, and maintenance [Kelly and Tolvanen, 2008]. 

A model-driven approach can also contribute toward the concept of end-user software 

development [Burnett et al., 2004] and reduce knowledge and expertise gaps between software 

developers and domain experts. As such, models can improve communication between 

stakeholders. Design intents can be understood by stakeholders when problems and solutions are 

described using models. This is possible because modeling languages tend to be designed to 

represent notions of the problem domain with high-level abstractions from the underlying 

domain. 

 

1.1 Domain-Specific Modeling Languages (DSMLs) 

DSMLs introduce a new software development paradigm. The main notion of DSML-

based software development is “everything is a model” [Kurtev et al., 2006], and the goal of 

DSMLs is to help software engineers or domain experts develop quality software using models, 

which can describe a specific problem domain with models that raise the level of abstraction. 

Specifically, DSMLs can describe the properties of a system (or a domain) with a high-level of 

abstraction and a set of platform-independent notations. Thus, DSMLs can offer several benefits. 

For instance, DSMLs can reduce the chances of software failures by minimizing 
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miscommunications between software engineers and domain experts and encourage involvement 

of domain experts in software development [Burnett et al., 2004]. In general, software engineers 

are skilled at programming, but may not thoroughly and correctly understand problems of every 

domain that they encounter. Yet, in contrast, domain experts have deep knowledge and 

experiences about their domain, but may have no expertise about building software systems 

using programming languages. The knowledge and expertise gap between software engineers 

and domain experts make communication difficult and present a challenge to develop software 

systems that meet the demands of the end-user. However, DSMLs are able to ease the difficulty 

by offering precise and concise notations, which are commonly understood by domain experts 

without additional descriptions or explanations. In addition, claims of productivity gains in very 

specific domains using DSMLs have been reported by a factor of 5 to 10 [Kelly and Tolvanen, 

2000].  

As shown in Figure 1.2, conventional software development practice builds software 

systems (or packages) using platform-specific models (e.g., programming languages such as Java, 

C/C++, C#) based on the results of the problem domain analysis. Thus, conventional software 

development has “the wide conceptual gap between the problem and the implementation 

domains of discourse” [France and Rumpe, 2007]. The models built by users must conform to 

the definition of the metamodel [Atkinson and Kuhne, 2003; Gray et al., 2007], which specifies 

the entities, associations and constraints for the DSML. A metamodel defines abstract syntax in a 

similar way as a grammar specifies the abstract syntax for a programming language. Thus, a 

model conforms to its defining metamodel [Kurtev et al., 2006] in the same way that a program 

conforms to the programming language in which the program is written. To describe notions of a 

specific domain visually, concrete syntax is also associated with the metamodel. Elements of 
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concrete syntax are often described using either a textual notation, graphical symbols or both. In 

addition, semantics can be associated with a metamodel to specify properties and behaviors of a 

modeling language. However, the current manner in which semantics is specified varies across 

metamodeling tools and is still at an early stage of investigation.  

 

…

 

Figure 1.2 Software Development Paradigms: Conventional vs. Model-Driven 

 

Similar to models, a metamodel must also conform to the definition of a meta-metamodel, 

which is a core modeling language that conforms to itself and used to define other modeling 

languages for different domains. The common meta-metamodeling languages at this layer are 

Meta-Object Facility (MOF) [MOF, 2011], and Kernel Meta Meta Model (KM3) [Jouault and 

Bézivin, 2006]. As a comparison to programming language specification, a meta-metamodel is 



 

 

8 

similar to EBNF (Extended Backus Naur Form). A meta-metamodel is used to define 

metamodels representing new modeling languages in the same way that EBNF is used to 

describe grammars for new programming languages. The four-layer modeling architecture is 

depicted in Figure 1.2 

As shown in this figure: 1) models conform to a metamodel; 2) a model transformation 

translates a model representation into some lower-level representation, such as a specific 

programming language, which is then compiled into an executable system that has a 

correspondence to the associated model. 

 

1.2 Key Challenges in DSML Development 

As discussed in the previous sections, MDE is a promising approach to address issues in 

conventional software development by introducing models as first-class entities. However, there 

are several challenges and limitations that have emerged. Because DSML development requires 

both domain knowledge and modeling language development expertise (e.g., metamodeling 

experience), end-users and domain experts who are not computer scientists often find the 

traditional approach for creating DSMLs daunting due to the following challenges. 

 

DSML Challenge 1: In practice, domain models are often specified with unconstrained 

environments such as word processors or drawing/presentation tools, rather than formal 

metamodeling tools. For example, Microsoft Visio is a popular tool used in many domains to 

design drawings and representations of domain-based designs. Due to the increasing number of 

sketch-based input devices (e.g., tablets) and a general preference for hand-drawn sketches in 

capturing high-level requirements and software design, modeling tools will need to adjust to new 
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forms of input [Ossher et al., 2010]. This is particularly challenging for demonstration-based 

language design because the initial sketch is rather unconstrained and needs to process a wide 

range of open notations for different domains. Recognizing new shapes that are more informally 

drawn in new environments and on new input devices is a challenge that will increase in need. 

DSML Challenge 2: Modeling language creation requires familiarity with metamodeling 

environments. Domain experts who are not familiar with metamodeling often do not understand 

the deep implications of domain analysis in DSML implementation. The common practice of 

DSML development is to define a metamodel for the specific domain based on the captured 

notations. As the metamodel specifies the abstract syntax and static semantics for the domain, 

domain experts need to understand the implications of metamodeling before they develop their 

own DSML. The lack of language creation expertise, especially metamodeling expertise for 

modeling languages, may undermine the quality of a DSML implementation if developed by a 

domain expert who lacks a background in computer science. 

DSML Challenge 3: The captured visual notations and notions of a domain tend to be 

informal and incomplete, often requiring multiple iterations to reach a final version of the DSML. 

However, the iterative process of creating a DSML is tedious, error-prone and time-consuming if 

done manually. Therefore, simplifying (or automating) the DSML development process such that 

domain experts can create their own languages may offer an advantage. 

DSML Challenge 4: Specifying the semantics of a modeling language using formal 

techniques is often challenging even for computer scientists. The major focus of many by-

demonstration approaches is on structural and syntactic issues, with little contribution toward 

mechanisms for describing semantics. Enabling end-users to describe the semantics of their free-

form language will require new innovations to separate the underlying formality needed from the 
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level of abstraction expected by an end-user. This is perhaps one of the most challenging issues 

facing flexible modeling, and without progress in the area, the tools and associated languages 

will not be as effective in providing a complete automated solution for performing many tasks 

that are typical in other modeling contexts. 

DSML Challenge 5: Having a set of complete and precise requirements is a critical factor 

for the success of software development. However, eliciting such requirements is not easy 

because requirements are captured through informal activities (e.g., brainstorming, workshops, 

direct observation, questionnaires, and interview) [Nuseibeh and Easterbrook, 2000]. In addition, 

requirements are often expressed using natural languages, which are inherently ambiguous and 

fuzzy [Rolland et al., 2003]. Although many researchers and practitioners have introduced 

several approaches, methods and tools for eliciting, specifying and managing requirements of 

generic software systems, little attention has been paid to the area of DSML requirements 

management even though specifying requirements of a DSML requires different principles and 

expertise than those of general software application requirements specification. For example, 

requirements of a DSML need to describe abstraction mechanism (e.g., abstract notions of a 

domain and map to concrete syntax) [Liskov and Zilles, 1975], consistent management of similar 

notions and concrete syntax consistently, and extensibility of a language.  

 

1.3 Research Goals and Overview 

To address the difficulty of creating DSMLs, the research in this dissertation provides a 

user-centered DSML creation approach. The goal of the approach is to enable domain experts, 

who have broad domain knowledge and experiences but do not have programming language 

development expertise, in creating their own DSMLs. To achieve the research goal, the approach 
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implements DSML creation tasks combining techniques such as By-Demonstration, graph 

transformation, a demonstration-based inference engine, metamodel design patterns, and model 

space exploration. The research is focused on an investigation into techniques that allow a 

modeling language to be inferred from a set of domain model examples that are provided by the 

end-user who is a domain expert. 

 

1.3.1 Creating DSMLs By Demonstration to Simplify DSML Creation 

To address the challenges of DSML creation as mentioned in the last section, a DSML 

development framework has been designed and implemented. The demonstration-based 

approach is called Modeling Language Creation By Demonstration (MLCBD). The MLCBD 

framework enables domain experts to create a DSML by directly performing edit operations on 

concrete examples (i.e., a set of domain model examples), combined with user refinement and 

automated inference processes. To demonstrate the notions of a domain, the MLCBD framework 

provides predefined shapes. If there is no appropriate predefined symbol in the framework, a 

domain expert performing the demonstration may use sketch-level shapes or images that 

represent the notions of their domain. After domain experts demonstrate the modeling language 

that they desire, the various components needed to represent a DSML (e.g., abstract syntax, 

concrete syntax, and semantics) are generated using machine learning techniques, as provided by 

an inference engine that supports MLCBD. The inference engine transforms a set of domain 

model examples into a set of graph representations in order to avoid a representation mismatch. 

The DSML language components are inferred from the set of domain model examples. As will 

be presented in Chapter 5, the MLCBD framework enables domain experts to be isolated from 



 

 

12 

the challenges of DSML creation and the associated complex language development tasks (i.e., 

specifying abstract and concrete syntax, and defining semantics). 

 

1.3.2 Model Space Exploration for Verification of Inferred Metamodel and Semantics 

The second contribution of this research includes a Model Space Exploration feature 

associated with MLCBD, which enables domain experts to verify the correctness of the inferred 

modeling language components. Although the MLCBD framework offers an integrated DSML 

development environment such that domain experts can build their own DSMLs by 

demonstrating a set of domain model examples, the syntax and semantics inferred from the set of 

domain model examples may not describe the domain correctly and fully. Demonstrating every 

aspect of the domain requires demonstration of both positive aspects (i.e., concepts that represent 

the domain correctly) and negative aspects (i.e., models not allowed in the domain and illegal 

relationships between model elements) [Kirsopp and Shepperd, 2002]. The level of 

demonstrations needed to realize the complete language that is desired requires the domain 

expert to invest much time and effort. To address the demands required for demonstrating a 

sufficient number of model examples, the idea of Model Space Exploration is borrowed from 

ideas that were initiated in computational learning theory [Valiant, 1979] and design space 

exploration [Oliveira et al., 2010]. During Model Space Exploration, a set of new candidate 

domain model instances are generated from a previously inferred metamodel. The domain expert 

plays the role of oracle and is asked to indicate whether each generated instance accurately 

describes the concepts within the domain. The results from the candidate model instances are fed 

back to the inference engine to complement the existing understanding of the syntax and 

semantics that were inferred previously using a set of domain model examples. We believe that 
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Model Space Exploration can reduce the effort and time that domain experts spend in 

demonstrating a large set of domain model examples as well as verify inferred syntax and 

semantics. 

 

1.3.3 Metamodel Design Patterns Assist in Inferring Metamodel 

To support the inference of a DSML, the idea of metamodel design patterns has been 

investigated within the MLCBD framework [Cho and Gray, 2011]. Initially, the MLCBD 

framework creates a set of metamodel design pattern instances to complement the demonstrated 

model examples. The idea of metamodel design patterns is an extension of the concept of design 

patterns [Gamma et al., 1995] as applied to metamodel design. Metamodel design patterns define 

consistent solutions for recurring metamodel design issues and represent the collection of generic 

metamodel primitives that occur frequently in the specification of metamodels. 

To generate the abstract syntax and corresponding semantics for a DSML, the MLCBD 

framework performs an isomorphic test in order to find a set of metamodel design patterns that 

matches to a set of domain model examples. The MLCBD framework then composes the set of 

metamodel design patterns into a metamodel while adding any required generalizations (e.g., 

inheritance). With metamodel design patterns, the MLCBD framework can reduce the 

complexity in inferring a metamodel and the corresponding static semantics from a set of domain 

models. 

 

1.3.4 Semi-Formal Approach to Model Requirements of a DSML 

The idea of a Syntax Map is also introduced in the approach to assist development and 

verification of a DSML. Syntax Map is another DSML that is designed to model the 
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requirements of a DSML using graphical notations. Syntax Map captures requirements of a 

DSML according to syntax usage scenarios. Specifically, requirements of a DSML are modeled 

based on causal relationships between responsibilities of one or more classifiers and relationships. 

In addition, Syntax Map can convey both concrete syntax and abstract syntax, as well as 

constraints associated to the syntax in a compact form. Syntax Map enables reasoning about 

missing or redundant requirements of a DSML by checking conflicted syntax usage scenarios. 

 

1.4 The Structure of the Thesis 

This introductory chapter summarized the focus of research on DSML creation from a set 

of end-user demonstrated examples. The set of challenges associated with this research area was 

presented along with the research goals that address those challenges. The remainder of the 

dissertation is organized as described in the rest of this section.  

Chapter 2 describes background information related to the research of this dissertation. 

Chapter 3 introduces a semi-formal approach, named Syntax Map, which can be used to describe 

the requirements of a DSML. A Syntax Map focuses on the usage of each modeling element in a 

DSML and offers a set of graphical symbols to model the requirements of DSMLs. Chapter 4 

discusses the idea of metamodel design patterns, which are used in the metamodel inference 

process of MLCBD. Chapter 5 covers the specific details of MLCBD, including the description 

about the main steps and implementation details of the approach. Related work is discussed to 

highlight the unique features and contributions of MLCBD. Chapter 6 motivates the need for 

Model Design Space, which generates sample domain models from the inferred metamodel and 

constraints. The domain expert is asked to confirm the correctness of the generated model 

instances to help refine the inferred metamodel. Case studies are presented in Chapter 7 to show 
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how MLCBD supports end users building their own DSMLs. Chapter 8 outlines the future work 

of the research, and Chapter 9 concludes the work of this dissertation by summarizing the 

contributions. 
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CHAPTER 2  

INTRODUCTION TO DSMLs 

 

This chapter provides background information relevant to the research of this dissertation. 

First, MDE will be introduced in Section 2.1 with further discussion on Domain-Specific 

Modeling (DSM) and DSMLs. This chapter will also outline the key components of DSML 

creation in Section 2.2. General software development processes and activities for DSML 

development will be given in Section 2.3. Finally, because the main contribution of this research 

focuses on creating visual (or graphical) DSMLs, relevant information about DSML design 

principles and considerations will be discussed briefly in Section 2.4. 

 

2.1 MDE and DSMLs 

Throughout the history of the intersection of software engineering and programming 

languages, most new development paradigms that have emerged made claims about offering 

higher levels of abstraction as a benefit of some new idea. The general claim is that some newly 

introduced language or methodology is able to alleviate impediments of earlier efforts in order to 

accelerate software development and improve quality. The typical claim is that the raised level of 

abstraction makes it possible for software engineers to develop far more complex software 

systems without increasing the associated effort. For example, procedural programming 

languages (e.g., C, COBOL and FORTRAN) represented the dominant paradigm in the 

1960s/1970s. However, procedural programming languages lacked expressiveness and 
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modularity concepts compared to object-oriented programming languages, such as Java, C++, 

and C#. In addition, procedural programming languages have supported fewer reusable libraries 

and application frameworks (or platforms), which can minimize the need to reinvent common 

services.  

Since the 1990s, object-oriented programming languages (e.g., Java and C++) were 

introduced with more powerful expressive language constructs and have assisted software 

engineers in maintaining and reusing various software systems [Booch, 1997]. Object-oriented 

programming languages have many advantages over conventional programming languages. For 

example, the languages assist in promoting modularity, modifiability, and maintainability. 

However, the principal advantage claimed for object-oriented programming languages is that 

they promote reuse of valuable intellectual assess that are captured in code, which are described 

in the form of classes or objects. However, object-oriented programming languages have reached 

a complexity ceiling due to the fast growth of dependent platforms and middleware complexity, 

and the inability of expressing domain concepts effectively [Schmidt, 2006]. 

In the last two decades, MDE has attracted considerable attention from both academia 

and industry as a promising approach to address platform complexity and the need to express 

domain concepts, which are difficult in programming languages. MDE moves the focus of 

software development from programming language codes to models as first-class entities of 

software development. The concepts of MDE are established by combining many other 

approaches, such as Domain-Specific Languages (DSLs), software factories, Model-Integrated 

Computing (MIC) [Karsai et al., 2004], Model-Driven Software Development (MDSD), model 

management, and language-oriented programming [Bézivin 2005]. The major contribution for a 

new era of modeling was made by the Object Management Group (OMG), who offered a 
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conceptual framework to support Model-Driven Development (MDD). Specifically, OMG 

launched the concept of Model-Driven Architecture (MDA) [MDA, 2011], which consists of 

three ideas: direct representation, automation, and open standards. As shown in Figure 2.1, MDA 

describes the problem domain using a Platform-Independent Model (PIM), which can describe 

the problem domain independently of the underlying computing environments. From the PIM, a 

Platform-Specific Model (PSM) can be generated by applying model transformation techniques. 

 

 

Figure 2.1 Model-Driven Architecture: PIM and PSM 

 

A PSM contains the details of the implementation or solution space of a software system. 

Thus, MDA can shift the focus of software development from the technology domain (e.g., 

programming languages, and platforms) towards the concepts of the problem domain (e.g., 

important abstractions in the domain of interest). In addition, model transformation can automate 

software development while minimizing manual and tedious mappings between the abstraction 

layers.  
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The MDA concepts of direct representation and model transformation are germane to two 

key technologies of MDE: DSMLs and model transformation. DSLs [Visser, 2007] can be 

defined by the following definition: “A domain-specific language is a programming language or 

executable specification language that offers, through appropriate notations and abstractions, 

expressive power focused on, and usually restricted to, a particular problem domain” [Deursen 

et al., 2000]. 

Conventionally, most computer languages came into existence as dedicated languages for 

solving problems in a specific domain. For example, COBOL was introduced to develop 

business processing applications, and FORTAN was designed for numeric computation and 

scientific computing. As the majority of programmers in various domains adopted those 

languages (e.g., COBOL and FORTRAN) to solve their own domain problems, languages often 

evolved to solve general kinds of problems, regardless of the area or domain. In MDE, the 

Unified Modeling Language (UML) is a well-known general-purpose modeling language 

(GPML). UML was not originally designed for MDA, but it has become a standard GPML 

because it contains numerous diagrams, constructs and views that can be used to represent 

various perspectives of a system. 

However, GPMLs also have some drawbacks. First, due to a large number of diagrams, 

constructs, and views, deep modeling expertise is required to develop precise and concise models. 

For example, the current UML 2.4.11 core specification is defined in 978 pages, not including 

supplementary specifications. Thus, not everyone is able to create a quality model using a GPML 

                                                 

 

1 UML 2.4.1 Specification, http://www.omg.org/spec/UML/2.4.1/ 
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like UML. Second, GPMLs may not be well-matched to model a specific problem domain 

because the GPML syntax and semantics are not obvious due to their generality. This has created 

an impedance mismatch between the underlying concepts of domain and the concepts of GPMLs. 

In addition, this hampers the precise and concise description of the domain concepts. 

DSMLs are proposed as a promising approach to address the deeper learning curve and 

the associated challenges of model comprehension. As textual variants, DSLs are languages 

whose type systems are tailored for a particular domain such as finance [Brand et al., 1996; 

Deursen and Klint, 1998], software architecture [Medvidovic and Rosenblum, 1997], operating 

system specialization [Pu et al., 1997], and multimedia [Stevson and Fleck, 1997].  

The key characteristics of DSMLs are summarized below: 

 

 DSMLs offer only a limited suite of notations and abstractions compared to 

GPMLs. A DSML focuses on a specific-domain and is designed to help domain 

experts improve their understanding of representation problems in their domain. 

 DSMLs are often declarative and can be viewed as specification languages. 

 DSMLs are built on the domain users’ vocabulary. 

 The syntax of a DSML is designed to raise the level of abstraction so that it can 

hide the inherent accidental complexities of programming languages. 

 DSMLs typically require less time and effort to learn the syntax and to develop 

models, compared to GPMLs. 

 

In addition, both DSLs and DSMLs offer several other benefits that include [Gray et al, 

2007; Kelly and Tolvanen, 2008]: 
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 An ability to describe a problem domain with the idioms and abstraction that are 

commonly used in the domain. 

 Improvements in productivity, reliability, maintainability, and portability. 

[Herndon and Berzins, 1988; Kieburtz et al., 1996; Deursen and Klint, 1998] 

 Support for reuse of domain knowledge as embodied in language constructs. 

 

As introduced in Section 1.1, the top-most layer of the MDE model architecture is called 

the meta-metamodel layer, which is a core modeling language that conforms to itself and can be 

used to define other metamodeling languages for different domains. Meta-Object Facility (MOF), 

Ecore, and Kernel Meta Meta Model (KM3) [Jouault and Bézivin, 2006] are examples of meta-

metamodeling languages. The layer below the top-most layer is the metamodel layer. The 

models at this layer conform to the meta-metamodel and are used to define the core of a DSML. 

A common metamodeling language at this layer is the UML metamodel. Models at the third 

level conform to the metamodel to which they are associated. The models in this layer represent 

the instance models that users create and manipulate to model the underlying real system. Finally, 

the real system is placed at the bottom layer, which is mapped and generated from the instance 

models [Kurtev et al., 2006]. 

Model transformation is another core technology of MDE [Sendall and Kozaczynski, 

2003]. Examples of model transformation include code generation from models, model 

synchronization and mapping, model evolution, and reverse engineering. Code generation, 

reverse engineering, and refactoring are also examples of model transformations. Due to its 

importance in MDE, many researchers and practitioners have proposed various model 

transformation techniques, as summarized in Table 2.1. 
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Table 2.1 Classification of Model Transformation (Adapted from [Mens and Gorp, 2006]) 

 Horizontal Vertical 

Endogenous Refactoring Formal Refinement 

Exogenous Language Migration Code Generation 

 

Horizontal transformation is a transformation where the source and target models reside 

at the same abstraction level. On the contrary, vertical transformation is a transformation where 

the source and target models reside at different abstraction levels. Endogenous transformations 

are transformations between models expressed in the same language. Refactoring is an example 

of an endogenous transformation because it changes the internal structure of a software system 

without changing observable behaviors. Refactoring also falls into horizontal model 

transformation because the source and target languages do not change. Exogenous 

transformations occur between models expressed using different languages. The typical example 

of exogenous transformation is code generation, where a set of models is translated into source 

code. As source and target models have different level of abstractions, code generation is also an 

example of a vertical model transformation. 

 

2.2 Components of DSMLs 

In this section, we present elements of DSMLs in order to understand how and what 

domain experts need to provide when trying to develop their own DSMLs. Similar to 

programming languages, DSMLs consist of five tuples: Abstract syntax (A), Concrete Syntax 
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(C), Semantics (S), Mapping from concrete syntax to abstract syntax (MCA), and Mapping from 

abstract syntax to semantics (MAS) [Chen et al., 2009]. DSML components and their relationship 

are illustrated in Figure 2.2. 

 

 

Figure 2.2 DSML Components and their Relationship 

 

The Abstract syntax (A) describes the core concepts and notions of the language, the 

structural relationships between the language concepts, and the constraints that define how core 

language elements can be combined to describe domains. Figure 2.3 shows a metamodel for a 

simple Finite State Machine (FSM) that consists of two modeling elements, State and Transition. 

State is linked with other State through Transition. FiniteStateMachine is defined to represent the 

simple FSM and contains all metamodel elements. 
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Figure 2.3 Abstract Syntax of Simplified FSM 

 

Concrete syntax (C), also called surface syntax, is primarily concerned with the concrete 

representation of a language [Milanović et al., 2009]. Concrete syntax defines every detail about 

the notations used to express models, and either a textual, graphical, or mixed form can be used 

for specifying concrete syntax [Erwig, 1998]. Figure 2.4 shows the possible concrete syntax for a 

simple FSM, where a circle is associated to State, and a directed line is mapped to Transition. 

 

Name

 
 

(a) State (b) Transition 

Figure 2.4 Concrete Syntax for FSM 

 

In general, each concrete syntax element must be mapped to the underlying structure of 

the abstract syntax [Grunske et al., 2008]. Typically, one abstract syntax element can be mapped 
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to more than one concrete syntax element to satisfy various usage purposes and requirements of 

technical spaces. UML is an example that uses multiple concrete syntax elements to satisfy 

various usage purposes. The abstract syntax of UML, which is defined in the form of the UML 

metamodel, can be associated with two concrete syntaxes: one for human interaction and the 

other for computer-to-computer communication. For human interaction, abstract syntax of UML 

is visualized using graphical notations, and humans are able to design a software system using 

the graphical notations within a tool. Each UML modeling tool uses its own data representation 

to manage abstract syntax and corresponding concrete syntax of UML. So, if designers use 

different UML modeling tools, a UML model maintained under a tool’s data structure cannot be 

loaded into another UML modeling tool. The eXtensible Markup Language (XML) Metadata 

Interchange (XMI) [OMG XMI, 2011] is standardized by OMG to exchange meta information 

between UML modeling tools. Figure 2.5 shows two different concrete syntax specifications. 

Figure 2.5(a) is a graphical representation of an actor in a Use Case model, and Figure 2.5(b) is 

part of the XMI specification of an actor. 

 

 

<packagedElement xmi:type="uml:Class" xmi:id="UseCases-
Actor" 
   name="Actor"> 
        <ownedComment xmi:type="uml:Comment"  
           xmi:id="UseCases-Actor-_ownedComment.0" 
           annotatedElement="UseCases-Actor"> 
           <body>An actor specifies a role played by a user or  
                        any other system that interacts with the 
                        subject.</body> 
        </ownedComment> 

(a) Graphical Representation (b) Part of Actor XMI specification 

Figure 2.5 Concrete Syntax for Actor 
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While the syntax of a DSML is focused on the form of its expression, the semantics of a 

DSML is concerned with the meaning of grammatically correct models. A DSML can have two 

types of semantics: static semantics and dynamic semantics. Static semantics focus on “what 

something is” and describe invariants on elements of abstract syntax and/or on relations between 

those elements. Static semantics include all of the possible sets of components and their 

relationships, which are consistent with well-formedness rules. Dynamic semantics describe the 

behaviors of the language. Dynamic semantics often specify the evolution of the state of the 

modeled artifact along some time model. Generally, defining dynamic semantics is much more 

difficult than static semantics. 

Semantics can be defined several ways. Operational, Denotational, and Axiomatic are 

well-known approaches for semantics specification [Zhang and Xu, 2004]. Operational 

semantics is interested on the effect of how a computation is produced. Thus, operational 

semantics describe how to execute programs of a language or how to change the state. 

Operational semantics is useful as a basis for implementation. Denotational semantics is given by 

mathematical function, which maps a mathematical meaning to each syntax element. 

Denotational semantics is used for proving properties of a language. Axiomatic semantics is also 

called Floyd-Hoare logic [Hoare, 1969] and provides a logical system, which is built from 

axioms and inference rules for proving partial correctness properties of a program. 

Figure 2.6 shows the denotational semantics of a simple FSM. The Z notation is used to 

describe the semantics of a simple FSM.  
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(a) Set Definition 


 

(b) An Axiomatic Definition 



 

(c) Schemata 

Figure 2.6 Denotational Semantics of Simple FSM Described by the Z Notation [Dimitrov, 2010] 

 

Figure 2.6(a) defines the basic sets of a FSM. STATES is a non-empty final sets of states, 

INPUTS is the set of input events, and OUTPUTS is the set of all output events. Figure 2.6(b) is 

an axiomatic definition where q0 is the initial state, NULL is a special symbol, and FINALS is 

possibly an empty subset of STATES. Figure 2.6(c) is the schema of a FSM that specifies the 

behaviors of a program. An FSM consists of a transition, output, and current. Transition and 

output are in the same domain of the Cartesian product of STATES and INPUTS. The initial state 

q0 is part of the transition function domain and is the only state that has no input. FINALS has 

only input, and all states, except the final state, have to have both input and output. 

  



 

 

28 

 

 

2.3 DSML Development Process 

To develop a system effectively and manage the progress of the development 

systematically, a well-formed software development lifecycle is needed with precisely defined 

activities. Many researchers and practitioners have proposed and applied new software 

development processes. The Waterfall, Iterative and Incremental, and Spiral models are well-

known software development lifecycle models proposed to address issues that occur during 

software development. 

The Waterfall model was proposed by Winston Royce [Royce, 1987] to enable structured 

software development by executing a series of development activities (e.g., requirement analysis, 

design, implementation, and testing) sequentially. Although the Waterfall model is still used to 

develop software, it has been attacked for being too rigid and unrealistic when a system under 

development needs to accommodate quickly changing customer needs. In addition, the Waterfall 

model takes a long time to yield a working version of a system. 

The basic idea of an iterative and incremental model is to develop a software system 

while taking advantage of what was learned during the development of previous iterations 

[Larman and Victor, 2003]. In an iterative and incremental approach, a system is divided into 

small parts, and built by implementing and integrating the small parts incrementally and 

iteratively through a mini-Waterfall model. 

A prototyping model is based on the assumption that customers may not know all of their 

requirements at the beginning of development [Naumann and Jenkins, 1982]. Generally, at the 

beginning of software development, customers define objects that they wish to address with a 
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system, but do not have the requirements describing the system features and capabilities in detail. 

Moreover, requirements are changed or enhanced as customers have a better understanding while 

the development is in progress. To address these issues, the prototyping approach creates an 

artifact that focuses on user interfaces without having substantive implementation in a short time. 

Assessment of the prototype is performed against customer requirements. Thus, a prototyping 

model helps customers to understand and identify what they require from the system. The main 

application areas of a prototyping model are to assist with feasibility and usability tests. 

The Spiral model is another improvement that combines ideas from several software 

development processes. The Spiral model was proposed by Boehm to guide multi-stakeholder 

concurrent engineering of software intensive systems [Boehm, 1988]. The two main features of 

the spiral model are its cyclic approach and its adherence to a set of milestones. The cyclic 

approach enables the development of a software intensive system incrementally while decreasing 

the degree of software development risks. 

A DSML can be developed using any of the development models just described, but we 

recommend the iterative and incremental approach because domain users may not have a full set 

of domain modeling language requirements when elaborating on the needs of their language 

[Mernik et al., 2005]. The potential high-level of potential maintenance issues is one of the 

factors that also suggest an iterative and incremental model [Nakatani et al., 1999].  

Unlike general application development, DSML development activities are slightly 

different. As mentioned in the previous section, a DSML consists of three components (i.e., 

abstract syntax, concrete syntax, and semantics) and these components are interrelated by 

mapping rules. Thus, DSML development needs to consider how to design and implement each 

component independently and assemble them seamlessly. 
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As shown in Figure 2.7, DSML development requires a collaboration of two experts: 

domain experts and language development experts. 

 

 

Figure 2.7 DSML Development Process 

 

Domain experts have profound knowledge and experiences within the domain, but do not 

have language development expertise. The main roles of domain experts are eliciting 

requirements of the DSML and validating whether the developed DSML meets the requirements 

for a new language describing the domain. On the other hand, language development experts 

build a DSML based on requirements specified by domain experts. The major activities of 

DSML development are analyzing the requirements of the DSML, designing abstract syntax and 

concrete syntax, specifying semantics, and performing tests. 

Requirements analysis is the first step of DSML design. The main activity of 

requirements analysis is to identify the notions of the domain by acquiring and consolidating 
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information in the domain in order to design the syntax and specify the semantics. The goals of 

requirements analysis for DSMLs are as follows: 

 

 Identify stakeholders of the domain. Several different types of stakeholders 

may use a DSML with different purposes. For example, domain experts may use a 

DSML for describing their domain, and software engineers will use a DSML to 

understand a domain before they develop a software system for the domain. 

Because stakeholders have different views and goals, identification of domain 

stakeholders should be carried out before the other tasks to define the language 

scope correctly. 

 Define the domain scope. Domain scoping identifies appropriate boundaries for 

the domain and considers the existing and expected instances (or notions) within a 

domain [Pohl et al., 2005]. 

 Identify domain notions and notations used in the domain. Although no 

DSML may exist for a specific domain, a domain expert may define a set of 

notions and corresponding notations (or symbols) to model in their domain. In 

some cases, domain notions are maintained in the form of a data dictionary, and 

domain notations can be found in documents such as design documents, meeting 

minutes and presentation slides. Thus, these notions and notations should be 

identified and documented for the syntax design and semantics specification. 

 

After completing requirements analysis, language development experts need to determine 

which syntax (i.e., either abstract or concrete) is developed first. Generally, the concrete syntax 
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is explored before developing a DSML. This is often the case because domain experts may use 

symbols (or notations) that represent the idioms of discourse and jargon of specific problem 

domains to document and/or share the notions of the domain with the domain stakeholders. Thus, 

many DSMLs may begin by designing concrete syntax and then extracting the essence of the 

language during the abstract syntax design. Abstract syntax-driven DSML development may be 

preferable if the domain expert is not clear on some new aspects of the domain. This situation 

often happens when the domain is relatively new and subject to change due to external forces 

(e.g., new requirements placed on the domain). Thus, both domain and language development 

experts often work together to concretize the key concepts of the domain and characterize the 

abstractions required in the domain, with late elaboration of the abstract syntax [Wile, 1997]. 

As mentioned above, domain notions are captured during requirements analysis. The 

captured notions are specified using a modeling language during the abstract syntax design phase. 

UML and Eclipse Modeling Framework (EMF) are examples of modeling languages that are 

often used to specify abstract syntax specification. To develop quality abstract syntax, Karsai et 

al. [Karsai et al., 2009] proposed abstract syntax design guidelines. First, abstract syntax and 

concrete syntax should be aligned to each other. To align both syntax elements, a language 

designer should keep a one-to-one mapping between abstract syntax and concrete syntax. If 

similar or duplicated notations exist, they should be merged into single abstract syntax elements. 

Second, abstract syntax should be designed in a modularized manner. In accordance with the 

increased complexity of modern software systems, abstract syntax tends to describe complex and 

large-scale software systems. Thus, keeping abstract syntax modularized can help language 

maintenance and evolution.  



 

 

33 

Designing the concrete syntax of a DSML is similar to defining a set of symbols for the 

domain and mapping those symbols to abstract syntax. The main activity of concrete syntax 

design is in deciding whether to use a textual or graphical representation after weighing the 

advantages and disadvantages of the representations against the domain users’ preferences 

[Grönniger et al., 2007]. The advantages of textual representation are that textual representation 

takes less space than graphical representation when presenting the same amount of information. 

In addition, textual representation requires neither a specific platform nor a specific environment 

for reading maintaining, or developing the representation. On the other hand, graphical 

representation may help users to create a model quickly by supporting drag-and-drop model 

definition features. In addition, the learning curve may be shortened in both cases, reducing the 

amount of anxiety that users may have while learning new concepts and/or notations. 

In general, we can consider two types of concrete syntax users (e.g., computing devices 

and humans); each type of user may suggest a different approach to designing the concrete 

syntax. Computing devices often are connected on a network and able to communicate with each 

other to share information or collaborate to produce outputs. Concrete syntax plays a key role in 

making data sharing easy and efficient among heterogeneous computing devices because the 

syntax defines the structure and representation of information. For this type of concrete syntax 

user, interoperability among the heterogeneous computing devices will be the most important 

concern when designing concrete syntax because computing devices may have different 

computing capabilities and data formats (e.g., big or little endian). In addition, integration is 

another important factor for designing concrete syntax. Applications (or tools) may define their 

own concrete syntax, and the difference makes it difficult to integrate applications even when 

they are executing in the same computing device. XMI is a good example that addresses concrete 
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syntax design issues for machine-to-machine information exchange. XMI is the standard for 

representing object-oriented information using XML and enables interoperability among 

heterogeneous computing devices [OMG XMI, 2011]. In addition, because XMI is capable of 

representing many forms of object-oriented information, it is used to support lightweight 

integration among Java applications, the Web, XML, and different kinds of models [Grose et al., 

2002]. 

Another user of concrete syntax is a human who mainly uses the concrete syntax to 

communicate and share information. Designing the concrete syntax for a human is more difficult 

than designing for computing devices because a human can interpret or understand the same 

syntactical forms differently based on his/her domain knowledge and cultural background. Thus, 

designing concrete syntax for a human may require multi-disciplinary skills such as computer 

language design, cognitive science, psychology, and graphic design [Selic, 2009]. 

After the abstract and concrete syntax is designed for a DSML, the semantics should be 

specified and associated to the abstract syntax. Specifying the semantics of a language involves 

three activities: 1) understanding the designed syntax of a language, 2) choosing a semantic 

domain, which is the underlying formalism used to define the language, and 3) mapping from the 

syntax to the semantic domain [Harel and Rumpe, 2004]. 
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CHAPTER 3  

SYNTAX MAP: MODELING LANGUAGE FOR DSML REQUIREMENTS 

 

The success of software system development and evolution depends on how well the 

needs of its users and its environment are met [Nuseibeh and Easterbrook, 2000; Parnas, 1999]. 

A good set of requirements are critical for the success of software development projects because 

requirements are the primary tool for communication among stakeholders and the measure of 

software quality. In addition, requirements are used to describe what users want from the system, 

to partition the work out for contract, and acts as a basis for verification and validation. 

All deliverables of software system development should be documented and designed to 

conform to the requirements [Crosby, 1979]. However, descriptions of requirements often evolve 

as development of a system progresses. For example, at the systems requirements elicitation 

phase, the requirements define the functional features that the system must provide, as well as 

the non-functional needs (e.g., performance, reliability, and usability). At the architectural design 

and detailed design phases, the requirements need to describe the cost and benefits, as well as the 

potential changes needed to address architecture and component design decisions. In addition, 

the qualification requirements of the system are also described for system testing and acceptance 

testing [IBM Rational Doors]. Thus, requirements management is often called the umbrella 

process because requirements span all phases of the software development lifecycle rather than 

being specific to any particular life cycle stage. 

However, describing a good set of requirements is challenging because it generally can 

be obtained only after analyzing the problem space. The problem space is the space where 
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“simple” solutions would not adequately solve the problem. In addition, the problem space is less 

constrained than the solution space and comprises ill-defined and conflicted descriptions [Cheng 

and Atlee, 2007]. To address the difficulties of obtaining a good set of requirements, many 

researchers and practitioners have introduced various techniques such as Goal-oriented [France 

and Rumpe, 2007;], Use Case [Fantechi et al., 2002; Maiden and Robertson, 2005], and 

Scenario-based [Maiden and Robertson, 2005; Uchitel et al., 2002] requirements engineering. 

Although many approaches and techniques have been proposed to develop and manage 

the requirements of application domains, there is little research and empirical evidence on how to 

apply those approaches and techniques to manage the requirements of computer languages, 

specifically modeling languages. In addition, domain experts may suffer from the lack of an 

appropriate method, guidance, or tool support for capturing the requirements of a DSML. 

In this chapter, we introduce an approach, named Syntax Map, for capturing and 

managing the requirements of DSMLs. A Syntax Map aims to help communication between 

domain experts and programming language development experts by capturing the requirements 

of a DSML, specifically DSMLs represented with graphical notations. Because 

miscommunication is one of the factors leading to failure of software system development, 

Syntax Map addresses those issues by offering intuitive graphical notations to model the 

requirements of graphical DSMLs precisely and concisely. 

 

3.1 Requirements Modeling 

Eliciting and analyzing requirements are essentially a cooperative work because only 

domain experts really know the deepest details of the problem, but an analyst is often needed to 
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help the domain experts in fully and correctly describing it. Thus, choosing the right 

requirements modeling approach plays an important role in accelerating cooperative work. 

 

3.1.1 Natural Language 

Natural language is commonly and heavily used to describe the requirements of software 

systems because the initial requirements are often gathered from informal activities (e.g., user 

interviews or brainstorming) or from documents of previous projects. In addition, natural 

language is expressive and flexible for processing such initial inputs [Hsia 1993; Kaindl et al., 

2002; Berry 2003; Luisa et al., 2004] 

However, due to the informal nature of natural language, requirements described by 

natural language are highly prone to ambiguity and may not give the same interpretation when 

read by different persons. Thus, to minimize and avoid ambiguity and misinterpretation, 

requirements should be specified with the following characteristics [Wiegers, 1999; IBM 

Rational DOORS]: 

 

 Requirements should be described completely and correctly. All required 

functionality and necessary information should be included in the requirements 

specification. However, identifying missing requirements or information is not an 

easy task. To write requirements completely and correctly, requirements should 

be written by focusing on user tasks rather than on system functions. In addition, 

graphical and/or formal methods can help to reveal incompleteness within the 

requirements specification. 
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 Requirements should be described consistently. Some requirements are often 

conflicted with other requirements or with requirements focused on a different 

level (e.g., user requirements vs. system requirements). Thus, to keep the 

requirements consistent, they should be reviewed by all stakeholders whenever 

change requests are made. 

 Requirements should be verifiable. To be verifiable, the requirements must use 

statements that can be verified by examination, analysis, test, or demonstration. 

Thus, requirements statements should avoid using subjective or subjective words 

such as “easy,” “efficiently,” and “adequately.” In addition, verifiable 

requirements help to eliminate ambiguity in requirements.  

 Requirements should be traceable. Because requirements affect all 

development activities (e.g., design, implementation and testing), requirements 

traceability plays an important role in several ways. First, requirements 

traceability ensures that the final deliverables should satisfy initial customer 

demands. Second, if requirements traceability is done properly, it can be used to 

estimate and evaluate project progress, especially cost, time, and resources. 

Finally, requirements traceability can help in analyzing the impacts of a system 

from change requests. 

 

To satisfy the characteristics of good requirements as described above, each requirements 

statement should have: 1) a user who benefits from the requirement or drives the need for the 

requirement, 2) a state that the user wants to reach after requirements are executed, and 3) a 

metric or some mechanism to verify the correctness of the requirements. 
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3.1.2 Semi-Formal Methods 

Semi-formal methods use formal syntax (e.g., graphical notation such as diagramming 

techniques and/or tabular techniques) to model a domain, but their semantics are not formally 

defined using mathematical notations (e.g., logics and set theory). By using graphical notations, 

Semi-formal methods can analyze and design software systems with a high-level of abstraction 

[Schmidt, 2006; Watson, 2008] and is able to validate requirements and design at an early stage 

of development. In addition, semi-formal methods can minimize miscommunication.  

A well-known semi-formal requirement model is a Use Case model, which is currently 

considered the state-of-the-art for describing and modeling requirements because it offers several 

benefits [Fowler 2003; Cockburn, 2000]. First of all, requirements can be elicited and specified 

from the user’s point of view. In general, the context of a system is defined as a part of 

requirements elicitation and analysis, and users’ of the system are defined in terms of input. 

Users are often ignored or described ambiguously when specifying requirements with natural 

language. A Use Case model can tackle this issue by asking to describe requirements from a 

user’s point of view. Second, a Use Case model can minimize miscommunication between 

stakeholders by providing different levels of abstraction. If software engineers talk to non-

technical stakeholders (e.g., marketing team and/or financial team), they explain and discuss the 

system with graphical notations of the Use Case model. If software engineers need to talk to 

software architects, they can use both graphical notations of a Use Case model and its 

specification, which describes detailed functional and non-functional requirements of the Use 

Case. 
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3.1.3 Formal Methods 

Formal methods can address issues of natural language and semi-formal methods for 

modeling requirements by describing requirements with a very precise mathematical notation. 

Model-driven, Process algebra, and axiomatic methods can be used to model requirements 

formally. 

Model-driven formal methods describe requirements using a set of models, which are 

specified as objects and their operations. Model-driven formal methods need to explicitly define 

the types of objects of concern and utilize primitive, predefined operations in defining higher-

level operations [Pedersen and Klein, 1988; Aichenig, 1999]. B [Abrial, 2005; Julliand and 

Kouchnarenko, 2007], Z [Potter et al., 1996; Woodcock and Davies, 1996], and Vienna 

Development Method (VDM) [Bjørner and Jones, 1978; Pedersen and Klein, 1988] are examples 

of formal methods. Process algebra originated from the mathematical theory of automata. The 

term process algebras were coined in 1982 by Jan Bergstra and Jan Willem Klop [Bergstra and 

Klop, 1982] and the process algebras focus on the specification and manipulation of process 

terms, which are induced by a collection of operator symbols and interaction and communication 

between processes to achieve a common goal [Fokkink, 2009]. CCS (Calculus of 

Communicating Systems) [Milner, 1989; Bruns, 1997] and CSP (Communicating Sequential 

Processes) [Hoare, 1978; Roscoe, 1997] are examples of process algebras. 

Axiomatic formal methods [Hoare, 1969] use axioms to define properties of systems but 

the axioms are restricted to equations. Axiomatic formal methods are well-suited for algebraic 

specification of abstract data types, and ACT ONE [Claßen, 1989; Claßen et al., 1993] and its 
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extension ACT TWO [Fey, 1988] are languages for axiomatic formal methods. Both languages 

use algebraic specifications with conditional equational axioms to specify a system’s behaviors 

formally. 

 

3.2 Goals and Requirements of Syntax Map 

A language typically consists of three components: abstract syntax, concrete syntax, and 

semantics. Semantics define the meaning of the language and can be specified using one or more 

formal methods (e.g., Denotational Semantics, Axiomatic Semantics, Operational Semantics, or 

Attribute Grammars). Concrete syntax is used to represent the surface-level notion of a language. 

In programming languages, the concrete syntax is often textual and described using EBNF. In 

modeling languages, the concrete syntax could be textual, graphical, or mixed. Abstract syntax 

describes the notion of a language, the relationships between the notions, and the well-

formedness rules, which specify how the concepts can be combined. Generally, the abstract 

syntax is defined using an EBNF for programming languages and a metamodel for modeling 

languages. 

To develop a new graphical DSML, the requirements of the DSML can be described 

using three language components: the abstract syntax, a mapping relationship between the 

abstract syntax and concrete syntax, and semantics. However, it is not easy to describe the 

requirements of a DSML completely and precisely, and domain experts may suffer from the lack 

of an appropriate method, guidance, or tool support for capturing the requirements of a DSML. 

We have investigated an approach to address these issues and have developed the idea of a 

Syntax Map, which assists in capturing the requirements of a new graphical DSML. The Syntax 

Map’s focus is to assist domain experts, who may have little experience or knowledge about 
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development of graphical modeling languages, in describing the requirements of their own 

graphical DSML. The Syntax Map captures elements of syntax and the relationship (or structures) 

between the elements.  

The detailed requirements of a Syntax Map are specified as follows: 

 

 A Syntax Map should be able to describe the requirements of DSMLs, 

specifically graphical DSMLs, using graphical notations. 

 A Syntax Map should be able to define classifiers, which are modeling elements 

that describe behavioral or structural features in a system. Actors, Use Cases, 

classes, and interfaces are examples of classifiers.  

 A Syntax Map should be able to define at least three relationships: association, 

aggregation, and inheritance. The relationship is a connection between modeling 

elements and can assist in defining the semantics of a model. Association, 

aggregation, and inheritance are the three key relationships in modeling a domain, 

especially in Object-Oriented Modeling [UML Infrastructure; UML 

Superstructure]. Association represents a structural relationship between two 

model elements and depicts the possible connections from one instance of a 

classifier to another instance of a classifier. In addition, association describes the 

direction of navigation between linked modeling elements. An aggregation 

relationship represents the whole-part relationship between classifiers; a classifier 

is a part of (or subordinate to) another classifier [Barbier et al., 2003]. The 

aggregation relationship is often used to represent the containment relationship by 

describing how classifiers are assembled or configured together to create a more 
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complex classifier. The inheritance relationship expresses the is-a relationship 

between two classifiers. It encourages the reuse of existing data and code. When 

classifier A inherits from classifier B, we say A is the subclass of B, and A can 

access all the attributes and methods of B. 

 Each classifier and relationship in a Syntax Map shall be associated to the 

relevant concrete syntax. Concrete syntax visualizes the notion of abstract syntax 

using textual, graphical or mixed representation and helps domain experts to 

understand the language. The association should be a one-to-one correspondence 

between the abstract syntax and concrete syntax. By limiting the correspondence 

between abstract syntax and concrete syntax as a one-to-one mapping, notations 

used in the Syntax Map can address concerns of precision and concise 

expressiveness [Moody 2009; Goodman, 1968]. 

 Each concrete syntax element of a Syntax Map should be distinguishable and 

unique in the language. 

 A Syntax Map should be able to describe the cardinality (or multiplicity) between 

model elements linked by relationship. The cardinality expresses the upper or 

lower limits when two classifiers are linked by a relationship. 

 Each Syntax Map should have one start symbol, and each Syntax Map should be 

able to have multiple end symbols. A Syntax Map should have at least one start 

symbol and one end symbol to be a valid model. 
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3.3 Design of Syntax Map 

This section describes the design of the concrete and abstract syntax of the Syntax Map 

based on the requirements from Section 3.2. 

 

3.3.1 Concrete Syntax of Syntax Map 

In this section, we describe the concrete syntax of the Syntax Map. As described in 

Chapter 2, DSML development may begin by designing either the abstract syntax design or the 

concrete syntax design. Considering the abstract syntax first is useful when a domain is mature 

and programming language development experts have deep domain knowledge and experience. 

However, DSML development that is driven by concrete syntax is generally used more 

frequently because identifying the concrete syntax is relatively easier than identifying the 

abstract syntax. Also, domain experts may have already defined or used a set of notations to 

model and communicate with their stakeholders.  

Syntax Map development begins by defining the concrete syntax first. To describe the 

requirements of a graphical DSML, the Syntax Map provides eight symbols, as shown in Table 

3.1. To define the concrete syntax of a Syntax Map, we analyzed several diagrams (e.g., Activity 

diagram, Flowchart, and Entity-Relationship Diagram) and then selected notations that have a 

high probability of uniqueness among domain experts. 

A valid Syntax Map must contain at least two symbols, Start and End, which represent 

the start and end of the DSML requirements description. These two symbols are represented by a 

circle (Start) and bar (End). Similar to declarative programming (or modeling) languages, 
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Symbol Start and End are defined to structure requirements of a DSML according to each syntax 

usage scenario. 

 

Table 3.1 Concrete Syntax of Syntax Map 

Symbol Name Description 

 
Start Indicate start of the Syntax Map. 

 
End Indicate end of the Syntax Map.  

 
Classifier 

Represent classifiers (or entity) in abstract 
syntax. 

 Relationship Represent relationship between classifiers. 

 
Attribute 

Associate attribute to classifier. If necessary, 
relationship can have an attribute. 

 
Data Type 

Represent attribute type. Basic data type (e.g., 
String and Numbers) is provided. 

 
Mapped 

Mapping between abstract syntax and concrete 
syntax. 

	
Link Link between the Syntax Map elements. 

 

A classifier is denoted as a rectangle, and at least one classifier should be linked to the 

Start and End symbols. If necessary, attributes can be associated to a classifier. When defining 

attributes, the type of the attribute should be provided. Primitive data types (e.g., String and 

Number) are provided as built-in Data Types. In addition, domain experts can define composite 

data types by combining primitive data types. To represent relationships between classifiers, a 

rounded rectangle is placed between classifiers. 
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To link between the Syntax Map symbols, two types of link symbols are provided. One is 

a line and the other is an arrow-headed line. If an arrow-headed line is used to link between 

classifiers and relationships, it implies that there is directional dependency or information flow 

between the two. If a line is used, information can flow in both directions between classifiers and 

relationships. After domain experts connect classifiers to relationships, they need to specify the 

attributes of the relationship. The relationship has four attributes to characterize the relationship 

between classifiers: Type, Directional, and Cardinality of Source and Target. Attribute Type 

defines four types of relationships by default: association, aggregation, composition, and 

inheritance. If a domain expert assigns one of these types as the name of the relationship, the 

Syntax Map automatically sets the Type attribute corresponding to the assigned name. If a 

domain expert assigns a name that is different from the name in the Type attribute, then the type 

of the relationship needs to be defined. The attribute Direction specifies the direction of 

information flow or dependency. The semantics of the Direction attribute is determined by 

combining the types of links that connect between classifiers and relationships. The Cardinality 

of Source and Target describes the number of possible classifiers linked by the relationship. 

Finally, the symbol Mapped is used to map the abstract syntax to the concrete syntax. Mapped 

has two attributes: Constraint and Rendering. The former is used optionally when an abstract 

syntax needs to be mapped to multiple different types of concrete syntax. The mapping 

constraint is specified informally using natural language because the Syntax Map is used to 

capture requirements of a graphical DSML in the early development stage. The Rendering 

attribute specifies a path where a graphic symbol is stored. When a domain expert specifies the 

path attribute in Rendering, the Syntax Map reads the file and displays the concrete syntax in the 

symbol Mapped. 
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3.3.2 Metamodel of Syntax Map 

Based on the requirements and specifications described in the last section, a Syntax Map 

metamodel is defined in Figure 3.1. 

 

 

Figure 3.1 Syntax Map Metamodel 

 

ModelElement is the top-most base class for all modeling elements (except Link). 

ModelElement has string type attribute Name. The multiplicity of attribute Name is defined 0 or 

1, because some modeling elements have attribute Name and some do not. For example, 

modeling elements classifier, attribute, and relationship have attribute Name, but modeling 

elements Start and End do not.  
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Because each modeling elements need to be connected to at least one or more other 

modeling elements, a ModelElement is associated with Link in a bi-directional manner. If 

ModelElement is the source, it can have more than one Link. On the contrary, if ModelElement is 

target, a Link can be connected with only one model element. Thus, Link and ModelElement are 

linked by a one-to-one relationship. 

The Mapped class maintains the information about concrete syntax and an additional 

attribute called Path is defined to specify the location of the concrete syntax notation. The 

Datatypes class defines the data types that are used for a Syntax Map. To define the data types, 

the Datatypes class refers to the TypeKinds class, which is the base construct for representing 

datatypes; it has four subclasses (e.g., String, Integer, Double, and Boolean). 

 

3.4 Guidelines for Describing DSML Requirements using Syntax Map 

A good set of requirements usually contains at least three characteristics. First, each 

requirement should be a complete sentence because single words, phrases, and collections of 

acronyms may be interpreted several ways according to each reader’s background and 

experiences. Thus, a requirement statement should have at least a subject and a predicate. Second, 

a requirement may describe a defined, desirable quality (e.g., performance, reliability, or 

usability). Finally, a requirement should contain metrics or a mechanism for testing against the 

requirement. In order to describe the requirements of a graphical DSML using the Syntax Map, 

the following steps are recommended to domain experts: 
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 Start with a classifier. Classifiers represent notions that are commonly 

understood in a domain. A Syntax Map can describe the requirements of a DSML 

based on the use cases of classifiers. 

 Model flow from left to right. In general, a flow is implicitly modeled to run 

from left to right or form top to bottom. 

 Define classifiers. A Classifier is an abstract metaclass that is used to describe a 

set of instances that have common features. The classifier is used for defining a 

namespace, type, and redefinable elements. 

 Add attributes to each classifier if necessary. A classifier may have structural 

and/or behavioral characteristics in a specific domain. An attribute is one way to 

represent the characteristics of a classifier.  

 Define relationships and relate relationships with relevant classifiers. 

Relationships play important roles in modeling languages because they describe 

structural relationships between classifiers. 

 Specify additional attributes to relationship (e.g., relationship type, cardinality, 

and directional information). This can be added to provide semantic information 

about the relationship after it is assigned to classifiers. 

 Associate concrete syntax. If the concrete syntax of a graphical DSML has been 

identified already, the concrete syntax can be associated with the corresponding 

abstract syntax element. 
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3.5 Application of Syntax Map 

This section shows how to use the Syntax Map for describing the requirements of a 

DSML. To describe the requirements of the abstract and concrete syntax of a DSML, we will use 

a Deterministic Finite Automation (DFA) as an example language. Consider the specific DFA, 

shown in Figure 3.2, which computes whether the input binary numbers are multiples of 3. If a 

binary number 11 is entered, the DFA jumps to S1 for the first 1 and then returns to S0, which is 

the accepting state that represents the input binary number is multiples of 3. As shown in Figure 

3.2, the DFA uses three unique symbols, Accepting State, State and Transition, to model the 

DFA for checking multiples of three. 

 

 

Figure 3.2 DFA for Checking the Multiples of 3 

 

To describe the requirements of the DFA with a Syntax Map, a domain expert first 

creates the skeleton scenarios by placing classifiers and relationships between the Syntax Map 

symbol Start and End according to their usage scenarios. For instance, if the current state is the 

Accepting State and a transition is triggered, the next state is determined by the transition 
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condition and can be either Accepting State or State. In addition, State can transition to either 

Accepting State or State.  

The skeleton Syntax Map for a DFA is shown in Figure 3.3.  

 

 

Figure 3.3 The Skeleton of the Syntax Map 

 

The upper part describes the state transition scenario from the Accepting State, and the 

lower part is for the State. After the skeleton of a Syntax Map is created, a domain expert can 

add additional information to each Syntax Map modeling element if necessary. If the classifiers 

(or relationships) have the same attributes across the Syntax Map, a domain expert specifies the 

attributes to only one classifier. Then, the rest of the classifiers will share the attributes. For 

example, although another classifier State, which is connected with symbol End, is modeled 

without any attributes, attribute Name will be associated automatically with classifier State, 

which is connected to symbol Start. The complete Syntax Map is shown in Figure 3.4. 
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Figure 3.4 The Complete Syntax Map for the DFA 

 

3.6 Related Work 

Use Case Maps (UCMs) were proposed by Amyot et al. to provide “a notation to aid 

humans in expressing and reasoning about large-grained behavior patterns in systems” [Buhr 

and Casselman, 1995]. The basic idea of UCMs is to capture the requirements of a system by 

introducing a scenario-based software engineering technique, which can “describe causal 

relationships between responsibilities of one or more use cases” [Buhr and Casselman, 1995; 

UseCase Maps]. Due to the nature of a scenario, UCMs are useful in capturing informal (or 

functional) requirements, and validate logical errors in requirements. In addition, UCMs can be 

transformed into Language Of Temporal Ordering Specification (LOTOS) [Amyot and Logrippo, 

2000] or Specification Description Language (SDL) [He et al., 2003]. Due to simplicity, UCMs 

have been applied successfully for capturing requirements of software systems, documenting 
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standards, and evaluating the alternates of architecture. The main ideas of UCMs (e.g., scenario-

based requirements capture and graphical representation) influenced the design of the Syntax 

Map. To develop a graphical DSML using the Syntax Map, domain experts should first define 

the concrete syntax and then the abstract syntax. In order to design the abstract syntax, domain 

experts may examine possible scenarios of each element of the concrete syntax, and focus on the 

possible relationship combinations among the elements of the concrete syntax. Thus, similar to 

UCMs, the Syntax Map helps domain experts to design the abstract syntax by considering the 

usages (or relationships) of each concrete syntax element.  

A Syntax Graph [Taylor, 1961] is represented in a directed graph and also called a syntax 

diagram, or syntax chart. The syntax graph was first used to document the syntax of ALGOL 60 

in a condensed form for reference during compiler development. The syntax graph is similar to a 

flow chart, which can represent flow. It is designed to be able to define language constructs as 

metalinguistic formulas, which consist of metalinguistic variables and basic symbols. The syntax 

graph helps in checking the syntax of a program and can be used to train programmers. Because 

the syntax graph is useful to illustrate syntax structure and/or data structure visually, it is used to 

illustrate the syntax for several different contexts, such as SQL [IBM Database Fundamental; 

Oracle Syntax Diagram] and web services [SharePoint 2010 REST]. Similar to the syntax graph, 

the Syntax Map can also be used to document abstract syntax or illustrate syntax structure. The 

Syntax Map can be used as an input in order to develop a graphical DSML through 

transformation. 
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3.7 Conclusion 

Requirements are key artifacts for developing and evaluating a software system and, thus, 

many researchers and practitioners have invested much time and effort to develop and manage a 

good set of requirements. For instance, the Institute of Electrical and Electronics Engineers 

(IEEE) define standard guidelines and processes for developing and managing requirements, 

such as the IEEE Recommended Practice for Software Requirements Specifications (IEEE Std 

830-1998). However, specifying and maintaining quality requirements are not easy tasks because 

requirements are gathered through informal methods (e.g., interviews and brain storming) and 

are often described using natural languages, which are inherently ambiguous. To address these 

issues, researchers and practitioners have proposed many approaches, methods, and tools. 

In this chapter, we presented a semi-formal modeling approach (named Syntax Map) for 

specifying the requirements of DSMLs. The requirements for a DSML should describe all three 

components of the language (i.e., abstract syntax, concrete syntax, and semantics). Domain 

experts need to specify consistent and verifiable requirements of a DSML of three components 

by referring to appropriate guidelines and methods. To address this need, Syntax Map offers a set 

of graphical notations for specifying the requirements of a DSML. In addition, Syntax Map 

offers several advantages, as follows: 

 

 Syntax Map encourages domain expert involvement. One of the issues for quality 

software development is that domain users are inadequately involved in 

requirements elicitation. In addition, domain experts may not have expertise for 
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describing their requirements using traditional notations suitable for computer 

scientists. To encourage domain expert involvement in describing quality 

requirements, a Syntax Map provides a small set of graphical notations that can 

assist domain experts in describing a DSML based on the usage scenarios of each 

language. 

 A Syntax Map helps domain experts and programming language development 

experts to verify the requirements of a DSML. With a Syntax Map, the 

requirements of a DSML are described by classifiers and their usage scenarios. 

This allows domain experts to describe the requirements directly related to each 

DSML. 

 Each path in a Syntax Map represents a logically meaningful modeling unit. By 

breaking the requirements of a graphical DSML into several logically meaningful 

modeling units, domain experts and programming language development experts 

can share their understanding about the DSML they are developing. In addition, 

each modeling unit helps domain experts and programming language 

development experts to find missing and/or redundant requirements of a DSML. 

 

  



 

 

56 

 

 

CHAPTER 4  

METAMODEL DESIGN PATTERNS 

 

Software reuse helps to develop quality software while shortening development time and 

minimizing investment [Krueger, 1992; Mockus, 2007; Mohagheghi and Conradi, 2008]. 

Recently, design patterns have been adopted widely as a type of software reuse, especially for 

design reuse, because they reflect the experience and knowledge of designers who have 

successfully solved recurring problems in different contexts. Similarly, even though DSMLs are 

developed to be used for a specific domain, there exist recurring problems when designing 

modeling languages regardless of the domains of interest. Thus, extending the notion of design 

patterns to metamodel design can contribute to the design quality of a metamodel. In addition, 

metamodel design patterns are able to guide metamodel inference. 

In the MLCBD approach, the abstract syntax (or metamodel) is inferred by the 

Metamodel Inference Engine on the graph representation with the concrete syntax (see Chapter 

5). Generally, metamodel inference can be considered a special case of inductive learning, which 

induces output by learning from examples [Higuera 2005; Michalski, 1983]. To infer a quality 

metamodel, the inference engine requires a large set of training data, which contains positive 

examples (i.e., a set of data that belongs to the target) and negative examples (i.e., a set of data 

that does not belong to the target), but preparing such training data is challenging in practice 

[Kirsopp and Shepperd, 2002; Cho et al., 2011]. To address the issue of preparing training data 
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for inductive learning, we introduce the notion of metamodel design patterns and how those 

patterns assist in generating a basic training data set. 

 

4.1 Approach of Metamodel Design Pattern Mining 

Metamodel design patterns extend the notion of design patterns onto metamodel design in 

order to provide solutions for recurring problems when designing a metamodel. To mine 

metamodel design patterns, we took the following steps [Cho and Gray, 2011]: 

 

 Step 1 - Context setting: To identify issues of metamodel design, we reviewed 

the concrete syntax of several DSMLs and modeled their commonality and 

variability. Because complete DSMLs are challenging to obtain from industrial 

settings, we include GPMLs such as UML diagrams, assuming that each diagram 

can be tailored for a specific domain. A feature model [Kang et al., 1990] was 

used to summarize our understanding of commonality and variability in the 

DSML examples that we analyzed. 

 Step 2 - Identification of metamodel design problems: Based on the feature 

model that was created from the analysis of DSML concrete syntax, we observed 

several metamodel design challenges. To derive the recurring metamodel design 

idioms, we focused on the commonalities in the DSML feature model. These 

commonalities represent a few of the common features at the core of 

metamodeling. 
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 Step 3 - Metamodel design pattern creation: Based on the identified problems 

from Step 2, we searched and analyzed relevant metamodels and created a 

metamodel design pattern for each problem identified. 

 

4.1.1 Context Setting 

To identify the commonly recurring metamodel design problems, we examined the 

concrete syntax of several DSMLs (see Table 4.1 for example domains), with a specific focus on 

classifiers and relationships. To generalize the concrete syntax of DSMLs, we assume that most 

modeling languages commonly use a Box-and-Line style, even though there is some 

disagreement in the community on how to interpret and understand the syntax and semantics of 

graphical languages [Balakrishnan and Reps, 2010; Kopp et al., 2009; Petre, 1995]. Typically, 

Boxes represent the instances of the domain concepts such as key functionalities or behaviors, 

and Lines that connect Boxes describe how the connected Boxes communicate or are related to 

each other syntactically and semantically. The key benefit of using the Box-and-Line style is its 

simplicity, and thus, many modeling languages inherently contain the notion of Box-and-Line 

even though they are realized with different concrete syntax. For example, Petri Nets define four 

basic symbols (i.e., Places, Transitions, Directed arcs, and Marks) to model and analyze 

reachability, liveness, and boundedness of concurrent discrete event systems [Murata, 1989; 

Ouardani et al., 2006]. Places and Transitions, denoted by circles and rectangles (or bars), 

correspond to Boxes; Directed arcs, represented by arrows, correspond to Lines.  
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Table 4.1 Listing of Example Domains for Representative DSMLs 

Domain Diagrams Brief Description 
Key Modeling 

Elements 
Containment/ 

Nesting 

Relationship 

Style/ 
Boundedness 

Concurrent 
Discrete 

Event System 
Modeling 

Petri Net 
Modeling systems with 
concurrency and 
resource sharing 

Place, Transition 
(C), Directed Arc 
(R) 

A N Directed Closed 

Data 
Modeling 

ERD 
Model the logical 
structure of database 

Entity(C), 
Relation(R) 

N N Directed Closed 

Project 
Management 

Gantt 
Chart 

Model project activities 
with relevant 
information (i.e., 
duration, cost, …) 

Task(C), 
Predecessor (R) 

N N Directed Open 

PERT 
Chart 

Identify the critical 
path of the project by 
modeling the sequence 
of tasks 

Task(C), Directed 
arcs (R) 

N N Directed Closed 

Electronic 
Circuit 
Design 

Schematic 
Diagram 

Represent how 
electronic components 
are connected with 
others 

Component (C), 
Line(R) 

N A Undirected Closed 

PCB 
Layout 

Show the placement of 
electronic components 
on printed circuit board

Hole (C), Line (R) N N Undirected Closed 

SW Design 

Flowchart 
Model process or 
algorithm 

Symbols (C), 
Connector(R) 

N N Directed Closed 

Component 
Diagram 

Represent static 
structure of 
components and their 
relations 

Component, 
Interface, Port (C), 
Connector (R) 

A A (Un)Directed Both 

UseCase 
Diagram 

Describe system 
functionalities or 
behaviors with 
UseCase and Actor 

UseCase, Actor 
(C), Relation (R) 

N A 
(Un)Directed 

Typed 
Closed 

Class 
Diagram 

Describe the static 
structure of the system 
in terms of classes 

Class (C), Relation 
(R) 

N N 
(Un)Directed 

Typed 
Closed 
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Based on this observation, prior to identifying metamodel design patterns, the concrete 

syntax of DSMLs should be identified and generalized from model instances. In particular, we 

paid close attention to what and how many modeling entities are used in DSMLs, and what and 

how the relationships link modeling elements both syntactically and semantically. 

 

4.1.2 Identification of Metamodel Design Problems 

Based on the analysis of existing DSMLs, we identified the commonality and variability 

among several DSMLs and derived a feature model as shown in Figure 4.1. 

 

 

Figure 4.1 Feature Model of DSML Concrete Syntax 

 

Four major features (i.e., Classifier, Relationship, Style, and Boundedness) are defined as 

mandatory features. There are two other features (i.e., Containment and Nesting), which describe 

characteristics of a classifier, that are defined as optional features. In addition, Sub features of 
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Type, Orientation, Line Ends, and Boundedness are defined as an alternative feature because a 

relationship can have only one kind of Type, Orientation, Line ends, and Boundedness. 

Based on the feature model in Figure 4.1, we derived the following questions that relate 

to metamodel design challenges: 

 

 How to design a metamodel if the concrete syntax of the DSML consists of simple 

boxes and lines? This question will examine how to design a metamodel for a 

very primitive concrete syntax, which consists of classifiers and association 

relationships. Thus, the solution for this problem will be the base metamodel, and 

metamodels for complex DSMLs will be designed by extending this base 

metamodel. 

 How to design or evolve a base metamodel if the concrete syntax is more complex 

(e.g., classifiers are linked with several different types of relationships)? This is 

generally required for both GPMLs and DSMLs. For example, in a Use Case 

diagram, a Use Case can be linked with other Use Cases that include or extend the 

relation. This question may also be important in the design of DSMLs, which 

heavily depend on relationships between classifiers to describe domain 

knowledge. 

 How to represent boundedness of a relationship? Generally, most DSMLs 

implicitly enforce that both ends of a relationship are bounded to classifiers to 

represent which classifier drives a behavior and which classifier reacts to the 

action. In some cases, one end of the relation can be open. A DSML for 

representing chemical structure [Bentley et al., 1987] can be a good example for 
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this case because some chemical structures have lone pairs of electrons, which are 

not involved in chemical bond formation, as well as bonding pairs. 

 How to design a metamodel to represent containment and nesting? Some DSMLs 

may contain one or more types. Petri Nets and Activity Diagrams are examples of 

languages that have containment. As mentioned above, Petri Nets are defined 

with four modeling elements (i.e., Places, Transitions, Directed Arcs, and Marks). 

Places represent the pre- and post-state of a system by transition, and a transition 

shows the place where events occurr. Directed arcs show the direction of a 

transition. Transitions between places are determined by the contained number of 

tokens in a place and are fired when one or more start places, linked to the same 

transition, contain enough tokens to satisfy the firing condition. Nesting can be a 

special case of containment and used to control the level of abstraction by 

organizing classifiers hierarchically. 

 

4.2  Identification of Metamodel Design Patterns 

Based on the questions described in Section 4.1.2, we introduce a set of solutions in this 

section. The solutions are presented by investigating several metamodels, including UML. We 

use object-oriented notations, such as those used in class diagrams, to represent metamodel 

designs. 

 

4.2.1 Metamodel Pattern for Base Metamodel 

Extension to a base metamodel is proposed as a candidate solution for the first question 

related to metamodel design when the concrete syntax consists of boxes and lines. Consideration 
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of metamodel design for the simple Box-and-Line style DSMLs is important because this style 

may be used when requirements of a DSML are captured at an initial sketch level, which may 

occur at the early stage of DSML development. This issue emerges when a domain needs to be 

modeled with a very high level of abstraction. 

In the Box-and-Line style, Boxes are generalized as a set of classifiers and Lines are 

mapped to relationships. As a relationship normally links two classifiers, one for the source 

classifier and the other for the target classifier, the classifier and relationship are linked with two 

association relationships, source and target. 

Multiplicity is assigned to the association in order to specify the number of participating 

instances. In addition, it can also be used to describe the boundedness of a relationship. For 

example, Figure 4.2(a) shows the relationship links for two classifiers with source and target, 

which denotes the situation where at least one source and target exist due to both the multiplicity 

of source and target being specified as one-to-many. On the contrary, in Figure 4.2(b), the 

multiplicity of source and target is set to one-to-many and zero-to-many, respectively. This 

means that there exists at least one source, but the target may or may not exist in the relationship. 

 

 

Figure 4.2 Base Metamodel Design Pattern 
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4.2.2 Metamodel Pattern for Typed Relationships 

Associations represent a common relationship type in DSMLs. However, several types of 

relationships may exist to enrich the semantics between linked model elements. For example, a 

Use Case diagram has two typed relationships, such as include and extend. A Class Diagram has 

three typed relationships (i.e., inheritance, aggregation, and composition) in addition to 

association. 

Several metamodel designs for typed relationships and classifiers have been presented in 

the literature. Figure 4.3(a) is from the UML Superstructure Specification v2.4 [UML 

Superstructure], and Figure 4.3(b) is simplified from Ouardani et al. [Ouardani et al., 2006].  

 

 

Figure 4.3 Metamodel Design Pattern for Typed Relationships  

(adapted from [Ouardani et al., 2006] and [UML Superstructure]) 

 

Although the number of participating elements is equal, the two metamodel designs, 

which are shown in Figure 4.3., are different in two key ways: linked elements and a typed 
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relationship to the linked metamodel elements. First, when looking at the linked elements, both 

metamodels are designed to inherit typed relationships (i.e., include and extend) from the 

common parent relationship. However, in Figure 4.3(a), each typed relationship is linked with a 

classifier, but in Figure 4.3(b) the classifier and relationship are linked to each other instead of 

linking the typed relationships. 

In addition, the two metamodels use different typed relationships between the classifier 

and relationship. In Figure 4.3(a), two different relationships, composition and association, are 

used to link between classifiers and typed relationships (i.e., include and extend). In this 

metamodel, a composition relationship may be introduced to describe that the source classifier is 

strongly dependent on the target classifier. But in Figure 4.3(b), the association relationship is 

used for both source and target links. Typically, association is used to link classifiers weakly, and 

composition is used to describe a part-whole relationship. However, because the two 

relationships are relevant to each other and the semantics of the two are defined slightly 

differently among OO modeling approaches [Albert et al, 2003], it is difficult to say which one is 

more appropriate. In general, we believe that association is to be preferred to composition if 

there is no clear part-whole relationship. 

 

4.2.3 Metamodel Pattern for Containment 

Containment represents a part-whole hierarchy and is used to raise the level of 

abstraction by grouping large and complex model elements with a simple element. The 

Composite design pattern [Gamma et al., 1995] is commonly used for designing containment 

needs, but containment also can be designed without using the Composite design pattern. Three 

different containment metamodel designs are shown in Figure 4.4. 
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Figure 4.4(a) uses the Composite design pattern to design a metamodel that represents 

containment. The design leverages the benefits of design patterns, such as facilitating the 

addition of new kinds of classifiers and recursive composition. Figure 4.4(b) represents 

containment with a unary composition relationship. Although Figure 4.4(b) represents a viable 

design option for containment, the design is only applied for containing the same type of 

classifiers and may violate the Open/Closed Principle (OCP) [Martin, 1996] when a container 

needs to include new kinds of classifiers. 
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Figure 4.4 Metamodel Design Pattern for Containment  

(adapted from [UML Infrastructure], [OMG BPMN], and [QImPrESS]) 

 

In Figure 4.4(c), the classifier is inherited from Composite Classifier, which represents an 

abstract classifier that can have sub-classifiers. In addition, a classifier is linked with the 

Container through an association relationship. The intent of the design is to treat the container 

differently from the contents by introducing Container, which may have different characteristics 

than other classifiers. For example, a deployment diagram (or allocation diagram) may be used to 

illustrate how physical resources (i.e., storages, processors, and network interfaces) are allocated 
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onto execution environment vertices. Physical resources are often composed of the same or other 

physical resource (i.e., a network interface may have a processor and storage to manage network 

packets) to provide their own functionality, but the instance of the composed physical resources 

are treated as composite physical resources. However, vertices are composed of physical 

resources to offer services, but they can be designated as a container rather than composite 

entities because they are grouped logically. The advantage of the design is that containers can 

specify classifiers to be contents of the container through the links between classifiers and 

container. 

As described above, each metamodel design has its own intent, but the metamodel design 

for containment can be unified into Figure 4.4(a), which is an overly general design for 

containment that has the flexibility of extension for adding new classifiers or other properties. 

For example, if a container should have different characteristics that are abstract (or logical) 

from classifier, an attribute may be added to the classifier class to represent that need. Moreover, 

Figure 4.4(a) can represent nested containers without additional descriptions. 

 

4.3 Application of Metamodel Design Patterns 

Describing the applicability of a metamodel design pattern is an important factor in 

characterizing its usefulness and promoting its understanding. The metamodel design patterns 

introduced in the last section can form the basis for designing the metamodel for a DSML. The 

first metamodel design pattern can be applied to design a simple Box-and-Line style DSMLs. 

The second and third patterns can be used to describe metamodels that support typed 

relationships and containment, respectively. In addition to these applications, metamodel design 

patterns can be used for composing and inferring metamodels. 
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Metamodel composition [Karagiannis and Höfferer, 2008; Emerson and Sztipanovits, 

2006; Karsai et al., 2004; Mapelsden et al, 2002; Lédeczi et al., 2001a] is a technique that creates 

a new metamodel by reusing all or part of existing metamodels. To make metamodels reusable 

and/or composable, the metamodels are refined to abstract metamodels that are not designed for 

specific DSMLs, but capture general structures and behaviors of DSMLs. The proposed 

metamodel design patterns are elicited from commonality analysis and can represent general 

characteristics of DSMLs, much like abstract design patterns. 

Metamodel inference is the other application area of metamodel design patterns. 

Metamodel inference has recently been considered as an application of grammar inference 

[Berwick and Pilator, 1987; Fu and Booth, 1986; Gold, 1967] and used to recover metamodels 

from existing model instances [Favre, 2004; Javed et al., 2008; Liu et al., 2010]. To infer a 

metamodel accurately, a metamodel inference engine may require a large set of training data 

[Kirsopp and Shepperd, 2002]. However, having a large set of existing training data may not be 

practical in many cases. To complement the lack of training data, metamodel design patterns can 

be used as a supplementary aid to generate representative instances for metamodel inference 

through the commonality provided by DSMLs for recurring metamodel design problems. 

 

4.4 Related Work 

Mernik et al. [Mernik et al., 2005] defined DSL development phases with five process 

areas such as decision, analysis, design, implementation, and deployment. They also identified 

patterns for each of those process areas. For example, either language exploitation pattern or 

language invention pattern can be used to design a DSL. The language exploitation pattern is a 

pattern to guide how to tailor existing General-Purpose Languages (GPLs) or DSLs. On the other 
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hand, the language invention pattern guides DSL development from scratch. Although patterns 

listed and structured in [Mernik et al., 2005] are well-defined, the patterns are described at a 

much higher level of abstraction and focus on more of a textual DSL development process.  

Elaasar et al. [Elaasar et al., 2006] proposed the Pattern Modeling Framework (PMF) to 

specify and detect patterns in MOF-compliant modeling frameworks and languages. PMF was 

designed to conform to OMG’s metamodeling architecture. EPattern is the top-most layer and 

represents a meta-metamodel. Metamodel patterns are specified by conforming to an EPattern 

and then metamodel instances can be instantiated from metamodel patterns. EPattern is also 

applied to detect patterns. To detect metamodel patterns, the detection algorithm checks whether 

each EPattern element conforms to a defined type and verifies associated constraints. 

Schäfer et al. [Schäfer et al., 2011] proposed a pattern-based approach to develop a 

metamodel. To create a metamodel, the approach applied patterns in a stepwise manner from 

requirements elicitation to metamodel definition. For example, language elements are identified 

at the requirements phase and modeled in a Use Case diagram. The language elements are 

associated with appropriate language patterns to form an intermediate metamodel. Additional 

language patterns are applied to the intermediate metamodel until the approach can build a 

complete metamodel. 
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CHAPTER 5  

INTERMEDIATE DESIGN SPACE 

 

This chapter describes the main contribution of this dissertation for applying by-

demonstration concepts across the modeling language development lifecycle. The overall 

process of the MLCBD framework is depicted in Figure 5.1. 
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Figure 5.1 Overall Process of MLCBD 

 

The framework consists of two parts: the front-end and back-end modules. The front-end 

module is designed to address the first and second DSML challenges (i.e., preference of office 

tools for domain modeling and lack of familiarity with metamodeling environments). The front-
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end module provides an environment where domain experts can model concepts in the domain 

using free-forms or sketch-level forms. The back-end module implements algorithms to resolve 

the remaining DSML development challenges, such as capturing concrete syntax, inferring 

abstract syntax, and formalizing static semantics based on the output of the front-end module. 

The front-end module consists of two components: the modeling canvas and the 

recording engine. The main issue of the first DSML development challenge is to recognize new 

shapes that are drawn informally using free-forms and/or sketch-level shapes, for which domain 

experts can understand without additional information. To support free-form shapes, Chen et al. 

[Chen et al., 2008] developed a software design tool named SUMLOW to capture and formalize 

sketch-level UML constructs. SUMLOW used a gesture recognition technique to recognize 

sketch-level modeling elements progressively and formalize them while minimizing user 

interaction. Ossher et al. [Ossher et al., 2010] introduced the concept of flexible modeling tools, 

which use predefined free-form shapes for modeling pre-requirements. They built a prototype to 

combine the advantages of office automation tools and traditional modeling tools. 

In the MLCBD framework, a modeling canvas supports a combination of these two 

approaches. The framework provides pre-defined modeling elements as a default, as well as a 

shape authoring tool. To model a domain with free-form shapes, end-users need to draw shapes 

that represent their domain and register them as pre-defined shapes using an authoring tool. In 

addition, the modeling canvas is integrated with the recording engine to capture user actions. The 

recording engine captures user actions; in particular, it records sequences of user actions that 

demonstrate domain concepts on the canvas. The recording engine also optimizes the captured 

actions by pruning unnecessary actions. 
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The back-end module, as shown at the bottom of Figure 5.1, consists of two major 

components: the Intermediate Design Space and Model Space Exploration. The core functions of 

Intermediate Design Space are (1) initially inferring an intermediate metamodel and semantics 

(i.e., static constraints) using a set of domain model examples, and then (2) completing the 

metamodel and static semantics based on feedback from Model Space Exploration. After the 

intermediate metamodel and semantics are generated by the inference engine, the Model Space 

Exploration component generates a set of model instances and then presents the generated model 

instances to a domain expert who plays the role of an oracle to offer feedback about which model 

instance correctly reflects the notions of the domain and which do not. The information provided 

by the domain expert and a set of model instances are fed back to the Intermediate Design Space 

to adjust the metamodel and static semantics that are inferred at the previous step. Finally, the 

metamodel and static semantics are specified by iterating between the Intermediate Design Space 

and Model Space Exploration components until the output of the approach meets the user 

confirmed requirements of the target DSML. 

This chapter specifically focuses on the Intermediate Design Space. The details of the 

processes and algorithms required for inferring a metamodel and its static constraints are 

described in the following sections. 

 

5.1 Introduction to Intermediate Design Space 

The main purpose of the Intermediate Design Space is to infer the metamodel and 

semantics based on a set of domain model examples. A set of domain model examples is a small 

number of models that the domain expert provides, and each domain model example describes 

the particular notions and intents of a domain using the front-end module. Although the approach 
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offers a modeling environment, creating a large set of domain model examples is a tedious and 

error prone process. As a result, domain experts may tend to demonstrate only a few of the 

positive domain models. Thus, the goal of the Intermediate Design Space is to generate a 

metamodel and its associated static constraints from a small set of domain model examples, 

which satisfy the intent of a domain expert.  

As shown in Figure 5.2, the Intermediate Design Space consists of two modules: Graph 

Construction and Inference Engine. 

 

 

Figure 5.2 Process of Intermediate Design Space 

 

The Graph Construction component transforms a set of domain model examples that are 

created by domain experts into a set of attributed graphs. This is done prior to inferring the 

metamodel. During the process of graph construction, concrete syntax elements are identified (or 

verified) and appropriate attributes are appended to the identified concrete syntax by domain 

experts. After a set of attributed graphs are created from the set of domain model examples, the 
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graphs are passed into the inference engine to infer the metamodel and its associated static 

constrains. When inferring a metamodel, the inference engine refers to metamodel design 

patterns (please see Chapter 4) to complement the lack of a large number of domain model 

examples. The following sections describe the details of each step for inferring a metamodel and 

its static constraints. 

 

5.2 Concrete Syntax Identification 

Concrete syntax describes the concepts of a domain in terms of a human-readable format 

(e.g., textual, graphical, or both). In a programming language, concrete syntax serves as the basis 

of a parser that translates a program into an abstract syntax tree unambiguously using the tokens 

and keywords of the language. However, in modeling languages, concrete syntax is often 

described using graphical symbols. 

Because the concrete syntax describes how modeling concepts (or abstract syntax) are 

rendered with graphical and/or textual elements, the Concrete Syntax Identifier finds unique 

modeling elements, which are modeled as vertices in a graph, by traversing each graph 

representation. The identified unique modeling elements become the candidate concrete syntax 

after checking against unique symbols that are captured during domain expert demonstration. By 

doing this, Concrete Syntax Identifier can verify that all unique symbols are captured without 

duplication or missing model elements. Then, the candidate concrete syntax is reviewed and 

annotated by the domain expert. Initially, the candidate concrete syntax is selected with respect 

to the uniqueness of the modeling elements (e.g., shapes and styles), such that different names 

and labels can be associated to each modeling element. Thus, the MLCBD framework requires 

interaction with the domain expert to review the candidate concrete syntax and annotate each 
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unique modeling element with a generalized name that can represent the notion of each modeling 

concept precisely and clearly. If each unique modeling element has a label, the type of the label 

(e.g., number or string) also needs to be specified by the domain expert. 

During the review and annotation of candidate concrete syntax, domain experts may be 

asked to assign additional information for links between example model elements, such as 

directional information. A link is used to connect two or more classifiers and provides a static 

semantic relationship between connected classifiers. The direction of a link adds constraints 

between connected classifiers, such as direction of data or control flow. For example, a 

dependency relationship in UML is used to represent how a change in a model element may 

affect the semantics of dependent modeling elements. The arrow of a dependency specifies the 

direction of a relationship between connected modeling elements. 

For example, domain experts who design circuits for signal processing may demonstrate 

their domain similar to Figure 5.3. As shown in Figure 5.3, the domain is described with several 

components: Step, Transfer Fcn, Scope, Adder, Gain and directed arrow. The Step is a signal and 

shows zero for negative and one for positive. The Transfer Fcn modifies its input signal and 

produces a new signal as output. The Scope is a sink block used to display a signal much like an 

oscilloscope. The Adder generates a signal by adding two input signals, and Gain increases an 

input signal by a given factor. Finally, the directed arrow shows flow of signals. 

In the diagrams of Figure 5.3, the Step, Adder, and Gain are shown once in each process 

control model. But, the others (e.g., Transfer Fcn, and Scope) are shown multiple times. For 

example, the Scope is shown two times with different names (e.g., Scope and Scope2) in Figure 

5.3(d). The Transfer Fcn is also shown twice in Figure 5.3(e) named with PI Controller and 

Plant. Based on the concrete syntax analysis, six unique modeling elements (e.g., Step, Transfer 
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Fcn, Scope, Adder, Gain and directed arrow) are selected as candidate concrete syntax after 

eliminating duplicated symbols.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

Figure 5.3 Domain Models of Process Control [Simulink] 

 

The list of candidate concrete syntax and its related information is shown in Table 5.1. A 

candidate concrete syntax could have multiple names and labels because roles and 

responsibilities of the concrete syntax could be different for each model instance. 

Domain experts are asked to review and annotate each symbol with generalized names 

and labels after the candidate concrete syntax is captured. The possible result of the annotation is 

shown in Table 5.2. For example, the symbol Scope appears in each diagram. In Figure 5.3(d), 

two Scope symbols are used to display the output of Transfer Fcn with two different names, 
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Scope and Scope2. When capturing a unique modeling element, only one Scope symbol is 

captured but its names (Scope and Scope2) are associated as attributes. 

 

Table 5.1 Candidate Concrete Syntax 

 Instance Name Label 

 
Step  

 
Gain 2.5 

 
Scope, Scope2  

   

 

Transfer Fcn, PI Controller, 
Plant 1

1

s , 42

1
2  ss , 1

1

s , s

s 2

 

   

 

When domain experts review candidate concrete syntax, they review associated attributes 

(e.g., name and label) and then annotate each modeling symbol with the name that represents the 

notion in the domain, as well as the assigned type for the label. In addition, domain experts are 

asked to specify mandatory attributes such as the type of the symbol and directional information. 

For example, the Transfer Fcn is specified as classifier, and string type attribute Name is 

associated to the Transfer Fcn. In addition, two string-type attributes (i.e., Numerator 

coefficients and Denominator coefficients) are defined to specify coefficients of Transfer Fcn’s 

numerator and denominator, respectively. 
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In case of an arrow, the link type is defined as an association and directional information 

is set to True, which means the link is directional. Therefore, if a domain expert specifies a 

symbol as an association, it implies that the symbol will be used as a link between two or more 

classifiers, and domain experts are asked to assign directional information. 

 

Table 5.2 Annotated Concrete Syntax 

 Name Attribute 

 
Step 

Type = Classifier 
Name = String 

StepMax = Integer 
StepMin = Integer 

Step = Integer 

 
Gain 

Type = Classifier 
Name = String 
Gain = Integer 

 
Scope 

Type = Classifier 
Name = String 

 Adder 

Type = Classifier 
Name = String 

Operand Left = Double 
Operand Right = Double 

 
Transfer Fcn 

Type = Classifier 
Name = String 

Numerator coefficients = String 
Denominator coefficients = String 

 Link 
Type = Association 

Name = String 

Directional = True 
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5.3 Graph Construction 

Graph transformation is one of the key technologies of MDE because it can assist in the 

creation, editing, and analysis of a model [Andries et al., 1999; Bézivin, 2005; Gerber et al., 

2002]. A graph and its transformation are widely used in the software modeling community and 

are also a proven approach for representing a high-level programming language formally, which 

can then be used to generate other types of artifacts by applying production/replacement rules 

through graph rewriting [Blostein and Schürr, 1999; Saxena and Karsai, 2010]. Transforming 

platform-independent models into platform-specific models is a common example of graph 

transformation [Mens and Gorp, 2006]. In our approach, graph constructions are used in two 

places: the Graph Builder and Graph Annotator phases. 

The MLCBD approach uses a graph transformation in order to change the representation 

of a set of domain model examples into the graph that is used for inferring the metamodel and its 

associated static semantics, rather than transforming one model to another by applying rules. As 

shown in Figure 5.2, the process for creating a DSML begins with the transformation of a set of 

domain model examples into graph representations.  

Using the Graph Builder, a set of domain model examples is transformed into a set of 

graphs. The goal of the Graph Builder is to generate a representation-independent model from a 

set of domain model examples that are created by a domain expert who demonstrates domain 

notions using the modeling canvas. Because DSMLs can be developed in various languages, 

domain models can be described with different representations. For example, to define the syntax 

of a DSML and maintain model instance data, a DSML may use different file representations 
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such as XML, text, and binary forms. Although DSMLs may use the same file representation, the 

schema representing the metamodel for the DSML can be structured differently for each DSML. 

Thus, the Graph Builder reads a set of domain model examples and transforms them into the 

corresponding internal graph representation, which are represented as G = (V,E,s,t), where V is a 

set of vertices, E is a set of edges, and the functions s, t:E V, where s is the source and t is the 

target functions.  

To generate a graph representation, the Graph Builder maps each modeling element (or 

classifier) into a vertex and transforms links into edges. In addition, the Graph Builder generates 

an adjacency matrix that is used to specify the adjacency between modeling elements. The names 

of the source modeling elements are listed in the left-most column and the names of the 

destination modeling elements are listed in the first top row. If a cell in the matrix is marked 0, it 

indicates that there is no relationship between the source and destination modeling elements. If a 

cell value is larger than 1, it means that the source modeling element can be linked with the 

destination modeling elements. Figure 5.4 shows the results of the Graph Builder for process 

control models, which are depicted in Figure 5.3, as well as the corresponding adjacency matrix. 

As shown in Figure 5.4, the Graph Builder generates undirected graphs because only 

limited link information (e.g., name and participated classifiers) is provided when transforming 

the domain model examples into graphs. Therefore, values of the adjacency matrix that represent 

dependencies between the source and destination are also marked based on the undirected graph.  

For example, when looking at the adjacency matrix for the graphs in Figure 5.4(b) and (c), 

Transfer Fcn in the second row is marked as having a relationship with Step, even though 

Transfer Fcn can be the only destination of Step.  
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(a) 
 

Des 
Src 

Step Scope 

Step 0 1 
Scope 1 0 

 

(b) Name = Step Name = Transfer Fcn

Label = 
42

1
2  ss

Name = Scope Des 
Src 

Step 
Transfer 

Fcn 
Scope 

Step 0 1 0 
Transfer 

Fcn 
1 0 1 

Scope 0 1 0 
 

(c) 

1

1

s  

(d) 

1

1

s

 

Des 
Src 

Step 
Transfer 

Fcn 
Scope Scope2 

Step 0 1 0 0 
Transfer 

Fcn 
1 0 1 1 

Scope 0 1 0 0 
Scope2 0 1 0 0 

 

(e) 

s

s 2
42

1
2  ss

 

Des 
Src 

Step N1 Gain PI Controller Plant Scope 

Step 0 1 0 0 0 0 
N1 1 0 1 0 1 0 

Gain 0 1 0 1 0 0 
PI 

Controller 
0 0 1 0 1 0 

Plant 0 1 0 1 0 1 
Scope 0 0 0 0 1 0 

 

Figure 5.4 Results of Graph Builder 
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After a set of domain model examples is transformed into the internal graph 

representation, the Concrete Syntax Identifier defines the concrete syntax of the DSML in a 

semi-automated manner (i.e., this requires interaction with a domain expert for annotation). After 

the concrete syntax is given as an example and annotated, the Graph Annotator transforms the 

outputs of the Graph Builder, a set of undirected graphs, into the attributed graphs by combining 

the information about the concrete syntax. An attributed graph (AG) [Ehrig et al., 2004] is a 

graph where some attributes are associated to vertices and edges. 

The attributed graph (AG) can be defined as AG = (G, D) where G is a normal 

(un)directed graph, G=(V,E,s,t), and D is the data signature. The data signature defines data and 

operations. It is defined as D = (SD, OPD) where SD is the type (e.g., Char, String, Nat) and OPD is 

constants and/or operations (e.g., in, out, inout, and return).  

In our approach, the Graph Annotator converts each vertex, V, into an attributed vertex 

that has a pair, (name, attrs), where name is a generalized name that represents each vertex 

uniquely in the graph, and attrs is a set of attributes attached to the vertex.  

In addition, the Graph Annotator converts edges into attributed edges that have a 3-tuple, 

(attrs, src, dst), where attrs is a set of attributes attached to the relationship such as type of 

relationship and directional information, src and dst are a source and destination vertex linked by 

the edge, respectively. 

To generate a graph representation with concrete syntax, the Graph Annotator takes the 

following three steps. First, all vertices and edges are renamed with the matched concrete syntax. 

The name of the vertices and edges are initially assigned with arbitrary instance names, and the 

other instance names are maintained as an attribute. The instance names are provided by the 

domain experts when they review and annotate the candidate concrete syntax. After the concrete 
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syntax is defined, the arbitrary names need to be renamed with their corresponding concrete 

syntax name. Second, the Graph Annotator checks the link information, which is also added 

when the domain expert annotates the concrete syntax, and determines whether to change the 

graph into a directed graph. Initially, the graph representation is constructed using an undirected 

graph because only limited link information (e.g., name and participated classifiers) is provided 

when transforming the domain model examples into a set of graph representations. If a domain 

expert adds additional pieces of information about links (including the direction of a link) at the 

concrete syntax identification phase, the Graph Annotator transforms the initial graphs into the 

attributed graphs. Finally, the Graph Annotator completes the graph generation by merging 

vertices that have the same concrete syntax name. 

Figure 5.5 shows the result of the Graph Annotator for the graphs shown in Figure 5.4. 

As the domain expert annotates each unique modeling element as shown in Table 5.2, the initial 

graph representations are transformed into attribute graphs that have at least two attributes, Type 

and Name. 

For example, the graph shown in Figure 5.4(a) is changed from an undirected graph to a 

directed graph because the link is specified as directional, and five attributes (e.g., Type, Name, 

StepMin, StepMax, and Step) are associated to vertex Step to describe characteristics of the step 

function. Similarly, the two attributes Type and Name are associated to vertex Scope. While 

rewriting the initial graph representation, graphs shown in Figure 5.4(b), (c) and (d) are merged 

into one graph as presented in (b) because the two graphs shown in Figure 5.4(b) and (c) are 

identical in terms of the graph representation and adjacency matrix. 

Along with rewriting graphs, the Graph Annotator updates the adjacency matrix. As the 

domain expert annotates the arrow as a directed association, an adjacency that violates the 
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direction is set to zero. For example, an adjacency from Transfer Fcn to Step is reverted to zero 

from one because signals can only flow from Step to Transfer Fcn. 

When rewriting the graph shown in Figure 5.4(d), the resulting graph is also the same as 

the graph shown in (b), but its adjacency matrix is slightly different to indicate that Transfer Fcn 

can have two Scope outputs. To indicate this, the adjacency from Transfer Fcn to Scope is set to 

2 instead of 1. The last graph shown in Figure 5.4(e) is rewritten as (c). N1, which is arbitrarily 

named for Adder by the system, is renamed to Adder by annotation. 

In addition, the PI Controller and Plant are annotated to Transfer Fcn, and the two 

vertices are merged into one and named Transfer Fcn because they are mapped to the same 

concrete syntax. A recursive link is added representing that Transfer Fcn can be linked with 

some other Transfer Fcn as shown in Figure 5.5(c). Along with modifying the graph, the 

adjacency matrix is reduced because PI Controller and Plant are merged to Transfer Fcn. In 

addition, the adjacency value from Transfer Fcn to other modeling elements is updated 

considering the link direction. 
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(a) 

 

     Des 
Src 

Step Scope 

Step 0 1 
Scope 0 0 

 

(b)  
 

             Des 
Src 

Step Transfer Fcn Scope 

Step 0 1 0 
Transfer Fcn 0 0 2 

Scope 0 0 0 
 

(c)             Des 
Src 

Step Adder Gain 
Transfer 

Fcn 
Scope 

Step 0 1 0 0 0 
Adder 0 0 1 0 0 
Gain 0 0 0 1 0 

Transfer Fcn 0 1 0 1 1 
Scope 0 0 0 0 0 

 

Figure 5.5 Results of Graph Annotator 
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5.4 Metamodel Inference 

After a set of domain examples are transformed into a set of graph representations with 

concrete syntax, the Metamodel Inference Engine infers metamodel and static constraints based 

on the graph representation. To infer a metamodel, the Metamodel Inference Engine loads each 

graph representation and then compares the loaded graph representations against a set of 

metamodel design patterns in order to determine if the graph representation matches a known 

metamodel pattern. For example, the graph representation of the second process control model 

instance, shown in Figure 5.3(b), consists of three concrete syntax elements: classifiers (Step, 

Transfer Fcn and Scope) and a relationship (Link). Classifiers and relationships are mapped onto 

vertices and edges as shown in Figure 5.5(b). Comparing this graph representation with the set of 

metamodel design patterns, the Metamodel Inference Engine will find the base metamodel 

pattern that best matches the graph representation. As shown in Figure 5.6(a), the base 

metamodel design pattern is designed for DSMLs that consist of simple classifiers and 

relationships, and can be transformed into three different graph representations as shown in 

Figure 5.6(b). The top part of Figure 5.6(b) represents two different classifiers that are linked 

with a relationship, and the middle part describes that two or more of the same classifiers are 

linked with a circular relationship. The bottom part depicts that the two same classifiers are 

linked to different classifiers. 

While the Metamodel Inference Engine determines the design patterns that are matched 

to each graph representation of domain model examples, the engine combines each graph 
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representation of the domain model examples and generates a single graph representation that 

represents the entire set of domain model examples. 

 

source

target

1,…,*

1,…,* *

*

(a) Base Metamodel 
Design Pattern (b) Graph Representation

Classifier1 Classifier2

Classifier1 Classifier3Classifier2

Classifier3

Classifier2

Classifier1

Classifier3

 

Figure 5.6 Base Metamodel Design Pattern and its Graph Representation 

 

When combining each domain model example, the type of each edge is classified based 

on the appearance of a vertex. For instance, vertex Step and Scope are classified as mandatory 

because they are used in every graph representation. However, vertex Adder and Gain are 

optional because they are not present in some domain model examples (e.g., Figure 5.4(a), (b), 

(c), and (d)).  

The result of the graph combination is shown in Figure 5.7. The merged graph is similar 

to the graph in Figure 5.5(c), but a link between vertex Step and vertex Scope is added in order to 

cover the process control model that has only Step and Scope, such as Figure 5.3(a). In addition, 

a dotted line is used between other vertices (e.g., Adder, Gain, and Transfer Fcn) to represent 

that State can be used optionally in process control models.  
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After all graph representations are combined into a single graph, the single graph 

representation also serves as input to the Metamodel Inference Engine to find the matched 

metamodel design patterns. Besides combining the graph representations, the Metamodel 

Inference Engine determines the cardinality between vertices. The identified cardinality is 

maintained using a cardinality matrix, as shown in the bottom of Figure 5.7(c). 

 

 
(a) Combined Graph Representation 

Des 
Src 

Step Adder Gain Transfer Fcn Scope 

Step 0 1 0 0 1 
Adder 0 0 1 0 0 
Gain 0 0 0 1 0 

Transfer Fcn 0 1 0 1 2 
Scope 0 0 0 0 0 

(b) Adjacency Matrix 

Des 
Src 

Step Adder Gain Transfer Fcn Scope 

Step 0 0,1 0 0,1 1,2 
Adder 1,1 0 1,1 0 0 
Gain 0 1,1 0 1,1 0 

Transfer Fcn 0,1 0,1 0,1 0,1 1,2 
Scope 1,1 0 0 1,1 0 

(c) Cardinality Matrix 

Figure 5.7 Combined Graph Representation: Adjacency Matrix and Cardinality Matrix 
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Similar to the adjacency matrix, the left-most column represents the source vertices and 

the top row lists the destination vertices. Values in each cell describe the minimum and 

maximum appearance of the concrete syntax in the graph. The matrix is initially set to 0 for the 

minimum and maximum value of each cell. When the first model instance, Figure 5.3(a), is 

processed, both the minimum and maximum cardinality between Step and Scope is set to 1. 

When the second model instance is introduced, the cardinality between Step/Scope and Transfer 

Fcn is updated to (0,1). At this moment, the minimum cardinality between Step/Scope and 

Transfer Fcn remains 0 because Transfer Fcn does not appear in the first model instance. The 

matrix is finally completed by filling the cardinality between other vertices when the last model 

instance is processed. 

To infer a metamodel, a combined graph representation is tested over a set of graphs, 

which is instantiated from metamodel design patterns in order to check (sub) graph isomorphism. 

Thus, the algorithm needs to solve the one-to-many (sub)graph isomorphism problem: one 

combined graph representation and many graphs instantiated from the metamodel design patterns. 

To solve the issue, the algorithm extended and modified the algorithm proposed by Messmer and 

Bunke [Messmer and Bunke, 1999], whose algorithm tests one-to-many (sub)graph isomorphism 

in quadratic time. In order to test the (sub)graph isomorphism, the algorithm transforms a set of 

reference graphs into a decision tree and then tests the input graph over the decision tree. 

The Metamodel Inference algorithm consists of three parts: Instantiate_Tree(), 

CreateDecisionTree(), and main (see Figure 5.8, Figure 5.9, and Figure 5.10, respectively). 

Instantiate_Tree() generates a set of graphs from metamodel design patterns with size of m, 

where m is the size of the vertex of the combined graph representation. 
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Figure 5.8 Metamodel Inference Algorithm: Main Algorithm 

 

 

Let G be the combined graph representation, and 

      M be the adjacency matrix of G and represented as M = ( a1, a2, ..., am)  

           where m = |V|, size of vertex in the graph G,  

               and ai is the row-column element that is attached to  vertex i. 

 

Let GTD = (GTD1, GTD2, ..., GTDk) be a set of graph template  

      of metamodel design patterns, and k is the number of metamodel design patterns  

 

Measure size of vertex, m = |V|, of the combined graph 

  

Instantiate_Tree(GTD,  m ) 

 

Create the root vertex Root of the decision tree, GM if it does not yet exist. 

 

For i =1 to k  

    GM +=  CreateDecisionTree( Vertex Root, GTDi) 

Next for 

 

Let N = Root of GM 

For i=1 to m 

    Look up row-column elements that are attached to vertex N,  

          and find an entry aN such that aN = ak 

    if no matched element is found,  

        the graph G is not isomorphic with GM, and exit with failure 

    else N = NS and mark vertex N matched 

Next for 

 

Traverse GM to find the marked vertices and then transform the vertex with corresponding 
metamodel design pattern. 
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Figure 5.9 Metamodel Inference Algorithm: Instantiate Tree 

 

Figure 5.10 Metamodel Inference Algorithm: Merge Tree 

 

  

Instantiate_ Tree (GTD,  m ) 

    Instantiate GD = (GD1, GD2, ..., GDk) with size of m 

        from  graph templates of metamodel design patterns, GTD,  

        where GDi = (GDi1, GDi2,..., GDil ) is l different types of graph instances of 

                   ith metamodel design pattern with vertex size m    

CreateDecisionTree(Vertex Root, GDi) 

    Generate adjacency matrix of GDi,  

         MDi = (MDi1, MDi2,..., MDil,), where dimension of MDi is m,  
          and MDik = (aik1, aik2,..., aikm), where aikl is row-column elements  

                 that is attached to vertex l  

 

    Let  N = Root 

    For l = 1  to m 

        If there is successor vertex NS of N for which aikl = aNs, and N = NS 

            Do next 

        Else 

            Generate a new vertex NS for aikl and make NS a direct successor of N. 

             Set N =   NS 

        End if  

    Next for 
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As shown in Figure 5.6, each metamodel design pattern is used as a template to 

instantiate a set of graphs. CreateDecisionTree() merges graphs instantiated from 

Instantiate_Tree() in order to make a decision tree. When graphs instantiated from metamodel 

design patterns are passed into CreateDecisionTree(), a adjacency matrix is constructed and its 

row-column representation for every graph is passed into CreateDecisionTree(). 

Figure 5.11 shows how the metamodel inference algorithm creates a decision tree from a 

set of graphs, which are created from metamodel design patterns. 

 

  

(a) Graph and Adjacency  
Matrix 

(b) Row-Column 
Representation 

(c) Decision Tree 

Figure 5.11 An Example of Row-Column Representation and Decision Tree 

 

When a graph and its adjacency matrix are passed into the metamodel inference engine, 

the metamodel inference engine calculates the row-column representation of the graph from the 

adjacency matrix. The result of row-column representation is shown in Figure 5.11(b), which 

illustrates that the row-column representation has different dimensions depending on the vertex. 

After the adjacency matrix and row-column elements are identified, CreateDecisionTree() 

builds a new decision tree if it does not yet exist, or merges graphs into the existing decision tree. 
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When a graph shown in Figure 5.11(a) is passed into CreateDecisionTree(), the routine first 

creates three row-column representations (i.e., a1={0}, a2={1,0,0}, and a3={1,1,0,0,0}) and then 

creates a new decision tree from the small size of the row-column representation. Therefore, a 

branch is created for a1={0} from Root vertex and then another branch is created from a1 for 

a2={1,0,0}. Figure 5.11(c) shows the decision tree created using three row-column 

representations in Figure 5.11(b). While creating the tree, each branch, which connects from one 

vertex to another, is labeled with a row-column element. The row-column element associated to 

the branch is used to determine whether the algorithm needs to traverse vertices further down, or 

whether the input graph is isomorphic. 

When a tree is created from the first graph, the Metamodel Inference Engine checks 

whether the remaining graphs exist, and then expands the tree by processing the graphs if they 

exist. As shown in Figure 5.6, three graphs are instantiated from the Base Metamodel Design 

pattern so that the Metamodel Inference Engine has to process two remaining graphs. Figure 

5.12(c) shows the decision tree when the Metamodel Inference Engine processes the middle part 

of the graph in Figure 5.6(b).  

Similar to the first graph, the adjacency matrix of the second graph can also be described 

with a three row-column representation: a1={0}, a2={1,1,0}, and a3={0,1,0,0,0}. The first row-

column representation of Figure 5.12(a), a1={0}, is the same as the first row-column 

representation of Figure 5.11(a) - the row-column representation does not make any change to 

the decision tree. However, the second and third row-column representations create new 

branches, as shown in Figure 5.12(c). 
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(a) Graph and 

Adjacency Matrix 
(b) Row-Column 
Representation 

(c) Decision Tree 

Figure 5.12 Merged Decision Tree 

 

After the first row-column, a1={0}, is processed, CreateDecisionTree() creates another 

branch from the end of a1={0}, for the second row-column representation, a2={1,1,0}; and then, 

another branch is created from a2={1,1,0} for a3={0,1,0,0,0}. The complete decision tree for the 

graph representations of the Base Metamodel Design patterns shown in Figure 5.6 is the same as 

Figure 5.12(c) because the row-column representations of the first instance of the metamodel 

design patterns (i.e., a1={0}, a2={1,0,0}) do not affect the decision tree. 

After the decision tree is created, the Metamodel Inference Engine traverses the decision 

tree with the row-column representations of the combined graph, which is shown in Figure 5.7, 

in order to find the matched vertex. The output of the Metamodel Inference Engine is shown in 

Figure 5.13. 
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Figure 5.13 Inferred Metamodel 
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CHAPTER 6  

MODEL SPACE EXPLORATION 

 

In Chapter 5, we introduced how Intermediate Design Space infers metamodel and static 

constraints from a set of domain model examples demonstrated by domain experts. However, the 

inferred metamodel and semantics may not completely reflect the notion of a domain because 

they are often inferred with a small set of domain model examples. As mentioned earlier, it is 

challenging to expect that domain experts demonstrate a large set of domain model examples for 

training the inference engine, even if there is tool support, because modeling every aspect of the 

domain requires much time and effort. In addition, the example staging process can also be 

mundane to domain users, especially, when it is performed just for the demonstration purposes. 

Thus, Model Space Exploration is introduced as means of verification of the output of the 

Intermediate Design Space. If the domain experts have modeling language development 

expertise (which would be uncommon), they can verify the correctness of the inferred 

metamodel and static constraints by reviewing the output of the Intermediate Design Space. 

However, as the approach assumes that domain experts have only knowledge of their domain, 

the MLCBD framework should provide a way to reason about the correctness of the inferred 

metamodel and static constraints.  

The notion of Model Space Exploration is borrowed from the area of Design Space 

Exploration (DSE), which was originally introduced for hardware/software co-design. The goal 

of DSE is to automate design (or find design alternatives) from a computational environment in 
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which hardware and software designers participate in design or modeling guided by a computer 

system to an extent both computationally possible and desired by the designer [Neema et al., 

2003; Saxena and Karsai, 2010; Woodbury et al., 2000]. 

In our approach, the notion of DSE is extended to verification of the modeling language. 

Model Space Exploration has been investigated as a way to verify metamodel and semantics 

inference by exploring model spaces where a set of model instances are generated from the 

output of the Intermediate Design Space. In addition, Model Space Exploration is applied to 

identify missing notions, which need to be demonstrated by domain experts for inferring more 

accurate metamodel and static constraints.  

The following sections will describe the process for usage and the algorithms of Model 

Space Exploration to verify the correctness and completeness of an inferred metamodel and its 

static constraints.  

 

6.1 Process of Model Space Exploration 

The overall process of Model Space Exploration in the context of MLCBD is shown in 

Figure 6.1. Model Space Exploration consists of two parts: Model Space Modeling and Model 

Space Clustering. The role of Model Space Modeling is generating model instances from the 

outputs of the Intermediate Design Space; these result in a metamodel, adjacency matrix, and 

cardinality matrix. The Model Generator creates all computationally possible model instances 

that represent the notion of the demonstrated domain, both positively and negatively, by 

combining the output of the Intermediate Design Space with the constraint patterns. 

The generated model instances are provided to domain experts in order to obtain 

feedback about which model instances correctly describe the notions of the domain and which do 
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not. Feedback is then associated to each model instance in the form of a label, and then model 

instances are classified and grouped by the Cluster. The Cluster classifies each model instance 

based on the label and the number of participating modeling elements. After the model instances 

are clustered, they are transformed into a graph representation and then passed back to the 

Intermediate Design Space to evolve the metamodel and semantics. A complete DSML is created 

by iterating over the phases of the Intermediate Design Space and Model Space Exploration. 

 

 

Figure 6.1 Process of Model Space Exploration 

 

In the following two sections, we will describe the details of the algorithm used in Model 

Space Exploration and investigate issues related to model instantiation. 

 

6.2 Model Instantiation and Clustering 

Model Space Exploration originated from the notion of design space exploration, with the 

goal of finding improvements of the inferred metamodel and static constraints by identifying 
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conflicts, which are recognized by domain experts who may respond differently to the expected 

classification of a generated model instance. According to Gries [Gries, 2004], “an exploration 

algorithm working on the problem space systematically chooses a system configuration, 

evaluates it, and decides whether this configuration is feasible or not.” Thus, having a well-

designed exploration algorithm is a key factor to determine the success of Model Space 

Exploration. Several exploration algorithms have been proposed to satisfy certain properties or 

criteria, which provide the required or alternative characteristics to find a design solution. 

Simulation-based [Halambi et al., 1999; Eker et al., 2003], equation-based [Blickle et al, 1998; 

Erbas et al., 2003], and model-based [Bondé et al., 2005; Kangas et al., 2006] are example 

contests for design space algorithms. 

In our approach, we use the graph representation as the basis for developing the 

exploration algorithm. Graph-based design space exploration is a commonly used approach in 

design space exploration [Blickle et al, 1998; Oliveira et al., 2010]. In the MLCBD framework, 

graph representation plays a vital role throughout the Intermediate Design Space. A set of 

domain model examples is transformed into a set of attributed graphs based on the annotation 

made by domain experts, and then the Metamodel Inference Engine uses the set of attributed 

graphs in order to infer the metamodel and static constraints. Thus, we adopted the notion of 

graph-based Model Space Exploration to reuse graph resources, which are created and 

maintained in the Intermediate Design Space. 

The design of Model Space Exploration follows the Y-chart philosophy [Kienhuis et al., 

1997] that is commonly applied in design space exploration (see Figure 6.2). As shown in Figure 

6.2, a set of model instances, an inferred metamodel, and constraints are the artifacts of Model 

Space Exploration. A set of model instances can be considered a set of alternative domain model 
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choices, which may or may not describe the notions of a domain. A metamodel and its 

constraints can be used to check conformance. The mapping stage checks whether a set of model 

instances conform to the inferred metamodel and its constraints. Each model instance is then 

labeled according to the checked result. Finally, model instances are reviewed by domain experts 

during the analysis of the exploration. 

 

 

Figure 6.2 The Y-Chart for Model Space Exploration 

 

To create model instances, a graph path finding algorithm is applied to the attributed 

graphs. The graph path finding algorithm is useful to traverse reachable states exhaustively and 

can check the syntax and constraints associated to the path. To find all paths between an arbitrary 

number of two vertices exhaustively, the algorithm was designed by combining breadth-first 

search and Dijkstra’s shortest path algorithm. The Model Space Exploration algorithm is 

presented in Figure 6.3, Figure 6.4, and Figure 6.5.  

The main algorithm shown in Figure 6.3 controls the whole process of Model Space 

Exploration. Prior to exploring the model space, the algorithm retrieves graph information from 

the Intermediate Model Space. The algorithm then checks the multiplicity from the cardinality 
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matrix. The multiplicity information is passed into the path search algorithm, which is shown in 

Figure 6.5, to determine whether the algorithm can revisit a vertex during path finding. After the 

algorithm gets information about the graph from the Intermediate Design Space, it explores the 

positive model and then switches focus to a negative model. For exploration of negative models 

in Model Space Exploration, the algorithm transposes the adjacency matrix of the initial graph. 

By transposing the adjacency matrix, dependencies between vertices are reversed. 

After all of the necessary information is prepared, a set of model instances is presented 

and annotated by domain experts. The procedure of annotation is described in Figure 6.4. A 

queue is created and initialized to store all distinctive paths between arbitrary vertices s and t (i.e., 

s-t paths). Then, the algorithm picks up an arbitrary two vertices from the graph and checks 

whether vertices in the graph are connected with weighted edges. To check whether the graph is 

weighted or not, function checkEdgeWeight() traverses the graph until it finds edges having 

different weight rather than arbitrarily selected vertices s and t. If the graph has non-weighted 

edges, the algorithm searches all paths s-t paths using modified breadth-first search (i.e., 

searchBFS()). Otherwise, paths are retrieved using a modified Dijkstra search algorithm (i.e., 

searchDijkstra() ). The modified BFS algorithm is shown in Figure 6.4. 

When a path between s and t is found, the path link is added to Paths. The path link is 

used to instantiate a model by referring back to the inferred metamodel’s concrete syntax and 

static semantics. 
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Figure 6.3 Main Algorithm of Model Space Exploration 

 

Figure 6.4 Algorithm for Model Space Exploration 

  

exploreModelSpace { 

    // Initialization 

    G = getGraph();  // Get graph information from the metamodel inference 

    bMulti = checkMultiplicity( G ); 

 

    // Model Space Exploration 

    exploreModelSpace( G, bMulti ); // Explore positive model space 

    GR = reverseGraph( G ); // Reverse graph in order 

    exploreModelSpace( GR, bMulti ); // Explore negative 

} 

exploreModelSpace( graph G, Boolean bMulti ) { 

    Paths = {};   // Create a queue for managing paths between arbitrary two vertices  

    for each (u in V of G) { 

        for each (v in V of G ) { 

            do { 

                checkEdgeWeight() ? searchBFS( G,src, dst, Paths, bMulti ) :  

                                                          searchDijkstra( G,src, dst, Paths, bMulti ); 

                instantiateModels( Paths ); 

                showModel( Paths ); 

            } while( Paths is not null ); 

        } 

    } 

} 
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Figure 6.5 Graph Search: Breadth First Search with Backtracking 

  

searchBFS ( graph G, vertex src, vertex dst, queue Paths, boolean bMulti) { 

    for each (u in V) { // initialization 

        mark[u] = Unvisited 

        d[u] = infinity   // Initialize distance vector from src to u 

        pred[u] = null // Initialize the predecessor vector, which determines the shortest path 

    } 

    mark[src] = Visited // Set source vertex src as discovered 

    d[src] = 0 

    Q = {src} // put src in the queue 

    while( Q != Empty ) { 

        u = dequeue from Q // get next vertex from queue 

        for each (v in Adj[u]) { // get adjacent vertex from adjacent matrix 

             if (  v == dst )  {// v is the destination vertex  

                if( G[u][v]!=0 ) { 

                     pred[v] = u // ...and its parent 

                     mark[v] = Visited // 

                    if pred not in Paths then add pred to Paths // Add path from src to dst to Paths 

                 } 

                 break;  

            } 

            else if(bMulti==true && (v==src || mark[v]==Visited) ) // Continue if a vertex is  

                continue;                                                                       // source or visited. 

            else { 

                if ( mark[v] == Unvisited && G[s][v) ) { // Check v is visited vertex 

                    mark[v] = Visited // ...mark v visited 

                    d[v] = d[u]+1 // ...set its distance from u 

                    pred[v] = u // ...and its parent 

                    append v to the tail of Q // ...put it in the queue 

                } 

            } 

        } 

    } 

} 
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For example, the combined graph representation shown in Figure 5.7(a) is simplified in 

Figure 6.6 for computational convenience. If the search algorithm searches paths between Step 

and Scope, which is numbered 0 and 4, respectively, Paths will contains path information as a 

sequence of vertices like { {0,4}, {0,3,4}, {0,1,2,3,4}}. {0,4} represents a direct link from Step 

to Scope, and {0,1,2,3,4} represents a series of sequential connection from Step, Adder, Gain, 

Transfer Fcn to Scope. 

 

0 4321
Step Adder Gain Transfer Fcn Scope

 

Figure 6.6 Numbered Graph Representation 

 

After all possible paths between an arbitrary two vertices are found and stored in Paths, a 

set of model instances are created based on the path sequences in Paths. While a set of model 

instances is being created by function instantiateModels(), each model instance is annotated to 

indicate whether it conforms to the inferred metamodel and static constraints. As mentioned in 

Chapter 1, DSMLs should be designed to satisfy the layered modeling architecture, which 

implies that a model in the top-most layer can conform to itself, and the rest of the models in 

each layer should be designed to conform to models defined in the layer above. Thus, each 

model instance created by a path link should be checked for conformance to the inferred 

metamodel and semantics. The set of model instances are provided and reviewed by domain 

experts to determine whether the models correctly describe the notion of the domain.  
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Table 6.1 shows some examples of model instances created by the algorithm described 

above. 

 

Table 6.1 Samples of Model Instances  

 Model Instance Created From Expected Answered

(a) 
 

Positive 
Graph 

True False 

(b) 

 

Positive 
Graph 

True False 

(c) 
Positive 
Graph 

True False 

(d) 
 

Positive 
Graph 

True False 

(e) 
Positive 
Graph 

True True 

(f) 

 

Negative 
Graph 

False True 

 

The first five models are created based on a positive graph. The positive graph is created 

by combining a set of graph representation from domain model examples that were used to infer 

a metamodel. The combined graph of a process control DSML is shown in Table 6.1(a). The 

bottom model is generated from the negative graph, which is created by transposing or reversing 

the adjacency matrix of the combined graph representation. 
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Thus, a set of model instances generated from the positive graph will conform to the 

inferred metamodel and semantics. The expected responses from the domain experts regarding 

the presented model instances are initially set to True during the conformance check in function 

instantiateModels() (i.e., all model instances describe the notions of domain correctly). However, 

models instantiated from the negative graph will be assigned to False. In the example scenario 

shown in Table 6.1, a domain expert answered False to all models except the model in Table 

6.1(e); the domain expert also indicated True to the model instantiated from the negative graph. 

Theoretically, the first four model instances should be labeled True because they are generated 

from the positive graph and conform to their metamodel and static constraints. But, those models 

are labeled False, which is different from expectation. This may imply that models conform to 

the inferred metamodel and static constraints, but do not conform to the notions of the process 

control domain. 

The semantics of Adder generates a new signal for the next process element after adding 

two input signals, and Gain increases the power or amplitude of a signal from the input to the 

output. Thus, Adder and Gain should be connected with appropriate input and output to satisfy 

their semantics. However, Adders shown in Table 6.1(a), (b), and (c) have only one input or no 

input signals. In addition, Adders and Gains shown in Table 6.1(a), (b), and (c) are not connected 

to appropriate output. A process model shown in Table 6.1(d) is False because Scope is not able 

to show any signals because no input signals are provided to Gain and Transfer Fcn. Although 

these models are correct syntactically and semantically in terms of the inferred modeling 

language, they are incorrect in terms of notions of the domain. Thus, they are discarded while 

informing the Model Space Modeling module not to generate them in future Model Space 

Exploration sessions.  
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On the contrary, a model shown in Table 6.1(f) is labeled true even though the model is 

generated from the negative graph. In addition, the model does not conform to the inferred 

metamodel and static constraints. However, the model satisfies semantics of the process control 

domain. Gain has an input signal to amplify and is connected to its output (Scope) which 

displays the output signal of Gain. Thus, the model clearly describes the notions of the process 

control such that a signal is amplified and then displayed. However, the model was not 

demonstrated originally by the domain expert because such a wide variety of possible domain 

models makes it challenging to demonstrate every detail of the domain notions. 

After a set of model instances are explored by a domain expert, the models are clustered 

based on the expectation and domain expert responses in order to improve the previously 

inferred metamodel and semantics. To cluster the set of model instances, the cluster algorithm 

finds models that generated different feedback from the expected expert response. For example, 

model instances in Table 6.1(a), (b), (c), (d), and (f) are initially selected for improving the 

previously inferred metamodel and static constraints. Based on the selection, each model is 

examined whether in can be used for improvement or ignored. Model instances in Table 6.1(a), 

(b), (c), and (d) are classified to be ignored because those models are syntactically correct, but 

semantically incorrect. However, the model instance shown in Table 6.1(f) is labeled to be 

updated for improving the previously inferred metamodel and static constraints. 

 

6.3 Consideration of the Number of Models for Model Space Exploration 

Graph traversal plays a key role in instantiating models for the Model Space Exploration. 

Each vertex represents a modeling element, and edges between arbitrary two vertices represent 

the relationship between the two vertices (or the relationships between two modeling elements). 
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Thus, vertices and edges in paths between arbitrary two vertices (i.e., s-t paths) can be subsets of 

the domain models. In addition, the number of paths and the number of vertices contained in a 

path affect the quality and effort needed during Model Space Exploration. For instance, if the 

Model Space Exploration algorithm finds too many short paths, domain experts may need to 

spend much time and effort to review and annotate semantically incorrect model instances. Thus, 

estimating the number of paths between s-t paths is an important consideration for the Model 

Space Exploration. 

Counting the number of paths between s-t paths in a graph is simple if the graph has few 

vertices. If the graph is a directed graph, the number of paths between s-t paths can be counted 

easily even if done manually. However, counting the number of paths between s-t paths becomes 

complicated and error-prone if a graph has a large number of vertices. Thus, counting the 

number of paths between s-t paths is considered a #P-complete problems such that “the detection 

of the existence of a solution is easy, yet no computationally efficient method is known for 

counting their numbers” [Valiant, 1979]. 

Prior to investigating the number of possible model instances for Model Space 

Exploration, we first investigate the number of diagramming elements in several well-known 

software analysis and design modeling paradigms (e.g., UML, SysML, Structural Analysis and 

Design, and Petri Nets) in order to estimate the number of model instances to be explored. As 

shown in Table 6.2, most diagrams have less than 10 elements to model most notions. 

Simple diagrams (e.g., Use Case, Petri Nets, and Context diagram) offer less than 5 

elements. For instance, a Use Case diagram can model a requirement with only 3 elements: 

actors, Use Cases, and relationships. A flowchart is the diagram that has the largest number of 

diagramming elements and offers more than 20 distinctive elements. 
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Table 6.2 The Number of Diagramming Elements in Major Diagrams 

The number of 
diagramming 

elements 

Diagram 

Directed Undirected 

Less than 4 Petri Net, Context Diagram Use Case Diagram 

Between 5 and 10 
Statechart Diagram, Activity 
Diagram, Package Diagram, 
Entity-Relationship Diagram  

Class Diagram, Component 
Diagram, Deployment Diagram 

More than 10 
Data Flow Diagram, Flowchart, 
Specification Description 
Language (SDL) 

Unknown 

 

In addition, as shown in Table 6.2, most diagrams are classified as “directed,” which 

means that the modeling elements are connected with other modeling elements using a directed 

relationship. For example, Petri Nets use a directed relationship to represent the direction of 

transitions. Modeling elements in a Use Case Diagram and Class Diagram can be connected with 

the directed relationship. But, in most cases, the directed relationship is ignored and used to 

specifically indicate the direction of controls or messages flow. Thus, we classify Use Case and 

Class diagrams as undirected. 

The relationship between the number of paths and modeling elements are shown in 

Figure 6.7. To compute the number of paths between s-t paths, graphs are designed to have a 

different number of vertices and graph density. The number of paths in Figure 6.7(a) is computed 

when a graph density is 0.85, and the graph in Figure 6.7(b) is 0.15. 

A graph density describes the general level of connectedness, and a graph is complete if 

all vertices are adjacent to each other. In general, the more vertices that are adjacent, the greater 
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the graph density. The graph density can be calculated using the following equations, where 

equation (a) is used for calculating the graph density of the undirected graph, and equation (b) is 

for the directed graph. Generally, directed graphs are less dense than undirected graphs because 

directed graphs do not form loops. 

 

∆ൌ
2|E|

ሺ|V| ∗ ሺ|V| െ 1ሻሻ
 

,where V and E are vertices and edges in 
graph G=(V,E) 

(a) 

∆ൌ
2|E|

ሺ|V| ∗ ሺ|V| െ 1ሻሻ
 (b) 

 

As shown in Figure 6.7, the number of paths between s-t paths is dramatically different 

according to the graph density. The higher the graph density, the higher number of paths that can 

be found between s-t paths. If a graph has more than 10 vertices, the number of paths between s-t 

paths is increased at least three times compared to a graph that has less than 10 vertices. 

Considering the task of Model Space Exploration, from Figure 6.7(b), we can estimate 

that the positive model instances will be between 20 and 60. The reason is that, as shown in 

Table 6.2, most diagrams have less than 10 modeling elements, and modeling elements are 

linked with the directed relationships. This means that models created using those diagramming 

elements would have from a low to medium level of graph density. For instance, we could have 

14 positive model instances and 41 negative modeling instances from network diagramming, 

which is described in the next chapter. The graph density of the process model is 0.35 and 0.7 for 

the positive graph and negative graph, respectively. 
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(a) Graph Density = 0.85 
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(b) Graph Density = 0.15 

Figure 6.7 The Number of Model Instances vs. Modeling Elements 

 

Based on the observation, we suggest that the Model Space Exploration algorithm 

instantiates a reasonable number of model instances to interact with domain experts if a DSML 

consists of less than 8 modeling elements. For DSMLs with a larger number of modeling 
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elements, a possible solution to reduce the burden of responding to the number of generated 

examples would be to break the exploration process into different stages, rather than providing 

all of the sample instances at once. 

 

6.4 Related Work 

Model Space Exploration aims to improve previously inferred metamodel and static 

constraints by reasoning about the domain through a set of model instances. The notion of Model 

Space Exploration originated from design space exploration, which is used to choose an 

optimized solution from a set of alternative design choices. 

The DESERT tool suite [Neema et al., 2003] is a domain-independent tool chain for 

defining design spaces and executing constraint-based design space exploration. To model a 

design space, DESERT introduced the concept of an An AND-OR-LEAF tree and supports a 

subset of the Object Constraint Language (OCL). AND-OR-LEAF tree captures the relationships 

between design space properties and represented them hierarchically, and a subset of OCL 

allows users to specify system requirements (e.g., compatibility constraints and performance 

constraints) as constraints. In addition, Ordered Binary Decision Diagrams (OBDDs) are used to 

model and prune the design space based on the constraints. By employing OBDDs, which can 

search all design spaces exhaustively and prune irrelevant designs, DESERT can create a small 

and complete design space that satisfies all design constraints. In addition, because DESERT is a 

domain-independent tool, it can be applied to a variety of exploration problems with a single 

encoding mechanism at the architecture level. 

Schätz et al. [Schätz et al., 2010] proposed an interactive, incremental process using a 

model transformation technique for deriving possible design alternatives. In their approach, 
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various solutions to the design problem are offered iteratively to engineers to make design 

decisions, and the partial solutions generated by each iteration can be combined incrementally to 

make a complete solution. Model transformation is used to instantiate concrete models (e.g., 

description of the technical architecture) automatically from the abstract models (e.g., description 

of components, subsystems, and architecture) by applying relational and declarative rules. Thus, 

different design options can be created through the model transformation. 

The DaRT (Data Parallelism to Real Time) approach [Bondé et al., 2005] applied a 

Model-Driven Architecture. DaRT needs to define metamodels to specify application, 

architecture, and software/hardware association. DaRT adopted a model transformation 

technique to create an optimized association model from metamodels. By adopting MDA, the 

approach is able to reuse models and unifies the definition of the transformation rules.  

 

6.5 Summary 

The notion of Model Space Exploration is borrowed from the ideas of design space 

exploration, which is widely used to automate the search for design alternatives. In our approach, 

Model Space Exploration is applied to verify the correctness of an inferred metamodel and its 

static constraints. The verification is based on a confirmation step that involved a domain expert 

answering questions about a set of generated model instances. If the generated domain models 

are annotated differently from the expected result, the models are presented to domain experts 

again to resolve the conflict. The results of the Model Space Exploration are fed back to the 

Intermediate Design Space to complement the previously inferred metamodel and static 

constraints. 
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CHAPTER 7  

CASE STUDIES APPLYING MLCBD 

 

In previous chapters, we described our approach to create a DSML using a By-

demonstration approach. The approach utilizes several techniques such as by-demonstration, 

grammar inference, and Model Space Exploration. In this chapter, we apply the MLCBD 

framework for developing a finite state machine (FSM) and a network modeling language. In 

addition, the two DSMLs are also developed with two other DSML development environments 

(e.g., Graphical Modeling Framework (GMF) and Generic Modeling Environment (GME)) for 

comparison purposes. 

The rest of this chapter is divided into three sections: Section 6.1 describes the 

development of a language to represent a FSM, Section 6.2 describes the development of a 

network modeling language, and Section 6.3 concludes with an evaluation and summary 

discussion.  

 

7.1 Development of a Finite State Machine Modeling Tool 

A Finite State Machine (FSM) is a primitigve, but useful computation machine. Some 

exemplary application areas of FSM are pattern matching, sequential logic circuits modeling, and 

natural language processing [Hopcroft et al., 2006]. 

An FSM can be formally defined as a 5-tuple (Q,∑,δ,i,F), where Q is a finite set of states, 

∑ is a finite alphabet, i is the initial state (∈i Q), F is the set of final states (F   Q), and δ is the 
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transition function mapping Q × ∑ to Q, which implies δ(q,a) is a state for each state q and input 

a that is accepted when in state q. 

A simple FSM is shown in Figure 7.1. This FSM is designed to check whether input 

values are multiples of three. 

 

 

Figure 7.1 An Example of FSM 

 

For instance, if the input value is 3, which is represented 11 in binary, the FSM begins 

from state S0 and moves to the next state S1 by first binary input 1, which corresponds to 

transition 1 from S0 to S1. Finally, the FSM moves back to state S0 by the second value, which is 

also 1. 

In this section, we describe how to develop the simple FSM, illustrated in Figure 7.1, 

with two approaches: MLCBD and the Graphical Modeling Framework (GMF). 

 

7.1.1 FSM Requirements Modeling with Syntax Map 

In this section, we describe the requirements of the FSM using a Syntax Map. To 

describe the requirements of the FSM, domain experts first create the skeleton scenarios by 

placing classifiers and relationships between the Syntax Map symbol Start and End according to 

their usage scenarios. For instance, if the current state is S0 and a transition is triggered, the next 
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state is determined by the transition condition. Thus, the destination state can be either State S0 or 

State S1.  

A Syntax Map of the simple FSM is shown in Figure 7.2. 

 

 

Figure 7.2 Syntax Map for FSM 

 

As shown in Figure 7.2, State is assigned to classifier having an attribute, Name, with 

type String to denote instance name. If multiple classifiers (or relationships) appear in a Syntax 

Map, the attributes are automatically associated when attributes are tagged by the domain expert. 

For example, two States appear in Figure 7.2. Attributes are only associated to State, located in 

the left-most side, but not associated to State at the right-most end. This implies the same 

attributes are also associated to State at the right-most side if other attributes are not associated to 

it. 
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7.1.2 FSM Development with GMF 

Several metamodeling tools are available to assist in developing graphical editors for a 

DSML. However, creating a new graphical editor for a DSML can be slow and painful because 

software engineers need to understand the intricacies of the metamodeling tool. This subsection 

uses an Eclipse-based metamodeling environment to place into context the details needed to 

create a DSML using metamodeling tools. 

The Eclipse Modeling Framework (EMF) and the Graphical Editing Framework (GEF) 

are well-known Eclipse frameworks for creating DSMLs. The EMF is “a modeling framework 

that exploits the facilities provided by Eclipse and enables software engineers to rapidly build 

robust tools and other applications based on a structured data model” [Steinberg et al., 2008]. 

EMF offers several features such as metamodeling, template-based Java code generation, and 

XMI serialization and deserialization. The GEF was developed to “support the creation of rich 

graphical editors and views for Eclipse-based tools and Rich Client Platform (RCP) applications” 

[Rubel et al., 2011]. GEF consists of three components: Draw2D, Zest, and GEF. Draw2d is a 

standard 2D drawing framework that supports a lightweight drawing. Zest is built on top of 

Draw2D and provides interfaces to bind Java models. GEF provides APIs for enabling 

interactive diagrams. Combining EMF and GEF, software engineers can develop any kind of 

applications that require a graphical editing environment. Modeling applications (e.g., business 

process modeling and UI design) are well-known domains that use EMF and GEF. However, 

because EMF and GEF have been developed and evolved for different purposes, several 

technical challenges (e.g., different command stack) may make it difficult for some developers to 
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create graphical editors using these two technologies. To address the technical challenges 

integrating EMF model within the GEF framework, GMF was introduced. 

The GMF provides a generative component and runtime infrastructure for developing 

graphical editors based on the EMF and GEF. The GMF offers editors to model the notation and 

semantics of a graphical editor, as well as a generator to produce the source code of a graphical 

editor. In addition, GMF provides a run-time component that provides a consistent look and feel, 

and allows extending its features by third parties. 

As shown in Figure 7.3, to develop an application using GMF, software engineers have to 

define four different models (e.g., domain model, graphical definition model, tooling definition 

model, mapping model). 

 

 

Figure 7.3 GMF Tooling Workflow 

 

The domain model is the basis of all artifacts and defines the abstract syntax of an 

application. The graphical definition model defines symbols (e.g., figures, nodes) that will be 

displayed on the diagram. The tooling definition model specifies graphical elements such as 
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palette, creation tools, and actions. The mapping model specifies how to bind the three models to 

form a language environment (i.e., it binds the domain model, graphical definition model, and 

tooling model). 

After all models are defined, a generation model is created by combining the four models 

to generate some external artifact from the model (e.g., source code or some other artifact). 

Finally, an application is obtained by compiling and linking Java code, which is generated from 

the generation model. 

As a first step of FSM development for this first case study, the FSM domain model is 

defined as shown in Figure 7.4. The domain model can be defined in several ways: ECore, 

annotations on a Java interface, UML models, or XML schema. The model presented in Figure 

7.4 is defined using Ecore, which is a metalanguage developed based on the OMG’s MOF. 

 

 

Figure 7.4 Ecore model for FSM [Kermeta] 
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Class FSM is the representative entity that manages all notions in the FSM domain. 

Classes State and Transition are defined to describe the notion of State and Transition in the 

FSM, respectively. In addition, other properties (e.g., cardinality and roles) are associated to the 

relationship that links between State and Transition. 

The graphical definition specifies how model elements in the domain model are mapped 

to graphical elements. As shown in Figure 7.5, all domain model elements and possible graphical 

representations are listed in a graphical definition dialog, and the mapping between them is 

specified by selecting a checkbox. At this dialog, domain model elements can be mapped only to 

fixed graphical notations; e.g., rectangle, line, or text (from left to right in callout). In this 

example, Class State is mapped to rectangle, and its attribute name is linked with text. Similarly, 

class Transition is mapped to line. 

 

 

Figure 7.5 Specifying a Graphical Definition in GMF 
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After the graphical definition model is created, the graphical representation of each 

domain model element can be further refined with more appropriate graphical representations in 

order to provide better cognitive effectiveness as link to domain notation. Figure 7.6 shows the 

graphical definition model for FSM. 

 

 

(a) Graphical Definition (b) Predefined Properties 
Figure 7.6 Refine Graphical Definition 

 

To refine the graphical representation, the graphical definition model offers predefined 

shapes (e.g., rounded rectangle, ellipses, and polygon). An SVG (Scalable Vector Graphics) 

figure also can be used, which is designed with an XML-based scalable vector image that can 

support interactivity and animation (see Figure 7.6(b)). In order to refine the graphical 

representation, an existing definition should be removed and then replaced with a new definition. 

In addition, all the related properties should be specified in accordance with the new graphical 

definition. 



 

 

122 

Figure 7.7 illustrates the tooling definition model. This model defines the mapping rule 

between model elements in the domain model and graphic representations for the palette. 

 

 

Figure 7.7 Tooling Definition Model 

 

Finally, the mapping model combines all three pieces of model information in order to 

create a generation model, which contains control parameters for code generation. The mapping 

and generation model are presented in Figure 7.8(a) and (b), respectively. 

Based on the generation model, Java code is generated automatically by a model 

transformation, which reads the generation model and then produces three plug-in source codes: 

domain model, diagram editor, and domain editor. The domain model, diagram editor, and 

domain editor correspond to the Model, View, and Controller (MVC) architecture, respectively. 

Figure 7.9 shows the FSM modeling tool, which is built using the generated source code from 

the various language models described in this section. 
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(a) Mapping Model (b) Generation Model 

Figure 7.8 Mapping Model and Generation Model 

 

 

Figure 7.9 FSM Tool Created using GMF 

 

GMF offers more advanced technologies and convenient methods for building graphical 

editors by combining EMF and GEF. Thus, software engineers can build graphical editors semi-

automatically by just defining a few language definition models and mapping them properly. In 

addition, the GMF user interface offers a consistent look and feel, which may help software 

engineers maintain their focus of interest when specifying domain instance models.  
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7.1.3 FSM Development with MLCBD 

In this section, we describe how to develop the FSM modeling tool with MLCBD. To 

build a DSML, MLCBD follows three steps: Recording, Creating, and Exploring Model Space. 

The recording step begins by clicking a button placed at the far left of the toolbar (see Figure 

7.10 (a)). When the button is clicked, a new page is created and two stencils, Basic Shapes and 

Default, are loaded into Visio. 

 

(a) Start Recording Step (b) Identified Concrete Syntax 

Figure 7.10 Creating FSM By-Demonstration 

 

When a domain expert demonstrates a FSM model in an MS Visio Page (see Figure 

7.10(b)) by dragging from the stencil Basic Shapes to the editor canvas, each user action is 

captured by a background process in order to identify the unique symbols as candidate concrete 

syntax elements. The unique symbols are copied to stencil Default, which functions as a concrete 
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syntax repository. As shown in Figure 7.10(b), only one circle and one line are placed in the 

stencil Default, even though three circles and five lines are used to demonstrate a FSM model. 

After completing the FSM model demonstration, a domain expert annotates symbols to 

add information that guides the metamodel and static constraints inference. Figure 7.11 

represents screenshots of the annotation. The annotation is performed on the demonstrated model 

instead of master symbols in stencil Default. As shown in Figure 7.11(a), if a symbol is mapped 

to a classifier, a domain expert can only add attributes. A domain expert does not need to 

annotate every symbol. If a symbol is annotated, MLCBD automatically annotates the 

information to the same type of symbols and corresponding master in stencil Default. 

 

 
(a) Annotating Classifier (b) Annotating Relationship 

Figure 7.11 Annotating Concrete Syntax in MLCBD 

 

For example, if the left-most circle is annotated as depicted in Figure 7.11(a), the rest of 

the two circles and a circle in stencil Default will be attached to the same annotation information 
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as the left-most circle. If a symbol is a relationship, two additional properties (i.e., Directional 

and Relationship Type) need to be specified along with attributes. 

Finally, the MLCBD framework creates the FSM modeling language while inferring 

static constraints. As illustrated in Figure 7.12, two types of static constraints (e.g., link 

boundness and structural constraints) can be inferred while a domain expert demonstrates the 

FSM concepts. In addition, the “Not allowed to use shapes in other master” option is provided to 

prevent the domain expert from using shapes in another stencil when the FSM modeling tool is 

created. This is needed because MLCBD is developed over MS Visio, and MS Visio handles a 

DSML as just a stencil without any underlying knowledge. MLCBD provides the constraints as 

underlying Visual Basic scripts to enforce the static semantics. 

 

 

Figure 7.12 Creating FSM while Inferring Static Constraints 



 

 

127 

 

 

7.1.4 Comparison FSM Development: MLCBD vs. GMF 

FSM is a useful example for comparison between approaches because it is simple and 

intuitive. Thus, FSM was chosen in this section to assist with the comparison between MLCBD 

and more traditional approaches, such as GMF. There are four criteria in which the advantages 

and disadvantages of the two approaches can be compared: 

 

 Complexity of development: The learning curve is an important factor to 

determine whether to adopt a new technology. Although GMF simplifies 

graphical editor development by combining EMF and GEF, software engineers 

need to invest some time and effort to learn how to create and define a new 

DSML (e.g., domain model, graphical definition model, tooling definition model, 

and mapping model). For example, software engineers have to possess knowledge 

about metamodeling for domain model definition and also understand how 

models are related to each other by specifying the mapping between them. Thus, 

developing a DSML with GMF requires software engineers to invest some time 

and effort to learn the GMF tooling mechanism. If domain experts who have 

domain knowledge (but do not have knowledge about this kind of tool 

development environment) try to develop their own DSML with GMF, they will 

likely need to spend more time and effort than software engineers who are experts 

in software development, but do not have domain knowledge. For many domain 

experts, the likelihood of actually using a framework like GMF is not possible. 
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On the other hand, MLCBD does not require the same amount of effort and time 

as GMF in order to develop a new language. With MLCBD, a DSML can be built 

by demonstrating the notions of the domain on the modeling canvas. The 

MLCBD framework does not require language development expertise. Domain 

experts need only domain knowledge and a basic understanding of Visio in order 

to develop their own DSML with MLCBD. 

 Completeness of graphical representation: Both tools support a set of predefined 

symbols to represent notions of a domain. In addition, both tools also support the 

use of image files for graphical completeness. However, as shown in Figure 7.5 

and Figure 7.6, GMF uses a menu-driven approach in order to replace a graphical 

definition. For example, to change a graphical definition from a regular rectangle 

to a rounded rectangle, a language designer must delete the existing graphical 

definition for a rectangle and then instantiate the context menu to add the new 

graphical definition. The context menu needs to be instantiated whenever the 

language designer wants to add additional attributes or styles to the newly added 

graphic definition. 

On the contrary, MLCBD, which supports WYSIWYG (What You See Is What 

You Get), it is possible to drag and drop new shapes after deleting existing shapes. 

Thus, a domain expert can change the graphic definition more intuitively than 

with GMF.  

 Analysis and Debug Capability: GMF offers a validation feature to check whether 

a model is correctly specified. If there is an error in any model, the graphical 

editor cannot be generated. Although GMF can locate where the error occurred, 
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the changes cannot be propagated to other related models. Thus, a language 

designer needs to traverse every model to reflect the changes.  

 Language Evolution: When the domain model is changed or evolved, GMF must 

change every related model to support backward compatibility. In addition, all 

source codes should be recompiled to build a new version that contains the 

changes. GMF does not support backward compatibility. In MLCBD, the domain 

expert only needs to reload the language definition and re-demonstrate the 

evolved changes to the DSML. 
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7.2 Development of Network Diagramming Tool 

Computer networks have become an important part of daily life by allowing many 

different types of users to share resources and information. In order to provide more convenient 

services, a computer network consists of various types of hardware components, which are 

interconnected by communication channels. Routers, switches, gateways, (cable) modem, servers 

(e.g., DHCP, DNS, file, mail, and etc), and computers (e.g., desktops, laptops, and tablets) are 

examples of components that make up a computer network. 

A network diagram depicts how hardware components are interconnected with the 

communication channels. A network diagram is useful to describe the placement of the 

network’s various components and data flows within a network. 

This section describes the development of a simple network diagramming tool as a case 

study of MLCBD. For comparison purposes, a simple network diagramming tool is also 

developed with the Generic Modeling Environment (GME), a traditional metamodeling tool. 

 

7.2.1 Network Diagramming Tool Requirements Modeling with Syntax Map 

Requirements of the network diagramming tool are illustrated in Figure 7.13 using a 

Syntax Map. For modeling a network, nine elements (e.g., Server Farm, Media Server, Router, 

Network, Group, Cable Modem, Laptop, Desktop, and Tablet) are connected to each other with a 

link. In this case study, a Server Farm and a Media Server are only connected with a Router to 

provide services. Because a link is an association relationship that is undirected, the reverse 

connection (e.g. from Router to Server Farm) is also allowed. 
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Figure 7.13 Syntax Map for Network Digramming 

 

A Network is connected with a Router by a link, but it cannot be linked to Server Farm 

and Media Server directly. A Network is also connected to Group, which can define a sub-

network domain. Group can have different network components. To specify the network 

elements to be contained in a Group, constraints are associated to the Group. The constraints are 

expressed using natural language, but must be formalized to have an operational effect in a 

modeling tool. In Figure 7.13, constraints specify Laptop, Desktop, Tablet, and Cable Modem as 

contained parts of Group. In the sub-network domain, the Laptop, Desktop, and Tablet are linked 
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to a Cable Modem to communicate with each other. As mentioned in the constraints, the string 

type attribute Name is omitted in Laptop, Desktop, Tablet, and Cable Modem for simplicity. 

Figure 7.14 depicts the sample network models that conform to the requirements described using 

the Syntax Map from Figure 7.13. 

 

 

a) Top Layer (b) Sub-Network Layer 

Figure 7.14 Sample Network Digramming Model 

 

7.2.2 Development of Network Modeling Tool using GME 

The GME is “a domain-specific, model-integrated, configurable program synthesis tool 

for creating and evolving domain-specific, multi-aspect models of large-scale engineering 

systems” [GME, 2012; Lédeczi et al., 2001]. GME provides various features to build DSMLs. 

Metamodeling, hierarchy, multiple aspects, sets, references, and explicit constraints are examples 

of the capabilities that GME offers for language definition. A metamodel plays a key role in 

GME and contains all of the syntactic, static semantics, and presentation information about the 

domain. Hierarchy is introduced to model the containment between modeling elements, and 

multiple aspects enable multiple views of the models. Sets are used for metamodeling to show a 
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set of metamodel elements that are related to a particular object. References enable reuse of 

existing metamodeling elements. Constraints check and/or specify context types and multiplicity 

using OCL.  

To develop a DSML with GME, the language designer must have expertise about the 

core GME modeling concepts, such as root folder, atom, model, and aspect. The root folder is 

located at the very top of the project hierarchy, and each modeling project should have at least 

one root model. Atom is a basic GME entity and has no internal structure except attributes. 

Model is very similar to atoms, but can contain atoms, other models, and other types of objects. 

An Aspect is not a modeling element, but is used to provide different views of model structures. 

The GME user interface consists of several features, as shown in Figure 7.15. 

 

 

Figure 7.15 User Interface of GME  
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The Part Browser is a repository that contains all the parts that are required for 

metamodeling. The Part Browser consists of five different tabs (e.g., Class Diagram, 

Visualization, Constraints, Attributes, and All) and each tab has a different set of parts to support 

different modeling notions. For example, the Visualization tab has Aspect and AspectProxy, and 

SameAspect, which can manage various modeling aspects. The Model Browser consists of three 

tables: Meta, Aggregate, and Inheritance. The Meta tab lists all metamodeling elements used in 

the Model Edit Window, and the Aggregate tab shows the project management information 

hierarchy using tree-based containment. The Inheritance tab informs the type inheritance of a 

model. The attribute browser lists all attributes and preferences of an object. The Console area 

displays error information during model interpretation (i.e., transformation of the model to some 

other form, such as source code). 

The metamodel for the network diagramming tool is shown in Figure 7. 16. 

 

 

Figure 7.16 Metamodel for Network Diagramming 
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The metamodel includes two models, eight atoms, two connections, two aspects, and 

seven connectors. Model NetworkDiagram is defined as the root folder, and all metamodel 

elements except atoms, which are used in the sub-network layer, are linked to model 

NetworkDiagram with an aggregation relationship. Another model, called Group, is a container 

and manages the network elements in the sub-network domain. Atoms are used to define eight 

network hardware elements (e.g., Network, Router, Media Server, Server Farm, Desktop, Tablet, 

Laptop, and Cable Model). Connection Link links hardware elements in the top layer, and 

connection GroupConn is for connecting hardware elements in model Group. Seven connectors 

are defined to specify how atoms (or models) are linked each other and which connections are 

associated to the link. For example, atom ServerFarm is the source of a link and linked to atom 

Router through connection Link. 

In addition, the metamodel has two aspects: TopConnectivity and SubConnectivity. As 

mentioned previously, an aspect is used to provide different structural views of a metamodel. In 

Figure 7.17(a), when aspect TopConnectivity is selected, a language designer can see metamodel 

elements only for the top layer (e.g., Router, Network, Server Farm, Media Farm, Group, and 

Link). Metamodel elements that are not related to the top layer are grayed. On the other hand, 

aspect SubConnectivity is selected, shown in Figure 7.17(b), a language designer can see all 

metamodel elements for the sub-network domain.  

To define concrete syntax, a language designer must specify a value of the attribute Icon. 

The attribute Icon only accepts a string representing a file name to a graphics file. As shown in 

Figure 7.18, the Option box is opened to specify the icon path, and then the icon name and 

displayed name are specified in the attribute browser. If concrete syntax is not specified as icons, 

a default symbol is associated to each atom. 
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(a) Aspect for the top layer 

 

(b) Aspect for the sub network layer 

Figure 7.17 Aspects of Network Diagramming Metamodel 
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Figure 7.18 Concrete Syntax Specification 

 

The last step for network diagramming tool development in GME is to generate and 

validate the metamodel by the GME environment generator. If no errors are found in the 

metamodel, the network diagramming tool is created and registered for domain experts to then 

use. The generated environment contains all the syntactic and semantic information about the 

domain to support the creation of a family of models in that domain. 

Figure 7.19 depicts the creation of a new network diagram from the generated metamodel 

in GME. To create a new network diagram, a domain expert selects the NetworkDiagram 

metamodel from a new project dialog. The dialog box lists all available registered metamodels 

that have been created. 

Figure 7.20 illustrates examples of network diagrams created from the NetworkDiagram 

metamodel. As shown in Figure 7.20, a network model can be created using the same user 

interface that was used for the network diagramming tool development (thus, showing the meta 
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nature of the GME and other similar metamodeling tools – this is the concept introduced in 

Chapter 2 that showed the relationship between a metamodel and a domain instance model). 

 

 

Figure 7.19 Creating a New Network Model 

 

To create a network diagram, the network hardware components are listed in the Part 

Browser (during the previous step for defining the metamodel, the same area instead contained 

metamodeling elements). The Part Browser contains different hardware components depending 

on the model. In Figure 7.20(a), the Part Browser contains Group, Network, Media Server, and 

Router, which are aggregated parts of model NetworkDiagram and defined for modeling the top 

layer. On the other hand, the Part Browser in Figure 7.20(b) contains hardware components (e.g., 
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Cable Modem, Laptop, Desktop, and Tablet), which are linked to model Group with the 

aggregation to model the sub-network domain. 

 

 
(a) Top-Layer 

 
(b) Sub-Layer 

Figure 7.20 Network Models in GME 
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7.2.3 Development of Network Modeling Tool using MLCBD 

In this section, we describe the development of the same network diagramming tool using 

MLCBD. Because network hardware components are not provided as predefined symbols in 

MLCBD, domain experts need to gather all of the images of the network hardware components 

used for modeling their network in a folder prior to demonstrating the network model examples, 

as shown in Figure 7.21. 

 

 

Figure 7.21 Image Files of Network Hardware Components 

 

To create a network diagramming tool in Visio using MLCBD, a domain expert drags the 

network image files and drops them into an MS Visio page after clicking the Recording button 

(see Figure 7.10). Then, MLCBD records all the actions and behaviors of the domain expert, and 

then stores the unique symbols into the Default stencil to represent the concrete syntax. Figure 

7.22 illustrates two network models demonstrated by domain experts using MLCBD in Visio. 
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Figure 7.22(a) depicts the demonstration of the top-layer network model. A symbol 

Folder is a special symbol representing a container. If Folder is dragged on to the Visio canvas 

area, a new page named Folder is created. 

 

 
(a) Demonstration of Top-layer Network Model 

 
(a) Demonstration of Sub-Network Layer Model 

Figure 7.22 Demonstration of the Network Model in MLCBD 
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In addition, if the Folder name is changed, the name of the newly created page is also 

changed. In Figure 7.22(a), a new page Group is located beside the Default. A Folder is added 

and then renamed from Folder to Group. In addition, a new stencil named Group is created to 

manage the symbols that are required to model the sub-network domain (see Figure 7.22(b)). 

Figure 7.23 shows some examples of Model Space Exploration during network 

diagramming tool creation. All three model instances are negative models, which do not conform 

to the inferred metamodel and static constraints. During Model Space Exploration, a domain 

expert should respond either Yes or No without guided information when model instances are 

presented. 

 

 
(a) (b) (c) 

Figure 7.23 Examples of Model Space Exploration 

 

If a domain expert responds Yes to one or more of the example models shown in Figure 

7.23, that implies those models correctly describe notions of network modeling even though they 

are instantiated from a negative graph and do not conform to the inferred metamodel and static 

constraints. Based on the collective responses from the domain expert, the Model Space 

Exploration presents models, which may contain conflicted feedback, to the domain expert again 

to confirm whether the expert responded to the conflicted answer mistakenly or not.  
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After all conflicts are confirmed by domain experts, the result of Model Space 

Exploration is summarized as shown in Figure 7.24 The summary includes categories for Models, 

Expected, Answered, and Confirmed. Column Models lists all model elements used for a model 

instantiation. Column Expected specifies the expected answer of the model instance. To specify 

the expected answer, each model instance is checked against the inferred metamodel and static 

constraints. If a model instance conforms to the inferred metamodel and static constraints, 

Expected is set to Yes. Otherwise, it is set to No. Column Answered is the response from the 

domain expert when the model instance is presented, and column Confirmed is the decision of 

the domain expert for the conflicted model instances. 

 

 

Figure 7.24 Summary of Model Space Exploration 

 

The first model instance is a negative model because two Media Servers are connected 

with a Server Farm without a Router, which is not allowed. The second and third model 

instances are also negative models because Media Servers and Server Farms are connected 

without a Router. However, they were answered and confirmed Yes by the domain expert. This 
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means that the two model instances illustrate notions of the network model correctly, but were 

not initially inferred as correct from the information provided in the demonstration. The fourth 

case is similar to the second and third cases regarding confirmation of an expected negative 

model. The information about these models from the domain expert interaction is passed back to 

the Intermediate Model Space to update the previously inferred metamodel and static constraints. 

 

7.2.4 Comparison between MLCBD and GME 

The development of a network diagramming tool is briefly described in previous sections. 

Section 7.2.2 presents a network diagramming language based on GME and Section 7.2.3 

describes the same language based on MLCBD. In the following, we summarize the advantages 

and disadvantages of MLCBD-based language development by comparing it to the GME-based 

approach. 

 

 Complexity of development: Similar to GMF, which is used to develop the FSM 

modeling language in Section 7.1, a domain expert must invest effort and time to 

learn important metamodeling notions in order to develop a DSML using GME. 

For example, atom, model, paradigm, and aspect are unique concepts in GME that 

enrich the syntax and semantics of a defined DSML. In GME, at least one Model 

should be defined in the metamodel to manage the entire metamodel elements. 

For this reason, designers tend to forget to link Model and other atoms with an 

aggregation relationship when they focus on domain entities and their structural 

relationships. The missing connections between model and atoms cause errors 
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when generating the language environment, which often takes time and effort to 

resolve.  

 Completeness of graphical representation: Both tools support a set of predefined 

symbols to represent notions of a domain. In addition, both tools also support the 

use of image files for graphical completeness. However, as shown in Figure 7.18, 

GME can only point to an image file in an atom’s attribute and binds the file at 

build time. One advantage of this approach is that concrete syntax can be changed 

by copying the image file to a folder where GME is directed. However, if the 

image file is replaced with the wrong file mistakenly, the error cannot be detected 

until domain experts create a new model using the DSML. 

 Analysis and Debug Capability: When a language designer executes a model 

interpreter, the model interpreter checks the syntactic and semantics errors of the 

metamodel. However, even though GME can analyze the metamodel to check its 

completeness and correctness using a model interpreter, a language designer must 

have profound knowledge and experience to resolve the errors because GME 

cannot directly locate the problem to specific metamodel elements that cause 

those errors. Thus, the language designer must be able to analyze errors and find 

appropriate resolutions within the specific tooling features in GME. 

 Language Evolution: GME supports backward compatibility by applying its own 

version control mechanism. When the metamodel is changed or evolved, GME 

checks between the versions of the past and current models and asks the domain 

expert whether to upgrade to a new metamodel. The overall evolution process is 

relatively easy in GME.   
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7.3 Summary 

In this chapter, MLCBD was applied to develop two DSMLs, a FSM and network 

diagramming DSML. GMF and GME, which are well-known DSML metamodeling 

environments, were used to develop the same FSM and network diagramming DSML in order to 

evaluate the comparative capabilities of MLCBD. 

Table 7.1 provides a quick overview of the strengths and weakness of each approach.  

 

Table 7.1 Overview of Comparison 

 GMF GME MLCBD 

Complexity of Development High High Low 

Completeness of the Graphical 
Representation 

High High High 

Analysis and 
Debug 

Metamodel Support Support N/A 

Model N/A N/A 
Model Space 
Exploration 

Language Evolution Medium High Support 

 

MLCBD required less effort to develop a DSML than GMF and GME because the 

MLCBD framework does not require language development expertise such as syntax definition 

and semantics specification. MLCBD needs only domain knowledge (or a set of domain model 

examples) to develop a DSML. However, GMF needs modeling language development expertise 
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to define and manage four different models (e.g., domain, graphical, tooling, and mapping) as 

well as domain knowledge. Similarly, GME also needs knowledge and experience about 

metamodeling. 

All three approaches offer a high-level of graphical representation completeness. 

However, GMF needs to use a menu-driven approach to redefine the graphical model, and GME 

may need to use a decorator mechanism to support complex graphical representation.  

GMF and GME have a feature to analyze and debug (meta) models before generating the 

language environment. However, to resolve errors, software engineers should have substantial 

knowledge about either GMF or GME. On the contrary, MLCBD does support model analysis 

and debug features because it targets the generation of syntactic and semantics elements of a 

DSML from a set of domain model examples. Model Space Exploration is used to validate the 

correctness of the inferred metamodel and static constraints by presenting the user with a set of 

model instances generated from the inferred metamodel and static constraints. Model Space 

Exploration is also used to find the missing notions of a domain, which are accidentally not 

demonstrated domain experts.   

Finally, language evolution is the weakest area of MLCBD. When change requests are 

submitted, GMF and GME can evolve a DSML by applying the change request to (meta) models 

and rebuilding the (meta) models. However, MLCBD requires iteration of the same DSML 

development process (e.g., demonstration of a domain, inferring metamodel and semantics, and 

model space exploration) to apply change requests. 
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CHAPTER 8  

FUTURE WORK 

 

This chapter outlines future research directions in the area of demonstration-based 

language development. To further enhance the expressiveness and functionality of MLCBD, 

several new features are proposed that may assist domain experts in describing precise and 

complete DSMLs. Section 8.1 lists several features that may improve the Intermediate Design 

Space capability, and Section 8.2 describes extensions of Model Space Exploration. Finally, 

formalization and tool support are described as improvements of the Syntax Map in Section 8.3. 

 

8.1 Enhancements to the Intermediate Design Space Capability 

This section describes extensions to the capabilities of the Intermediate Design Space, 

which plays a vital role for DSML creation from a set of domain model examples. A set of 

model examples are transformed into a set of attributed graphs and then passed into the inference 

engine to generate a metamodel and the static constraints representing the envisioned DSML. 

Some domain-independent models are created from Metamodel Design Patterns to complement 

the lack of a complete set of domain model examples. This section describes extensions of 

metamodel design patterns and the semantic inference process in order to widen the application 

areas of MLCBD. 
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8.1.1 Improve Metamodel Design Patterns 

Design patterns have been widely adopted to promote software design reuse because they 

reflect the experience and knowledge of designers who have successfully solved recurring 

problems in different domains. Design Patterns were adopted in MLCBD in order to improve the 

quality of a metamodel. Specifically, metamodel design patterns guide the metamodel inference 

process by complementing the lack of domain model examples that can be provided by the 

domain expert. Thus, the more metamodel design patterns that can be identified from existing 

metamodels can help to guide the metamodel inference in order to build DSMLs that are closer 

to the notions of the domain.  

In addition, further research is needed for the formal specification of metamodel design 

patterns. Similar to traditional software design patterns, metamodel design patterns can be 

applied to encourage the reuse of metamodel design. For example, metamodel design patterns 

can be used to create a new metamodel by composing them instead of designing each metamodel 

from scratch. Lédeczi et al. [Lédeczi et al., 2001a; Lédeczi et al., 2001] proposed metamodel 

composition to build a new language by applying composition rules to two existing metamodels. 

Their approach was implemented successfully in GME. Similarly, if metamodel design patterns 

are formally specified in a similar manner as formal component specification, then a metamodel 

can be created by applying simple composition (or weaving) rules to metamodel design patterns. 
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8.1.2 Consideration about Dynamic Semantics 

Semantics describe the meaning of a language, and syntax is concerned with the form of 

a language’s expression. Semantics, thus, plays the role of a bridge between the concepts of the 

language and the representations used to express the domain expert’s intention. Specifying the 

semantics of a language using formal techniques can often be tedious and error-prone. In 

addition, formal specification of behavioral semantics requires much time and effort for even 

well-trained computer scientists. Currently, the MLCBD framework captures only static 

semantics, specifically static constraints, that are inferred when a domain expert demonstrates a 

set of domain model examples. The static constraints are associated to the corresponding 

metamodel and are used to verify if any structural pattern violation occurred when the domain 

expert demonstrated an example model. However, to extend MLCBD’s features, an ability to 

capture dynamic semantics is needed from either a set of domain model examples or from a 

series of actions produced while a domain expert operationally demonstrates the concepts in their 

domain. 

 

8.2 Enhancements to the Model Space Exploration Functionality 

Model Space Exploration provides a set of models instantiated from the inferred 

metamodel with static constraints that can be used to verify and improve previously inferred 

DSML constructs. There are several limitations in the current approach and this section points 

out these issues as areas for future work to improve design space exploration within the MLCBD 

context. 
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8.2.1 Enhance Model Space Exploration Algorithm 

One improvement that can be investigated further to improve Model Space Exploration is 

an approach to reduce significantly the traversed model space. Because the model space is 

created based on the graph search algorithm, some of the short paths actually could be sub-paths 

of the long paths. For example, model instances, shown earlier in Table 4.5(a) and (c), consist of 

two modeling elements, which are adjacent to each other. However, these two model instances 

also can be obtained from the model in Table 4.5(b) by breaking the model into to two sub-paths. 

Therefore, when presenting these three model instances to domain experts, the expert may lose 

attention easily because the model instances are too trivial and may cause the domain expert to 

lose focus. Thus, the algorithm needs to consider path reduction in order to minimize the 

production of model instances that are identical in terms of semantics. 

The adaptation of graph transformation is another option for improving the algorithm of 

Model Space Exploration. As mentioned in Chapter 2, the model transformation technique is a 

key technology of MDE. The graph grammar and transformations have been recognized as 

promising techniques for specifying complex transformation. For example, the ideas of the 

Graph Rewriting and Transformation Language (GReAT) [Agrawal, 2003; Karsai et al., 2003; 

Balasubramanian et al., 2006-a] can be applied to model space creation. GReAT is a graphical 

model transformation language that can be used to specify graph transformations between 

DSMLs. GReAT consists of a Pattern Specification Language, Graph Rewriting/Transformation 

Language, and Control Flow Language. The Pattern Specification Language specifies patterns of 
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objects and their links over graphs, where the vertices and edges map to specific classes and 

associations. In addition, a pattern matching algorithm is used to represent complex graphs 

concisely. The Graph Rewriting/Transformation language defines graph transformation steps by 

embellishing pattern graphs as well as specifying pre-conditions and post-conditions. The 

Control Flow Language is used to define the control structures of rules and provides features 

(e.g., rule sequencing, modularization and branching) in order to process control structures 

hierarchically. 

The model exploration algorithm can be improved by adopting the ideas of the three 

major parts of GReAT (e.g., pattern specification, graph rewriting/transformation, and control 

flow) to handle a set of domain model examples used to infer a metamodel and static constraints. 

 

8.2.2 Improve Layout Management 

To arrange the models instantiated for Model Space Exploration, the implementation uses 

the layout management algorithm provided by Microsoft Visio. Because Microsoft Visio does 

not provide broader APIs to manage shape layout, programmers cannot fully control the layout 

of modeling elements, and a clumsy layout may hinder the domain experts from understanding 

the model instances. 

The most commonly used approach to arrange the layout of models automatically is to 

develop a language-specific algorithm. A number of modeling tools (e.g., GMF, GME, and 

MetaCase+ [MetaCase+, 2011]) provide an automatic layout feature in their model editors using 

their own fixed algorithms. The algorithms rearrange the layout of the models and make models 

more readable by avoiding the overlaps of model elements and connections. However, most of 

these algorithms do not consider the implicit semantics of the model elements and their 
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connections. In addition, fixed layout algorithms usually do not consider the underlying mental 

map of domain users [Misue et al., 1995].  

Thus, a new layout management algorithm is needed to address these issues. For example, 

we may apply By-Demonstration techniques to address the ignorance of the underlying mental 

map. Currently, a By-Demonstration technique is applied to identify the concrete syntax by 

capturing a series of domain expert actions, but it can be extended for capturing the layout of 

each domain model example [Sun et al., 2011]. 

 

8.3 Improvements for the Syntax Map 

The Syntax Map was introduced to assist in defining the requirements of DSMLs. The 

Syntax Map mainly uses the graphical representations in order to describe the syntactic and 

semantics requirements of a DSML visually. In addition, the Syntax Map assists domain experts 

in describing the requirements of the syntax according to the anticipated usages. Thus, the two 

characteristics of the Syntax Map (i.e., scenario-based and graphical representation-based 

requirements specification) help domain experts to describe the requirements of DSMLs 

precisely and completely. However, the Syntax Map needs to be improved to model additional 

DSML requirements. This section identifies these needs issues as future work to improve the 

Syntax Map. 

 

8.3.1 Formalization of Syntax Map 

The Syntax Map does not apply a formal technique to specify each requirements 

modeling element. The specification of modeling elements is provided in English prose. Thus, 

the modeling elements can be understood differently and inconsistently by requirements 
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modelers. For example, the concept of containment could be specified more precisely using 

formal specification techniques.  

 

8.3.2 Tool Support 

Additional tool support could encourage the use of the Syntax Map for DSML 

requirement modeling and management. If a DSML does not have complex structural patterns, 

the Syntax Map can be drawn using basic diagramming tools. However, if a DSML has many 

constructs that are deeply related to each other, domain users may be challenged in managing the 

Syntax Map without tool support. Thus, tool support is necessary to deal with the volume and 

complexity of anticipated DSML requirements. 

 

  



 

 

155 

 

 

CHAPTER 9  

CONCLUSION 

 

MDE has been proposed to address the challenges in software development by raising the 

level of abstraction. DSMLs and model transformation are key technologies enabling MDE. 

Unlike GPMLs, DSMLs offers precise and concise syntax and semantics to satisfy specific 

domain needs. Thus, DSMLs can improve productivity and quality while minimizing the 

learning curve [Kelly and Tolvanen, 2008]. However, DSML development requires much time 

and effort. 

The overall goal of the research described in this dissertation was to provide a systematic 

and end-user (or domain expert) centered approach for building DSMLs. The key contributions 

include: 1) applying a demonstration-based approach to capture domain knowledge, specifically 

capturing concrete syntax, 2) designing and implementing an inference engine to generate a 

metamodel and static semantics from domain model examples, which are demonstrated by 

domain experts, 3) applying Model Space Exploration to investigate the correctness of the 

inferred metamodel and static constraints, as well as identify missing elements of the domain that 

need to be present in the inferred DSML. In addition, the concept of a Syntax Map was 

introduced to model the requirements of a DSML semi-formally using a graphical representation. 

The core contributions are summarized in the following sections of this chapter. 
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9.1 Syntax Map 

Requirements describe the features of a system as demanded by end-users. A good set of 

requirements are critical for project success and play a primary role for communication among 

stakeholders. In addition, they are used to measure software quality. By its nature, elaborating a 

set of complete and precise requirements is challenging. Many researchers and practitioners have 

proposed and developed various approaches and tools to identify and manage requirements 

formally and systematically - examples include Use Case diagrams, Behavior Trees, CCS and 

CSP for modeling requirements (semi)-formally. However, little attention has been given to the 

issue of specifying and managing the requirements of DSMLs. As part of our contribution 

toward specifying DSML requirements, the concept of the Syntax Map is introduced in this 

dissertation. The Syntax Map is intended to model the requirements of graphical DSMLs and 

offers its own language to model the syntactic and semantics requirements of a DSML visually. 

With a Syntax Map, the requirements of the syntax are modeled by placing and linking the 

graphical symbols according to the usage of the syntax by domain experts. The goals of the 

Syntax Map are: 1) to minimize miscommunication between end users and programming 

language development experts, 2) to reason about correctness and completeness of the DSML 

requirements. 

 

9.2 Intermediate Design Space 

DSMLs can express a specific domain more precisely and concisely than GPMLs and 

they offer several advantages such as productivity improvement and shorter learning time [Kelly 
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and Tolvanen, 2008]. However, DSMLs can be a challenge to design using current practice 

because: 1) domain experts may need programming (or modeling) language development 

expertise, as well as domain knowledge, 2) lack of tool support hampers the progress of DSML 

development and can be an error prone process, and 3) the static semantics of a DSML is often 

hard to define by a domain expert. 

The MLCBD approach described in this dissertation addresses the challenges of DSML 

development by providing an active role for the domain expert. The Intermediate Design Space 

is a core part of MLCBD and allows domain experts who do not have programming language 

development expertise to create their own DSMLs by themselves. To build a DSML, domain 

experts need to demonstrate a set of model examples using the MLCBD tool, which is a plugin to 

Microsoft Visio. The MLCBD tool captures the core parts of the concrete syntax as a domain 

expert demonstrates concepts from a specific domain. A set of model examples provided by the 

domain expert are transformed into a set of attribute graphs and then passed into the metamodel 

inference engine to infer a metamodel and its static constraints. Model instances are generated 

from metamodel design patterns, which reflect the experience and knowledge of designers who 

have successfully solved the recurring problems in metamodeling. The metamodel design 

patterns are provided to the metamodel inference engine as supplementary inputs. 

Using MLCBD, domain experts can build their own DSML environment without the help 

of programming language experts. One current limitation of DSML creation with MLCBD is the 

level of detail that can be captured with respect to the semantics of the DSML. Although 

semantics offers a bridge between the concepts of the language and the representations used to 

express the concepts, it is difficult to capture and specify the behavioral semantics from a set of 

static model examples. Although some static semantics can be inferred with MLCBD, further 
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research is needed to extend the level of support to allow domain experts to express behavioral 

semantics more deeply. 

 

9.3 Model Space Exploration 

Model Space Exploration is used in MLCBD to improve the correctness of the inferred 

metamodel and its static constraints. Although domain experts have profound knowledge and 

deep experiences in their domain, modeling every possible domain concept may not be possible. 

Because of this, the metamodel and static constraints inferred from a set of user-supplied model 

examples may not have all of required syntax and semantics to model the domain. This has a 

detrimental effect on the completeness and correctness of the inferred DSML. 

To address the need to improve the completeness of the demonstration-based approach of 

MLCBD, Model Space Exploration was investigated. In Model Space Exploration, a set of 

domain models is instantiated from the inferred metamodel and static constraints. The set of 

domain models includes both positive and negative models. The generated model examples are 

presented randomly to the domain expert, who is asked to confirm whether each example 

correctly represents an example in the envisioned DSML. The domain expert’s feedback is sent 

back to the Intermediate Design Space inference engine to update the inferred metamodel and 

static constraints. Thus, Model Space Exploration allows domain users to verify the correctness 

of the inferred metamodel and static constraints by exploring a set of domain models that are 

generated from the current representation of the DSML from past model examples. 
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9.4 Dissertation Conclusion 

Although DSMLs offer many benefits, developing a DSML is challenging for domain 

experts who have in-depth domain knowledge, but do not have programming language 

development expertise. In addition, the lack of tool support hampers the development and usage 

of DSMLs in everyday software development activities. 

To address these issues, the research described in this dissertation provides a systematic 

and end-user (or domain expert) centered approach for building DSMLs. The approach consists 

of two major activities: Intermediate Design Space and Model Space Exploration. The 

Intermediate Design Space offers flexible modeling environments where domain experts can 

demonstrate notions of a domain with a graphical notation. In addition, the Intermediate Design 

Space infers a metamodel and its static constraints based on a set of domain model examples, 

which are demonstrated by domain experts. Metamodel design patterns were also investigated to 

assist with the inference. Model Space Exploration assists domain experts in reasoning about the 

correctness of the inferred metamodel and finding language concepts that were missed during the 

original demonstration. By iterating between the Intermediate Design Space and Model Space 

Exploration, domain experts can define their own DSML.  

In addition, the Syntax Map helps domain experts to describe the requirements of a 

DSML semi-formally. A Syntax Map can visualize what notions of a DSML (i.e., abstract syntax) 

are required for describing a domain and how those notions are related with concrete entities (i.e., 

concrete syntax). 
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