

A DEMONSTRATION-BASED APPROACH FOR

DOMAIN-SPECIFIC MODELING LANGUAGE CREATION

by

HYUN CHO

DR. JEFF GRAY, COMMITTEE CHAIR
DR. BARRET BRYANT
DR. JEFFREY CARVER
DR. MARJAN MERNIK

DR. RANDY SMITH
DR. EUGENE SYRIANI

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2013

Copyright Hyun Cho 2013
ALL RIGHTS RESERVED

ii

ABSTRACT

Model-Driven Engineering (MDE) is a promising approach for addressing the issues of

complex and large software system development that enables software engineers to develop

software systems with high-level abstract models. In MDE, models are first-class entities of

software system development and can improve the understanding of problem domains. In

addition, models are used to predict the quality and performance of software systems.

Within the context of MDE, Domain-Specific Modeling Languages (DSMLs) are

developed to describe notions of a specific domain using either textual or graphical syntax.

DSMLs provide a language that has abstractions and notations, as well as precise and concise

modeling constructs, for specific domains (e.g., automotive, avionics, finance, and etc). DSMLs

assist domain experts in describing their problems closer to the problem domain when compared

to General-Purpose Modeling Languages (GPMLs), such as Unified Modeling Language (UML)

or programming languages.

DSMLs have been shown in the literature to provide several benefits, such as

productivity improvement, quality improvement, and reduction of miscommunication. However,

development of new DSMLs can be challenging and requires much time and effort. In addition,

the current state of DSML is still in its infancy compared to the tools and resources available for

creation of programming language environments.

iii

This dissertation investigates a new approach for DSML creation that allows domain

experts to have a more prominent role in describing the languages that they use. The core

contributions of the dissertation are focused on three aspects related to domain-specific modeling

language creation: 1) enable the creation of DSMLs in a demonstration-based approach by

recording and analyzing the operational behavior exhibited by a domain expert as they model

notions of their domain, 2) enable domain expert verification of the inferred language by

exploring the model space, and 3) enable domain expert verification of the inferred language by

exploring the model space.

The objectives and contributions of the research will be explained in detail in this

dissertation, combined with case studies from several domain modeling languages to

demonstrate how a domain expert can build their own DSMLs in practice.

iv

DEDICATION

This dissertation is dedicated to everyone who helped me and guided me through the

trials and tribulations of creating this manuscript. In particular, my family and close friends who

stood by me throughout the time taken to complete this work.

v

LIST OF ABBREVIATIONS AND SYMBOLS

AG Attributed Graph

BFS Breadth First Search

BNF Backus-Naur form

BPMN Business Process Model and Notation

CCS Calculus of Communicating System

CSP Communicating Sequential Processes

DaRT Data Parallelism to Real Time

DESERT DEsign Space ExploRation Tool

DFA Deterministic Finite Automata

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSE Design Space Exploration

DSLs Domain-Specific Languages

DSM Domain-Specific Modeling

DSMLs Domain-Specific Modeling Languages

EBNF Extended Backus-Naur Form

ERD Entity Relationship Diagram

EMF Eclipse Modeling Framework

EUP End User Programming

vi

FODA Feature-Oriented Domain Analysis

FSM Finite State Machine

GEF Graphical Editing Framework

GEMS Generic Eclipse Modeling System

GME Generic Modeling Environment

GMF Graphical Modeling Framework

GPLs General-Purpose Languages

GPMLs General-Purpose Modeling Languages

GReAT Graph Rewriting and Transformation Language

GUI Graphical User Interface

IEEE The Institute of Electrical and Electronics Engineers

KM3 Kernel Meta Meta Model

LOTOS Language Of Temporal Ordering Specification

MARS MetAmodel Recovery System

MLCBD Modeling Language Creation By Demonstration

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDSD Model-Driven Software Development

MIC Model Integrated Computing

MOF Meta-Object Facility

MRL Model Representation Language

MVC Model-View-Controller

vii

OCL Object Constraint Language

OCP Open/Closed Principle

OMG Object Management Group

OBDD Ordered Binary Decision Diagrams

PbE Programming-By-Example

PCB Printed Circuit Baord

PERT Program Evaluation and Review Technique

PIM Platform Independent Model

PMF Pattern Modeling Framework

PSM Platform Specific Model

QbE Query-by-example

RCP Rich Client Platform

SDL Specification Description Language

SVG Scalable Vector Graphics

SysML Systems Modeling Language

UCMs Use Case Maps

UI User Interface

UML Unified Modeling Language

VDM Vienna Development Method

XMI XML Interchange Metadata

XML Extensible Markup Language

WYSIWYG What You See Is What You Get

viii

ACKNOWLEDGEMENTS

My sincerest gratitude goes to my advisor, Dr. Jeff Gray, for his consistent support,

encouragement, and care for me over the past years. Dr. Gray was always there to listen and to

give advice during the whole period of my graduate study. In each step toward the completion of

my Ph.D. degree, Dr. Gray has offered a great deal of effort to help me form ideas, give research

directions and advice, revise the publications and presentations, and refine and improve the

quality of my research results.

I would also like to extend my gratitude to the other members of my committee. Dr.

Barrett Bryant led me to the world of programming languages and compilers. The knowledge I

learned from his course has been very useful to my doctoral research. Dr. Marjan Mernik helped

me enrich and deepen my understanding of the concepts of “Domain-Specific Languages”

through his enlightening course.

To Dr. Jeffrey Carver, Dr. Randy Smith, and Dr. Eugene Syriani, thank you for your

efforts to help me develop the necessary knowledge and skills in throughout the stages of my

Ph.D. study. I greatly appreciate your precious time and effort in serving as my committee

member and sharing your experience of graduate study with me.

I also will never forget the support and help from current and previous SoftComers. To

Dr. Yu Sun, Dr. Qichao Liu, Dr. Robert Tairas, and Dr. Zekai Demirezen, thank you for

everything you gave to me, and I cherish every moment we had together in the past years. To Dr.

ix

Ferosh Jacob, Amber Krug, Songqing Yue, and Jonathan Corley, I really appreciate our

friendship and all the wonderful and fun time together as a collaborative team.

Finally, I am grateful to the financial support from the UA Department of Computer

Sciences, and the National Science Foundation CAREER Grant (No. 1052616).

x

CONTENTS

ABSTRACT .. ii

DEDICATION ... iv

LIST OF ABBREVIATIONS AND SYMBOLS ... v

ACKNOWLEDGEMENTS ... viii

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

1 INTRODUCTION .. 1

1.1 Domain-Specific Modeling Languages (DSMLs) ...5

1.2 Key Challenges in DSML Development ..8

1.3 Research Goals and Overview ...10

1.3.1 Creating DSMLs By Demonstration to Simplify DSML Creation 11

1.3.2 Model Space Exploration for Verification of Inferred Metamodel and
Semantics ... 12

1.3.3 Metamodel Design Patterns Assist in Inferring Metamodel 13

1.3.4 Semi-Formal Approach to Model Requirements of a DSML 13

1.4 The Structure of the Thesis ..14

2 INTRODUCTION TO DSMLs .. 16

2.1 MDE and DSMLs...16

2.2 Components of DSMLs ..22

2.3 DSML Development Process ...28

3 SYNTAX MAP: MODELING LANGUAGE FOR DSML REQUIREMENTS 35

3.1 Requirements Modeling ...36

3.1.1 Natural Language .. 37

3.1.2 Semi-Formal Methods .. 39

3.1.3 Formal Methods .. 40

3.2 Goals and Requirements of Syntax Map ..41

xi

3.3 Design of Syntax Map ..44

3.3.1 Concrete Syntax of Syntax Map ... 44

3.3.2 Metamodel of Syntax Map.. 47

3.4 Guidelines for Describing DSML Requirements using Syntax Map48

3.5 Application of Syntax Map ..50

3.6 Related Work ..52

3.7 Conclusion ..54

4 METAMODEL DESIGN PATTERNS .. 56

4.1 Approach of Metamodel Design Pattern Mining ...57

4.1.1 Context Setting.. 58

4.1.2 Identification of Metamodel Design Problems ... 60

4.2 Identification of Metamodel Design Patterns ...62

4.2.1 Metamodel Pattern for Base Metamodel .. 62

4.2.2 Metamodel Pattern for Typed Relationships .. 64

4.2.3 Metamodel Pattern for Containment ... 65

4.3 Application of Metamodel Design Patterns ...67

4.4 Related Work ..68

5 INTERMEDIATE DESIGN SPACE .. 70

5.1 Introduction to Intermediate Design Space ..72

5.2 Concrete Syntax Identification ...74

5.3 Graph Construction ..79

5.4 Metamodel Inference ..86

6 MODEL SPACE EXPLORATION .. 96

6.1 Process of Model Space Exploration ...97

6.2 Model Instantiation and Clustering ..98

6.3 Consideration of the Number of Models for Model Space Exploration107

6.4 Related Work ..112

6.5 Summary ..113

7 CASE STUDIES APPLYING MLCBD ... 114

7.1 Development of a Finite State Machine Modeling Tool114

xii

7.1.1 FSM Requirements Modeling with Syntax Map .. 115

7.1.2 FSM Development with GMF .. 117

7.1.3 FSM Development with MLCBD ... 124

7.1.4 Comparison FSM Development: MLCBD vs. GMF 127

7.2 Development of Network Diagramming Tool ...130

7.2.1 Network Diagramming Tool Requirements Modeling with Syntax Map .. 130

7.2.2 Development of Network Modeling Tool using GME 132

7.2.3 Development of Network Modeling Tool using MLCBD 140

7.2.4 Comparison between MLCBD and GME ... 144

7.3 Summary ..146

8 FUTURE WORK .. 148

8.1 Enhancements to the Intermediate Design Space Capability148

8.1.1 Improve Metamodel Design Patterns .. 149

8.1.2 Consideration about Dynamic Semantics ... 150

8.2 Enhancements to the Model Space Exploration Functionality150

8.2.1 Enhance Model Space Exploration Algorithm ... 151

8.2.2 Improve Layout Management ... 152

8.3 Improvements for the Syntax Map ...153

8.3.1 Formalization of Syntax Map ... 153

8.3.2 Tool Support ... 154

9 CONCLUSION ... 155

9.1 Syntax Map ..156

9.2 Intermediate Design Space ...156

9.3 Model Space Exploration ...158

9.4 Dissertation Conclusion ...159

LIST OF REFERENCES .. 160

xiii

LIST OF TABLES

Table 2.1 Classification of Model Transformation ... 22

Table 3.1 Concrete Syntax of Syntax Map ... 45

Table 4.1 Listing of Example Domains for Representative DSMLs 59

Table 5.1 Candidate Concrete Syntax ... 77

Table 5.2 Annotated Concrete Syntax .. 78

Table 6.1 Samples of Model Instances ... 105

Table 6.2 The Number of Diagramming Elements in Major Diagrams 109

Table 7.1 Overview of Comparison .. 146

xiv

LIST OF FIGURES

Figure 1.1 Flexibility vs. Abstraction of Languages ... 4

Figure 1.2 Software Development Paradigms: Conventional vs. Model-Driven 7

Figure 2.1 Model-Driven Architecture: PIM and PSM .. 18

Figure 2.2 DSML Components and their Relationship .. 23

Figure 2.3 Abstract Syntax of Simplified FSM .. 24

Figure 2.4 Concrete Syntax for FSM .. 24

Figure 2.5 Concrete Syntax for Actor ... 25

Figure 2.6 Denotational Semantics of Simple FSM Described by the Z Notation 27

Figure 2.7 DSML Development Process .. 30

Figure 3.1 Syntax Map Metamodel .. 47

Figure 3.2 DFA for Checking the Multiples of 3.. 50

Figure 3.3 The Skeleton of the Syntax Map ... 51

Figure 3.4 The Complete Syntax Map for the DFA ... 52

Figure 4.1 Feature Model of DSML Concrete Syntax .. 60

Figure 4.2 Base Metamodel Design Pattern ... 63

Figure 4.3 Metamodel Design Pattern for Typed Relationships 64

Figure 4.4 Metamodel Design Pattern for Containment ... 66

Figure 5.1 Overall Process of MLCBD .. 70

Figure 5.2 Process of Intermediate Design Space .. 73

xv

Figure 5.3 Domain Models of Process Control .. 76

Figure 5.4 Results of Graph Builder ... 81

Figure 5.5 Results of Graph Annotator ... 85

Figure 5.6 Base Metamodel Design Pattern and its Graph Representation 87

Figure 5.7 Combined Graph Representation: Adjacency Matrix and Cardinality Matrix 88

Figure 5.8 Metamodel Inference Algorithm: Main Algorithm ... 90

Figure 5.9 Metamodel Inference Algorithm: Instantiate Tree .. 91

Figure 5.10 Metamodel Inference Algorithm: Merge Tree .. 91

Figure 5.11 An Example of Row-Column Representation and Decision Tree 92

Figure 5.12 Merged Decision Tree ... 94

Figure 5.13 Inferred Metamodel ... 95

Figure 6.1 Process of Model Space Exploration ... 98

Figure 6.2 The Y-Chart for Model Space Exploration ... 100

Figure 6.3 Main Algorithm of Model Space Exploration ... 102

Figure 6.4 Algorithm for Model Space Exploration ... 102

Figure 6.5 Graph Search: Breadth First Search with Backtracking 103

Figure 6.6 Numbered Graph Representation .. 104

Figure 6.7 The Number of Model Instances vs. Modeling Elements 111

Figure 7.1 An Example of FSM .. 115

Figure 7.2 Syntax Map for FSM ... 116

Figure 7.3 GMF Tooling Workflow ... 118

Figure 7.4 Ecore model for FSM [Kermeta] ... 119

Figure 7.5 Specifying a Graphical Definition in GMF ... 120

xvi

Figure 7.6 Refine Graphical Definition .. 121

Figure 7.7 Tooling Definition Model .. 122

Figure 7.8 Mapping Model and Generation Model .. 123

Figure 7.9 FSM Tool Created using GMF .. 123

Figure 7.10 Creating FSM By-Demonstration.. 124

Figure 7.11 Annotating Concrete Syntax in MLCBD .. 125

Figure 7.12 Creating FSM while Inferring Static Constraints .. 126

Figure 7.13 Syntax Map for Network Digramming .. 131

Figure 7.14 Sample Network Digramming Model ... 132

Figure 7.15 User Interface of GME .. 133

Figure 7.16 Metamodel for Network Diagramming ... 134

Figure 7.17 Aspects of Network Diagramming Metamodel ... 136

Figure 7.18 Concrete Syntax Specification .. 137

Figure 7.19 Creating a New Network Model .. 138

Figure 7.20 Network Models in GME .. 139

Figure 7.21 Image Files of Network Hardware Components ... 140

Figure 7.22 Demonstration of the Network Model in MLCBD 141

Figure 7.23 Examples of Model Space Exploration ... 142

Figure 7.24 Summary of Model Space Exploration ... 143

1

CHAPTER 1

INTRODUCTION

Along with the advances in hardware and software technology, end users’ demands for

computer systems have also increased. Consequently, software size is continually growing and

software is becoming more complex than ever before. As a result, many software development

projects are often unmanageable, run over planned budget and schedule. In addition, software

can become challenging to maintain and may even fail to satisfy the desired level of quality and

miss the stated customer requirements. The term “software crisis” [Naur and Randell, 1969] was

coined several decades ago, but is still appropriate for describing the current state of software

development.

In connection with the software crisis, Fred Brooks mentioned in his book, The Mythical

Man-Month: Essays on Software Engineering, that software development is an inherently

challenging process due to both essential and accidental complexity [Brooks, 1987]. The

essential complexity represents the core of the difficult problems that software developers have

to solve. The difficulties of understanding the problem domain and identification and

development of the conceptual constructs (e.g., core data structures and their interrelationships,

as well as algorithms and the behavioral consequences of their combination) that compose the

abstract software entity are examples of essential complexity. In addition, the inherent

characteristics of software that Brooks identifies (e.g., invisibility, changeability and conformity)

2

are the other parts that contribute to the essential complexity. The accidental complexities are the

challenges regarding concrete software development and testing processes (e.g., specific

languages and platforms that must be used to represent the software). In the past several decades,

much effort has been made to help software engineers address these complexities in order to

develop quality software systems while achieving quality attributes (e.g., productivity, simplicity,

reliability, and maintainability).

Developing higher levels of abstraction in programming languages is one of the strategies

that has been put forth to address the issues of accidental complexity. The history of

programming languages can be traced back to the mid-1940s. In 1945, von Neumann proposed a

computer architecture that can perform different tasks by storing programs in memory [Backus,

1978]. Since then, many programming languages have been proposed, evolved, and disappeared.

For example, machine languages are typically hardware dependent and required programming at

a low-level of abstraction. Thus, machine languages are rarely used in modern software

development environments due to an average software engineer’s difficulty in understanding the

language, which can contribute to increased software complexity. As a result, machine language

code is generated by high-level language compilers. The idea of low-level representations being

generated from higher level specifications has been a constant trend over the past decades. The

notion of generative programming allows expression of core problem concepts in languages that

are closer to the abstractions of the problem domain, rather than the solution space [Czarnecki

and Eisenecker, 2000].

Among all the efforts in the history of programming languages, Brooks states that raising

the level of programming language abstraction is the “most powerful stroke for software

productivity, reliability and simplicity” [Brooks, 1987]. This is because the raised level of

3

abstraction assists in capturing only the details relevant to the target computing environment, and

as a consequence, hides the underlying implementation information [Lenz and Wienands, 2006].

As shown in Figure 1.1, the level of abstraction is raised from machine language to

assembly language, to high-level and object-oriented programming languages. As the level of

abstraction is increased, software engineers generally lose fine-grained control of the underlying

computing environment (e.g., direct memory access and device control), but they can be isolated

from irrelevant low-level implementation details. Therefore, software engineers can become

more immersed in the problems they need to solve.

On the other hand, the flexibility of the programming languages, in terms of applicable

domains, is slightly narrowed as the level of abstraction is raised. High-level languages tend to

offer a very narrow set of language constructs to solve a specific domain problem, and may not

support certain features (e.g., controlling underlying details of the execution platform). For

example, Java could be said to be less flexible than C because Java does not provide core

language constructs to access the execution environment (e.g., memory and devices), which

makes it more challenging to use Java to develop software that can utilize and manipulate

hardware resources.

Domain-Specific Modeling Languages (DSMLs), which are placed at the top of the

hierarchy in Figure 1.1, are languages designed and implemented to satisfy specific domain

needs [Gray et al., 2007; Lédeczi et al., 2001]. DSMLs are widely used as a concrete and

mainstream Model-Driven Engineering (MDE) methodology [Schmidt, 2006], which considers

models as first-class entities instead of program codes. MDE has been applied to develop

complex and large-scale software systems by decoupling the description of the essential

4

characteristics of a problem from the details of a specific solution space (e.g., middleware and

programming languages).

Figure 1.1 Flexibility vs. Abstraction of Languages

DSMLs allow software engineers, or even end-users (e.g., domain experts), to describe

requirements, design, and test cases of a software system while focusing on specific domain

concepts, rather than solutions that are intertwined with the underlying computing environment

[Schmidt, 2006]. In addition, integration with model transformation and code generators allow

DSMLs to generate automatically the desired software artifacts (e.g., programming code,

simulation scripts, and XML deployment description).

Models help software engineers and domain experts to understand a problem domain.

Software engineers are not able to see every aspect of a system at once. It can be difficult to

understand both the behavior and structure of a large software system solely through a

5

programming language. However, if the software system is described using models, a software

engineer can understand a system more as a whole because models can abstract and visualize

notions of the domain at higher levels. With increased understanding of a software system,

software engineers and other stakeholders are able to predict quality, performance, and patterns

of the software system evolution at early development phases, without the need for code. In

addition, software engineers and customers can make more accurate and valuable decisions in

software design, implementation, and maintenance [Kelly and Tolvanen, 2008].

A model-driven approach can also contribute toward the concept of end-user software

development [Burnett et al., 2004] and reduce knowledge and expertise gaps between software

developers and domain experts. As such, models can improve communication between

stakeholders. Design intents can be understood by stakeholders when problems and solutions are

described using models. This is possible because modeling languages tend to be designed to

represent notions of the problem domain with high-level abstractions from the underlying

domain.

1.1 Domain-Specific Modeling Languages (DSMLs)

DSMLs introduce a new software development paradigm. The main notion of DSML-

based software development is “everything is a model” [Kurtev et al., 2006], and the goal of

DSMLs is to help software engineers or domain experts develop quality software using models,

which can describe a specific problem domain with models that raise the level of abstraction.

Specifically, DSMLs can describe the properties of a system (or a domain) with a high-level of

abstraction and a set of platform-independent notations. Thus, DSMLs can offer several benefits.

For instance, DSMLs can reduce the chances of software failures by minimizing

6

miscommunications between software engineers and domain experts and encourage involvement

of domain experts in software development [Burnett et al., 2004]. In general, software engineers

are skilled at programming, but may not thoroughly and correctly understand problems of every

domain that they encounter. Yet, in contrast, domain experts have deep knowledge and

experiences about their domain, but may have no expertise about building software systems

using programming languages. The knowledge and expertise gap between software engineers

and domain experts make communication difficult and present a challenge to develop software

systems that meet the demands of the end-user. However, DSMLs are able to ease the difficulty

by offering precise and concise notations, which are commonly understood by domain experts

without additional descriptions or explanations. In addition, claims of productivity gains in very

specific domains using DSMLs have been reported by a factor of 5 to 10 [Kelly and Tolvanen,

2000].

As shown in Figure 1.2, conventional software development practice builds software

systems (or packages) using platform-specific models (e.g., programming languages such as Java,

C/C++, C#) based on the results of the problem domain analysis. Thus, conventional software

development has “the wide conceptual gap between the problem and the implementation

domains of discourse” [France and Rumpe, 2007]. The models built by users must conform to

the definition of the metamodel [Atkinson and Kuhne, 2003; Gray et al., 2007], which specifies

the entities, associations and constraints for the DSML. A metamodel defines abstract syntax in a

similar way as a grammar specifies the abstract syntax for a programming language. Thus, a

model conforms to its defining metamodel [Kurtev et al., 2006] in the same way that a program

conforms to the programming language in which the program is written. To describe notions of a

specific domain visually, concrete syntax is also associated with the metamodel. Elements of

7

concrete syntax are often described using either a textual notation, graphical symbols or both. In

addition, semantics can be associated with a metamodel to specify properties and behaviors of a

modeling language. However, the current manner in which semantics is specified varies across

metamodeling tools and is still at an early stage of investigation.

…

Figure 1.2 Software Development Paradigms: Conventional vs. Model-Driven

Similar to models, a metamodel must also conform to the definition of a meta-metamodel,

which is a core modeling language that conforms to itself and used to define other modeling

languages for different domains. The common meta-metamodeling languages at this layer are

Meta-Object Facility (MOF) [MOF, 2011], and Kernel Meta Meta Model (KM3) [Jouault and

Bézivin, 2006]. As a comparison to programming language specification, a meta-metamodel is

8

similar to EBNF (Extended Backus Naur Form). A meta-metamodel is used to define

metamodels representing new modeling languages in the same way that EBNF is used to

describe grammars for new programming languages. The four-layer modeling architecture is

depicted in Figure 1.2

As shown in this figure: 1) models conform to a metamodel; 2) a model transformation

translates a model representation into some lower-level representation, such as a specific

programming language, which is then compiled into an executable system that has a

correspondence to the associated model.

1.2 Key Challenges in DSML Development

As discussed in the previous sections, MDE is a promising approach to address issues in

conventional software development by introducing models as first-class entities. However, there

are several challenges and limitations that have emerged. Because DSML development requires

both domain knowledge and modeling language development expertise (e.g., metamodeling

experience), end-users and domain experts who are not computer scientists often find the

traditional approach for creating DSMLs daunting due to the following challenges.

DSML Challenge 1: In practice, domain models are often specified with unconstrained

environments such as word processors or drawing/presentation tools, rather than formal

metamodeling tools. For example, Microsoft Visio is a popular tool used in many domains to

design drawings and representations of domain-based designs. Due to the increasing number of

sketch-based input devices (e.g., tablets) and a general preference for hand-drawn sketches in

capturing high-level requirements and software design, modeling tools will need to adjust to new

9

forms of input [Ossher et al., 2010]. This is particularly challenging for demonstration-based

language design because the initial sketch is rather unconstrained and needs to process a wide

range of open notations for different domains. Recognizing new shapes that are more informally

drawn in new environments and on new input devices is a challenge that will increase in need.

DSML Challenge 2: Modeling language creation requires familiarity with metamodeling

environments. Domain experts who are not familiar with metamodeling often do not understand

the deep implications of domain analysis in DSML implementation. The common practice of

DSML development is to define a metamodel for the specific domain based on the captured

notations. As the metamodel specifies the abstract syntax and static semantics for the domain,

domain experts need to understand the implications of metamodeling before they develop their

own DSML. The lack of language creation expertise, especially metamodeling expertise for

modeling languages, may undermine the quality of a DSML implementation if developed by a

domain expert who lacks a background in computer science.

DSML Challenge 3: The captured visual notations and notions of a domain tend to be

informal and incomplete, often requiring multiple iterations to reach a final version of the DSML.

However, the iterative process of creating a DSML is tedious, error-prone and time-consuming if

done manually. Therefore, simplifying (or automating) the DSML development process such that

domain experts can create their own languages may offer an advantage.

DSML Challenge 4: Specifying the semantics of a modeling language using formal

techniques is often challenging even for computer scientists. The major focus of many by-

demonstration approaches is on structural and syntactic issues, with little contribution toward

mechanisms for describing semantics. Enabling end-users to describe the semantics of their free-

form language will require new innovations to separate the underlying formality needed from the

10

level of abstraction expected by an end-user. This is perhaps one of the most challenging issues

facing flexible modeling, and without progress in the area, the tools and associated languages

will not be as effective in providing a complete automated solution for performing many tasks

that are typical in other modeling contexts.

DSML Challenge 5: Having a set of complete and precise requirements is a critical factor

for the success of software development. However, eliciting such requirements is not easy

because requirements are captured through informal activities (e.g., brainstorming, workshops,

direct observation, questionnaires, and interview) [Nuseibeh and Easterbrook, 2000]. In addition,

requirements are often expressed using natural languages, which are inherently ambiguous and

fuzzy [Rolland et al., 2003]. Although many researchers and practitioners have introduced

several approaches, methods and tools for eliciting, specifying and managing requirements of

generic software systems, little attention has been paid to the area of DSML requirements

management even though specifying requirements of a DSML requires different principles and

expertise than those of general software application requirements specification. For example,

requirements of a DSML need to describe abstraction mechanism (e.g., abstract notions of a

domain and map to concrete syntax) [Liskov and Zilles, 1975], consistent management of similar

notions and concrete syntax consistently, and extensibility of a language.

1.3 Research Goals and Overview

To address the difficulty of creating DSMLs, the research in this dissertation provides a

user-centered DSML creation approach. The goal of the approach is to enable domain experts,

who have broad domain knowledge and experiences but do not have programming language

development expertise, in creating their own DSMLs. To achieve the research goal, the approach

11

implements DSML creation tasks combining techniques such as By-Demonstration, graph

transformation, a demonstration-based inference engine, metamodel design patterns, and model

space exploration. The research is focused on an investigation into techniques that allow a

modeling language to be inferred from a set of domain model examples that are provided by the

end-user who is a domain expert.

1.3.1 Creating DSMLs By Demonstration to Simplify DSML Creation

To address the challenges of DSML creation as mentioned in the last section, a DSML

development framework has been designed and implemented. The demonstration-based

approach is called Modeling Language Creation By Demonstration (MLCBD). The MLCBD

framework enables domain experts to create a DSML by directly performing edit operations on

concrete examples (i.e., a set of domain model examples), combined with user refinement and

automated inference processes. To demonstrate the notions of a domain, the MLCBD framework

provides predefined shapes. If there is no appropriate predefined symbol in the framework, a

domain expert performing the demonstration may use sketch-level shapes or images that

represent the notions of their domain. After domain experts demonstrate the modeling language

that they desire, the various components needed to represent a DSML (e.g., abstract syntax,

concrete syntax, and semantics) are generated using machine learning techniques, as provided by

an inference engine that supports MLCBD. The inference engine transforms a set of domain

model examples into a set of graph representations in order to avoid a representation mismatch.

The DSML language components are inferred from the set of domain model examples. As will

be presented in Chapter 5, the MLCBD framework enables domain experts to be isolated from

12

the challenges of DSML creation and the associated complex language development tasks (i.e.,

specifying abstract and concrete syntax, and defining semantics).

1.3.2 Model Space Exploration for Verification of Inferred Metamodel and Semantics

The second contribution of this research includes a Model Space Exploration feature

associated with MLCBD, which enables domain experts to verify the correctness of the inferred

modeling language components. Although the MLCBD framework offers an integrated DSML

development environment such that domain experts can build their own DSMLs by

demonstrating a set of domain model examples, the syntax and semantics inferred from the set of

domain model examples may not describe the domain correctly and fully. Demonstrating every

aspect of the domain requires demonstration of both positive aspects (i.e., concepts that represent

the domain correctly) and negative aspects (i.e., models not allowed in the domain and illegal

relationships between model elements) [Kirsopp and Shepperd, 2002]. The level of

demonstrations needed to realize the complete language that is desired requires the domain

expert to invest much time and effort. To address the demands required for demonstrating a

sufficient number of model examples, the idea of Model Space Exploration is borrowed from

ideas that were initiated in computational learning theory [Valiant, 1979] and design space

exploration [Oliveira et al., 2010]. During Model Space Exploration, a set of new candidate

domain model instances are generated from a previously inferred metamodel. The domain expert

plays the role of oracle and is asked to indicate whether each generated instance accurately

describes the concepts within the domain. The results from the candidate model instances are fed

back to the inference engine to complement the existing understanding of the syntax and

semantics that were inferred previously using a set of domain model examples. We believe that

13

Model Space Exploration can reduce the effort and time that domain experts spend in

demonstrating a large set of domain model examples as well as verify inferred syntax and

semantics.

1.3.3 Metamodel Design Patterns Assist in Inferring Metamodel

To support the inference of a DSML, the idea of metamodel design patterns has been

investigated within the MLCBD framework [Cho and Gray, 2011]. Initially, the MLCBD

framework creates a set of metamodel design pattern instances to complement the demonstrated

model examples. The idea of metamodel design patterns is an extension of the concept of design

patterns [Gamma et al., 1995] as applied to metamodel design. Metamodel design patterns define

consistent solutions for recurring metamodel design issues and represent the collection of generic

metamodel primitives that occur frequently in the specification of metamodels.

To generate the abstract syntax and corresponding semantics for a DSML, the MLCBD

framework performs an isomorphic test in order to find a set of metamodel design patterns that

matches to a set of domain model examples. The MLCBD framework then composes the set of

metamodel design patterns into a metamodel while adding any required generalizations (e.g.,

inheritance). With metamodel design patterns, the MLCBD framework can reduce the

complexity in inferring a metamodel and the corresponding static semantics from a set of domain

models.

1.3.4 Semi-Formal Approach to Model Requirements of a DSML

The idea of a Syntax Map is also introduced in the approach to assist development and

verification of a DSML. Syntax Map is another DSML that is designed to model the

14

requirements of a DSML using graphical notations. Syntax Map captures requirements of a

DSML according to syntax usage scenarios. Specifically, requirements of a DSML are modeled

based on causal relationships between responsibilities of one or more classifiers and relationships.

In addition, Syntax Map can convey both concrete syntax and abstract syntax, as well as

constraints associated to the syntax in a compact form. Syntax Map enables reasoning about

missing or redundant requirements of a DSML by checking conflicted syntax usage scenarios.

1.4 The Structure of the Thesis

This introductory chapter summarized the focus of research on DSML creation from a set

of end-user demonstrated examples. The set of challenges associated with this research area was

presented along with the research goals that address those challenges. The remainder of the

dissertation is organized as described in the rest of this section.

Chapter 2 describes background information related to the research of this dissertation.

Chapter 3 introduces a semi-formal approach, named Syntax Map, which can be used to describe

the requirements of a DSML. A Syntax Map focuses on the usage of each modeling element in a

DSML and offers a set of graphical symbols to model the requirements of DSMLs. Chapter 4

discusses the idea of metamodel design patterns, which are used in the metamodel inference

process of MLCBD. Chapter 5 covers the specific details of MLCBD, including the description

about the main steps and implementation details of the approach. Related work is discussed to

highlight the unique features and contributions of MLCBD. Chapter 6 motivates the need for

Model Design Space, which generates sample domain models from the inferred metamodel and

constraints. The domain expert is asked to confirm the correctness of the generated model

instances to help refine the inferred metamodel. Case studies are presented in Chapter 7 to show

15

how MLCBD supports end users building their own DSMLs. Chapter 8 outlines the future work

of the research, and Chapter 9 concludes the work of this dissertation by summarizing the

contributions.

16

CHAPTER 2

INTRODUCTION TO DSMLs

This chapter provides background information relevant to the research of this dissertation.

First, MDE will be introduced in Section 2.1 with further discussion on Domain-Specific

Modeling (DSM) and DSMLs. This chapter will also outline the key components of DSML

creation in Section 2.2. General software development processes and activities for DSML

development will be given in Section 2.3. Finally, because the main contribution of this research

focuses on creating visual (or graphical) DSMLs, relevant information about DSML design

principles and considerations will be discussed briefly in Section 2.4.

2.1 MDE and DSMLs

Throughout the history of the intersection of software engineering and programming

languages, most new development paradigms that have emerged made claims about offering

higher levels of abstraction as a benefit of some new idea. The general claim is that some newly

introduced language or methodology is able to alleviate impediments of earlier efforts in order to

accelerate software development and improve quality. The typical claim is that the raised level of

abstraction makes it possible for software engineers to develop far more complex software

systems without increasing the associated effort. For example, procedural programming

languages (e.g., C, COBOL and FORTRAN) represented the dominant paradigm in the

1960s/1970s. However, procedural programming languages lacked expressiveness and

17

modularity concepts compared to object-oriented programming languages, such as Java, C++,

and C#. In addition, procedural programming languages have supported fewer reusable libraries

and application frameworks (or platforms), which can minimize the need to reinvent common

services.

Since the 1990s, object-oriented programming languages (e.g., Java and C++) were

introduced with more powerful expressive language constructs and have assisted software

engineers in maintaining and reusing various software systems [Booch, 1997]. Object-oriented

programming languages have many advantages over conventional programming languages. For

example, the languages assist in promoting modularity, modifiability, and maintainability.

However, the principal advantage claimed for object-oriented programming languages is that

they promote reuse of valuable intellectual assess that are captured in code, which are described

in the form of classes or objects. However, object-oriented programming languages have reached

a complexity ceiling due to the fast growth of dependent platforms and middleware complexity,

and the inability of expressing domain concepts effectively [Schmidt, 2006].

In the last two decades, MDE has attracted considerable attention from both academia

and industry as a promising approach to address platform complexity and the need to express

domain concepts, which are difficult in programming languages. MDE moves the focus of

software development from programming language codes to models as first-class entities of

software development. The concepts of MDE are established by combining many other

approaches, such as Domain-Specific Languages (DSLs), software factories, Model-Integrated

Computing (MIC) [Karsai et al., 2004], Model-Driven Software Development (MDSD), model

management, and language-oriented programming [Bézivin 2005]. The major contribution for a

new era of modeling was made by the Object Management Group (OMG), who offered a

18

conceptual framework to support Model-Driven Development (MDD). Specifically, OMG

launched the concept of Model-Driven Architecture (MDA) [MDA, 2011], which consists of

three ideas: direct representation, automation, and open standards. As shown in Figure 2.1, MDA

describes the problem domain using a Platform-Independent Model (PIM), which can describe

the problem domain independently of the underlying computing environments. From the PIM, a

Platform-Specific Model (PSM) can be generated by applying model transformation techniques.

Figure 2.1 Model-Driven Architecture: PIM and PSM

A PSM contains the details of the implementation or solution space of a software system.

Thus, MDA can shift the focus of software development from the technology domain (e.g.,

programming languages, and platforms) towards the concepts of the problem domain (e.g.,

important abstractions in the domain of interest). In addition, model transformation can automate

software development while minimizing manual and tedious mappings between the abstraction

layers.

19

The MDA concepts of direct representation and model transformation are germane to two

key technologies of MDE: DSMLs and model transformation. DSLs [Visser, 2007] can be

defined by the following definition: “A domain-specific language is a programming language or

executable specification language that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a particular problem domain” [Deursen

et al., 2000].

Conventionally, most computer languages came into existence as dedicated languages for

solving problems in a specific domain. For example, COBOL was introduced to develop

business processing applications, and FORTAN was designed for numeric computation and

scientific computing. As the majority of programmers in various domains adopted those

languages (e.g., COBOL and FORTRAN) to solve their own domain problems, languages often

evolved to solve general kinds of problems, regardless of the area or domain. In MDE, the

Unified Modeling Language (UML) is a well-known general-purpose modeling language

(GPML). UML was not originally designed for MDA, but it has become a standard GPML

because it contains numerous diagrams, constructs and views that can be used to represent

various perspectives of a system.

However, GPMLs also have some drawbacks. First, due to a large number of diagrams,

constructs, and views, deep modeling expertise is required to develop precise and concise models.

For example, the current UML 2.4.11 core specification is defined in 978 pages, not including

supplementary specifications. Thus, not everyone is able to create a quality model using a GPML

1 UML 2.4.1 Specification, http://www.omg.org/spec/UML/2.4.1/

20

like UML. Second, GPMLs may not be well-matched to model a specific problem domain

because the GPML syntax and semantics are not obvious due to their generality. This has created

an impedance mismatch between the underlying concepts of domain and the concepts of GPMLs.

In addition, this hampers the precise and concise description of the domain concepts.

DSMLs are proposed as a promising approach to address the deeper learning curve and

the associated challenges of model comprehension. As textual variants, DSLs are languages

whose type systems are tailored for a particular domain such as finance [Brand et al., 1996;

Deursen and Klint, 1998], software architecture [Medvidovic and Rosenblum, 1997], operating

system specialization [Pu et al., 1997], and multimedia [Stevson and Fleck, 1997].

The key characteristics of DSMLs are summarized below:

 DSMLs offer only a limited suite of notations and abstractions compared to

GPMLs. A DSML focuses on a specific-domain and is designed to help domain

experts improve their understanding of representation problems in their domain.

 DSMLs are often declarative and can be viewed as specification languages.

 DSMLs are built on the domain users’ vocabulary.

 The syntax of a DSML is designed to raise the level of abstraction so that it can

hide the inherent accidental complexities of programming languages.

 DSMLs typically require less time and effort to learn the syntax and to develop

models, compared to GPMLs.

In addition, both DSLs and DSMLs offer several other benefits that include [Gray et al,

2007; Kelly and Tolvanen, 2008]:

21

 An ability to describe a problem domain with the idioms and abstraction that are

commonly used in the domain.

 Improvements in productivity, reliability, maintainability, and portability.

[Herndon and Berzins, 1988; Kieburtz et al., 1996; Deursen and Klint, 1998]

 Support for reuse of domain knowledge as embodied in language constructs.

As introduced in Section 1.1, the top-most layer of the MDE model architecture is called

the meta-metamodel layer, which is a core modeling language that conforms to itself and can be

used to define other metamodeling languages for different domains. Meta-Object Facility (MOF),

Ecore, and Kernel Meta Meta Model (KM3) [Jouault and Bézivin, 2006] are examples of meta-

metamodeling languages. The layer below the top-most layer is the metamodel layer. The

models at this layer conform to the meta-metamodel and are used to define the core of a DSML.

A common metamodeling language at this layer is the UML metamodel. Models at the third

level conform to the metamodel to which they are associated. The models in this layer represent

the instance models that users create and manipulate to model the underlying real system. Finally,

the real system is placed at the bottom layer, which is mapped and generated from the instance

models [Kurtev et al., 2006].

Model transformation is another core technology of MDE [Sendall and Kozaczynski,

2003]. Examples of model transformation include code generation from models, model

synchronization and mapping, model evolution, and reverse engineering. Code generation,

reverse engineering, and refactoring are also examples of model transformations. Due to its

importance in MDE, many researchers and practitioners have proposed various model

transformation techniques, as summarized in Table 2.1.

22

Table 2.1 Classification of Model Transformation (Adapted from [Mens and Gorp, 2006])

 Horizontal Vertical

Endogenous Refactoring Formal Refinement

Exogenous Language Migration Code Generation

Horizontal transformation is a transformation where the source and target models reside

at the same abstraction level. On the contrary, vertical transformation is a transformation where

the source and target models reside at different abstraction levels. Endogenous transformations

are transformations between models expressed in the same language. Refactoring is an example

of an endogenous transformation because it changes the internal structure of a software system

without changing observable behaviors. Refactoring also falls into horizontal model

transformation because the source and target languages do not change. Exogenous

transformations occur between models expressed using different languages. The typical example

of exogenous transformation is code generation, where a set of models is translated into source

code. As source and target models have different level of abstractions, code generation is also an

example of a vertical model transformation.

2.2 Components of DSMLs

In this section, we present elements of DSMLs in order to understand how and what

domain experts need to provide when trying to develop their own DSMLs. Similar to

programming languages, DSMLs consist of five tuples: Abstract syntax (A), Concrete Syntax

23

(C), Semantics (S), Mapping from concrete syntax to abstract syntax (MCA), and Mapping from

abstract syntax to semantics (MAS) [Chen et al., 2009]. DSML components and their relationship

are illustrated in Figure 2.2.

Figure 2.2 DSML Components and their Relationship

The Abstract syntax (A) describes the core concepts and notions of the language, the

structural relationships between the language concepts, and the constraints that define how core

language elements can be combined to describe domains. Figure 2.3 shows a metamodel for a

simple Finite State Machine (FSM) that consists of two modeling elements, State and Transition.

State is linked with other State through Transition. FiniteStateMachine is defined to represent the

simple FSM and contains all metamodel elements.

24

Figure 2.3 Abstract Syntax of Simplified FSM

Concrete syntax (C), also called surface syntax, is primarily concerned with the concrete

representation of a language [Milanović et al., 2009]. Concrete syntax defines every detail about

the notations used to express models, and either a textual, graphical, or mixed form can be used

for specifying concrete syntax [Erwig, 1998]. Figure 2.4 shows the possible concrete syntax for a

simple FSM, where a circle is associated to State, and a directed line is mapped to Transition.

Name

(a) State (b) Transition

Figure 2.4 Concrete Syntax for FSM

In general, each concrete syntax element must be mapped to the underlying structure of

the abstract syntax [Grunske et al., 2008]. Typically, one abstract syntax element can be mapped

25

to more than one concrete syntax element to satisfy various usage purposes and requirements of

technical spaces. UML is an example that uses multiple concrete syntax elements to satisfy

various usage purposes. The abstract syntax of UML, which is defined in the form of the UML

metamodel, can be associated with two concrete syntaxes: one for human interaction and the

other for computer-to-computer communication. For human interaction, abstract syntax of UML

is visualized using graphical notations, and humans are able to design a software system using

the graphical notations within a tool. Each UML modeling tool uses its own data representation

to manage abstract syntax and corresponding concrete syntax of UML. So, if designers use

different UML modeling tools, a UML model maintained under a tool’s data structure cannot be

loaded into another UML modeling tool. The eXtensible Markup Language (XML) Metadata

Interchange (XMI) [OMG XMI, 2011] is standardized by OMG to exchange meta information

between UML modeling tools. Figure 2.5 shows two different concrete syntax specifications.

Figure 2.5(a) is a graphical representation of an actor in a Use Case model, and Figure 2.5(b) is

part of the XMI specification of an actor.

<packagedElement xmi:type="uml:Class" xmi:id="UseCases-
Actor"
 name="Actor">
 <ownedComment xmi:type="uml:Comment"
 xmi:id="UseCases-Actor-_ownedComment.0"
 annotatedElement="UseCases-Actor">
 <body>An actor specifies a role played by a user or
 any other system that interacts with the
 subject.</body>
 </ownedComment>

(a) Graphical Representation (b) Part of Actor XMI specification

Figure 2.5 Concrete Syntax for Actor

26

While the syntax of a DSML is focused on the form of its expression, the semantics of a

DSML is concerned with the meaning of grammatically correct models. A DSML can have two

types of semantics: static semantics and dynamic semantics. Static semantics focus on “what

something is” and describe invariants on elements of abstract syntax and/or on relations between

those elements. Static semantics include all of the possible sets of components and their

relationships, which are consistent with well-formedness rules. Dynamic semantics describe the

behaviors of the language. Dynamic semantics often specify the evolution of the state of the

modeled artifact along some time model. Generally, defining dynamic semantics is much more

difficult than static semantics.

Semantics can be defined several ways. Operational, Denotational, and Axiomatic are

well-known approaches for semantics specification [Zhang and Xu, 2004]. Operational

semantics is interested on the effect of how a computation is produced. Thus, operational

semantics describe how to execute programs of a language or how to change the state.

Operational semantics is useful as a basis for implementation. Denotational semantics is given by

mathematical function, which maps a mathematical meaning to each syntax element.

Denotational semantics is used for proving properties of a language. Axiomatic semantics is also

called Floyd-Hoare logic [Hoare, 1969] and provides a logical system, which is built from

axioms and inference rules for proving partial correctness properties of a program.

Figure 2.6 shows the denotational semantics of a simple FSM. The Z notation is used to

describe the semantics of a simple FSM.

27

(a) Set Definition

(b) An Axiomatic Definition

(c) Schemata

Figure 2.6 Denotational Semantics of Simple FSM Described by the Z Notation [Dimitrov, 2010]

Figure 2.6(a) defines the basic sets of a FSM. STATES is a non-empty final sets of states,

INPUTS is the set of input events, and OUTPUTS is the set of all output events. Figure 2.6(b) is

an axiomatic definition where q0 is the initial state, NULL is a special symbol, and FINALS is

possibly an empty subset of STATES. Figure 2.6(c) is the schema of a FSM that specifies the

behaviors of a program. An FSM consists of a transition, output, and current. Transition and

output are in the same domain of the Cartesian product of STATES and INPUTS. The initial state

q0 is part of the transition function domain and is the only state that has no input. FINALS has

only input, and all states, except the final state, have to have both input and output.

28

2.3 DSML Development Process

To develop a system effectively and manage the progress of the development

systematically, a well-formed software development lifecycle is needed with precisely defined

activities. Many researchers and practitioners have proposed and applied new software

development processes. The Waterfall, Iterative and Incremental, and Spiral models are well-

known software development lifecycle models proposed to address issues that occur during

software development.

The Waterfall model was proposed by Winston Royce [Royce, 1987] to enable structured

software development by executing a series of development activities (e.g., requirement analysis,

design, implementation, and testing) sequentially. Although the Waterfall model is still used to

develop software, it has been attacked for being too rigid and unrealistic when a system under

development needs to accommodate quickly changing customer needs. In addition, the Waterfall

model takes a long time to yield a working version of a system.

The basic idea of an iterative and incremental model is to develop a software system

while taking advantage of what was learned during the development of previous iterations

[Larman and Victor, 2003]. In an iterative and incremental approach, a system is divided into

small parts, and built by implementing and integrating the small parts incrementally and

iteratively through a mini-Waterfall model.

A prototyping model is based on the assumption that customers may not know all of their

requirements at the beginning of development [Naumann and Jenkins, 1982]. Generally, at the

beginning of software development, customers define objects that they wish to address with a

29

system, but do not have the requirements describing the system features and capabilities in detail.

Moreover, requirements are changed or enhanced as customers have a better understanding while

the development is in progress. To address these issues, the prototyping approach creates an

artifact that focuses on user interfaces without having substantive implementation in a short time.

Assessment of the prototype is performed against customer requirements. Thus, a prototyping

model helps customers to understand and identify what they require from the system. The main

application areas of a prototyping model are to assist with feasibility and usability tests.

The Spiral model is another improvement that combines ideas from several software

development processes. The Spiral model was proposed by Boehm to guide multi-stakeholder

concurrent engineering of software intensive systems [Boehm, 1988]. The two main features of

the spiral model are its cyclic approach and its adherence to a set of milestones. The cyclic

approach enables the development of a software intensive system incrementally while decreasing

the degree of software development risks.

A DSML can be developed using any of the development models just described, but we

recommend the iterative and incremental approach because domain users may not have a full set

of domain modeling language requirements when elaborating on the needs of their language

[Mernik et al., 2005]. The potential high-level of potential maintenance issues is one of the

factors that also suggest an iterative and incremental model [Nakatani et al., 1999].

Unlike general application development, DSML development activities are slightly

different. As mentioned in the previous section, a DSML consists of three components (i.e.,

abstract syntax, concrete syntax, and semantics) and these components are interrelated by

mapping rules. Thus, DSML development needs to consider how to design and implement each

component independently and assemble them seamlessly.

30

As shown in Figure 2.7, DSML development requires a collaboration of two experts:

domain experts and language development experts.

Figure 2.7 DSML Development Process

Domain experts have profound knowledge and experiences within the domain, but do not

have language development expertise. The main roles of domain experts are eliciting

requirements of the DSML and validating whether the developed DSML meets the requirements

for a new language describing the domain. On the other hand, language development experts

build a DSML based on requirements specified by domain experts. The major activities of

DSML development are analyzing the requirements of the DSML, designing abstract syntax and

concrete syntax, specifying semantics, and performing tests.

Requirements analysis is the first step of DSML design. The main activity of

requirements analysis is to identify the notions of the domain by acquiring and consolidating

31

information in the domain in order to design the syntax and specify the semantics. The goals of

requirements analysis for DSMLs are as follows:

 Identify stakeholders of the domain. Several different types of stakeholders

may use a DSML with different purposes. For example, domain experts may use a

DSML for describing their domain, and software engineers will use a DSML to

understand a domain before they develop a software system for the domain.

Because stakeholders have different views and goals, identification of domain

stakeholders should be carried out before the other tasks to define the language

scope correctly.

 Define the domain scope. Domain scoping identifies appropriate boundaries for

the domain and considers the existing and expected instances (or notions) within a

domain [Pohl et al., 2005].

 Identify domain notions and notations used in the domain. Although no

DSML may exist for a specific domain, a domain expert may define a set of

notions and corresponding notations (or symbols) to model in their domain. In

some cases, domain notions are maintained in the form of a data dictionary, and

domain notations can be found in documents such as design documents, meeting

minutes and presentation slides. Thus, these notions and notations should be

identified and documented for the syntax design and semantics specification.

After completing requirements analysis, language development experts need to determine

which syntax (i.e., either abstract or concrete) is developed first. Generally, the concrete syntax

32

is explored before developing a DSML. This is often the case because domain experts may use

symbols (or notations) that represent the idioms of discourse and jargon of specific problem

domains to document and/or share the notions of the domain with the domain stakeholders. Thus,

many DSMLs may begin by designing concrete syntax and then extracting the essence of the

language during the abstract syntax design. Abstract syntax-driven DSML development may be

preferable if the domain expert is not clear on some new aspects of the domain. This situation

often happens when the domain is relatively new and subject to change due to external forces

(e.g., new requirements placed on the domain). Thus, both domain and language development

experts often work together to concretize the key concepts of the domain and characterize the

abstractions required in the domain, with late elaboration of the abstract syntax [Wile, 1997].

As mentioned above, domain notions are captured during requirements analysis. The

captured notions are specified using a modeling language during the abstract syntax design phase.

UML and Eclipse Modeling Framework (EMF) are examples of modeling languages that are

often used to specify abstract syntax specification. To develop quality abstract syntax, Karsai et

al. [Karsai et al., 2009] proposed abstract syntax design guidelines. First, abstract syntax and

concrete syntax should be aligned to each other. To align both syntax elements, a language

designer should keep a one-to-one mapping between abstract syntax and concrete syntax. If

similar or duplicated notations exist, they should be merged into single abstract syntax elements.

Second, abstract syntax should be designed in a modularized manner. In accordance with the

increased complexity of modern software systems, abstract syntax tends to describe complex and

large-scale software systems. Thus, keeping abstract syntax modularized can help language

maintenance and evolution.

33

Designing the concrete syntax of a DSML is similar to defining a set of symbols for the

domain and mapping those symbols to abstract syntax. The main activity of concrete syntax

design is in deciding whether to use a textual or graphical representation after weighing the

advantages and disadvantages of the representations against the domain users’ preferences

[Grönniger et al., 2007]. The advantages of textual representation are that textual representation

takes less space than graphical representation when presenting the same amount of information.

In addition, textual representation requires neither a specific platform nor a specific environment

for reading maintaining, or developing the representation. On the other hand, graphical

representation may help users to create a model quickly by supporting drag-and-drop model

definition features. In addition, the learning curve may be shortened in both cases, reducing the

amount of anxiety that users may have while learning new concepts and/or notations.

In general, we can consider two types of concrete syntax users (e.g., computing devices

and humans); each type of user may suggest a different approach to designing the concrete

syntax. Computing devices often are connected on a network and able to communicate with each

other to share information or collaborate to produce outputs. Concrete syntax plays a key role in

making data sharing easy and efficient among heterogeneous computing devices because the

syntax defines the structure and representation of information. For this type of concrete syntax

user, interoperability among the heterogeneous computing devices will be the most important

concern when designing concrete syntax because computing devices may have different

computing capabilities and data formats (e.g., big or little endian). In addition, integration is

another important factor for designing concrete syntax. Applications (or tools) may define their

own concrete syntax, and the difference makes it difficult to integrate applications even when

they are executing in the same computing device. XMI is a good example that addresses concrete

34

syntax design issues for machine-to-machine information exchange. XMI is the standard for

representing object-oriented information using XML and enables interoperability among

heterogeneous computing devices [OMG XMI, 2011]. In addition, because XMI is capable of

representing many forms of object-oriented information, it is used to support lightweight

integration among Java applications, the Web, XML, and different kinds of models [Grose et al.,

2002].

Another user of concrete syntax is a human who mainly uses the concrete syntax to

communicate and share information. Designing the concrete syntax for a human is more difficult

than designing for computing devices because a human can interpret or understand the same

syntactical forms differently based on his/her domain knowledge and cultural background. Thus,

designing concrete syntax for a human may require multi-disciplinary skills such as computer

language design, cognitive science, psychology, and graphic design [Selic, 2009].

After the abstract and concrete syntax is designed for a DSML, the semantics should be

specified and associated to the abstract syntax. Specifying the semantics of a language involves

three activities: 1) understanding the designed syntax of a language, 2) choosing a semantic

domain, which is the underlying formalism used to define the language, and 3) mapping from the

syntax to the semantic domain [Harel and Rumpe, 2004].

35

CHAPTER 3

SYNTAX MAP: MODELING LANGUAGE FOR DSML REQUIREMENTS

The success of software system development and evolution depends on how well the

needs of its users and its environment are met [Nuseibeh and Easterbrook, 2000; Parnas, 1999].

A good set of requirements are critical for the success of software development projects because

requirements are the primary tool for communication among stakeholders and the measure of

software quality. In addition, requirements are used to describe what users want from the system,

to partition the work out for contract, and acts as a basis for verification and validation.

All deliverables of software system development should be documented and designed to

conform to the requirements [Crosby, 1979]. However, descriptions of requirements often evolve

as development of a system progresses. For example, at the systems requirements elicitation

phase, the requirements define the functional features that the system must provide, as well as

the non-functional needs (e.g., performance, reliability, and usability). At the architectural design

and detailed design phases, the requirements need to describe the cost and benefits, as well as the

potential changes needed to address architecture and component design decisions. In addition,

the qualification requirements of the system are also described for system testing and acceptance

testing [IBM Rational Doors]. Thus, requirements management is often called the umbrella

process because requirements span all phases of the software development lifecycle rather than

being specific to any particular life cycle stage.

However, describing a good set of requirements is challenging because it generally can

be obtained only after analyzing the problem space. The problem space is the space where

36

“simple” solutions would not adequately solve the problem. In addition, the problem space is less

constrained than the solution space and comprises ill-defined and conflicted descriptions [Cheng

and Atlee, 2007]. To address the difficulties of obtaining a good set of requirements, many

researchers and practitioners have introduced various techniques such as Goal-oriented [France

and Rumpe, 2007;], Use Case [Fantechi et al., 2002; Maiden and Robertson, 2005], and

Scenario-based [Maiden and Robertson, 2005; Uchitel et al., 2002] requirements engineering.

Although many approaches and techniques have been proposed to develop and manage

the requirements of application domains, there is little research and empirical evidence on how to

apply those approaches and techniques to manage the requirements of computer languages,

specifically modeling languages. In addition, domain experts may suffer from the lack of an

appropriate method, guidance, or tool support for capturing the requirements of a DSML.

In this chapter, we introduce an approach, named Syntax Map, for capturing and

managing the requirements of DSMLs. A Syntax Map aims to help communication between

domain experts and programming language development experts by capturing the requirements

of a DSML, specifically DSMLs represented with graphical notations. Because

miscommunication is one of the factors leading to failure of software system development,

Syntax Map addresses those issues by offering intuitive graphical notations to model the

requirements of graphical DSMLs precisely and concisely.

3.1 Requirements Modeling

Eliciting and analyzing requirements are essentially a cooperative work because only

domain experts really know the deepest details of the problem, but an analyst is often needed to

37

help the domain experts in fully and correctly describing it. Thus, choosing the right

requirements modeling approach plays an important role in accelerating cooperative work.

3.1.1 Natural Language

Natural language is commonly and heavily used to describe the requirements of software

systems because the initial requirements are often gathered from informal activities (e.g., user

interviews or brainstorming) or from documents of previous projects. In addition, natural

language is expressive and flexible for processing such initial inputs [Hsia 1993; Kaindl et al.,

2002; Berry 2003; Luisa et al., 2004]

However, due to the informal nature of natural language, requirements described by

natural language are highly prone to ambiguity and may not give the same interpretation when

read by different persons. Thus, to minimize and avoid ambiguity and misinterpretation,

requirements should be specified with the following characteristics [Wiegers, 1999; IBM

Rational DOORS]:

 Requirements should be described completely and correctly. All required

functionality and necessary information should be included in the requirements

specification. However, identifying missing requirements or information is not an

easy task. To write requirements completely and correctly, requirements should

be written by focusing on user tasks rather than on system functions. In addition,

graphical and/or formal methods can help to reveal incompleteness within the

requirements specification.

38

 Requirements should be described consistently. Some requirements are often

conflicted with other requirements or with requirements focused on a different

level (e.g., user requirements vs. system requirements). Thus, to keep the

requirements consistent, they should be reviewed by all stakeholders whenever

change requests are made.

 Requirements should be verifiable. To be verifiable, the requirements must use

statements that can be verified by examination, analysis, test, or demonstration.

Thus, requirements statements should avoid using subjective or subjective words

such as “easy,” “efficiently,” and “adequately.” In addition, verifiable

requirements help to eliminate ambiguity in requirements.

 Requirements should be traceable. Because requirements affect all

development activities (e.g., design, implementation and testing), requirements

traceability plays an important role in several ways. First, requirements

traceability ensures that the final deliverables should satisfy initial customer

demands. Second, if requirements traceability is done properly, it can be used to

estimate and evaluate project progress, especially cost, time, and resources.

Finally, requirements traceability can help in analyzing the impacts of a system

from change requests.

To satisfy the characteristics of good requirements as described above, each requirements

statement should have: 1) a user who benefits from the requirement or drives the need for the

requirement, 2) a state that the user wants to reach after requirements are executed, and 3) a

metric or some mechanism to verify the correctness of the requirements.

39

3.1.2 Semi-Formal Methods

Semi-formal methods use formal syntax (e.g., graphical notation such as diagramming

techniques and/or tabular techniques) to model a domain, but their semantics are not formally

defined using mathematical notations (e.g., logics and set theory). By using graphical notations,

Semi-formal methods can analyze and design software systems with a high-level of abstraction

[Schmidt, 2006; Watson, 2008] and is able to validate requirements and design at an early stage

of development. In addition, semi-formal methods can minimize miscommunication.

A well-known semi-formal requirement model is a Use Case model, which is currently

considered the state-of-the-art for describing and modeling requirements because it offers several

benefits [Fowler 2003; Cockburn, 2000]. First of all, requirements can be elicited and specified

from the user’s point of view. In general, the context of a system is defined as a part of

requirements elicitation and analysis, and users’ of the system are defined in terms of input.

Users are often ignored or described ambiguously when specifying requirements with natural

language. A Use Case model can tackle this issue by asking to describe requirements from a

user’s point of view. Second, a Use Case model can minimize miscommunication between

stakeholders by providing different levels of abstraction. If software engineers talk to non-

technical stakeholders (e.g., marketing team and/or financial team), they explain and discuss the

system with graphical notations of the Use Case model. If software engineers need to talk to

software architects, they can use both graphical notations of a Use Case model and its

specification, which describes detailed functional and non-functional requirements of the Use

Case.

40

3.1.3 Formal Methods

Formal methods can address issues of natural language and semi-formal methods for

modeling requirements by describing requirements with a very precise mathematical notation.

Model-driven, Process algebra, and axiomatic methods can be used to model requirements

formally.

Model-driven formal methods describe requirements using a set of models, which are

specified as objects and their operations. Model-driven formal methods need to explicitly define

the types of objects of concern and utilize primitive, predefined operations in defining higher-

level operations [Pedersen and Klein, 1988; Aichenig, 1999]. B [Abrial, 2005; Julliand and

Kouchnarenko, 2007], Z [Potter et al., 1996; Woodcock and Davies, 1996], and Vienna

Development Method (VDM) [Bjørner and Jones, 1978; Pedersen and Klein, 1988] are examples

of formal methods. Process algebra originated from the mathematical theory of automata. The

term process algebras were coined in 1982 by Jan Bergstra and Jan Willem Klop [Bergstra and

Klop, 1982] and the process algebras focus on the specification and manipulation of process

terms, which are induced by a collection of operator symbols and interaction and communication

between processes to achieve a common goal [Fokkink, 2009]. CCS (Calculus of

Communicating Systems) [Milner, 1989; Bruns, 1997] and CSP (Communicating Sequential

Processes) [Hoare, 1978; Roscoe, 1997] are examples of process algebras.

Axiomatic formal methods [Hoare, 1969] use axioms to define properties of systems but

the axioms are restricted to equations. Axiomatic formal methods are well-suited for algebraic

specification of abstract data types, and ACT ONE [Claßen, 1989; Claßen et al., 1993] and its

41

extension ACT TWO [Fey, 1988] are languages for axiomatic formal methods. Both languages

use algebraic specifications with conditional equational axioms to specify a system’s behaviors

formally.

3.2 Goals and Requirements of Syntax Map

A language typically consists of three components: abstract syntax, concrete syntax, and

semantics. Semantics define the meaning of the language and can be specified using one or more

formal methods (e.g., Denotational Semantics, Axiomatic Semantics, Operational Semantics, or

Attribute Grammars). Concrete syntax is used to represent the surface-level notion of a language.

In programming languages, the concrete syntax is often textual and described using EBNF. In

modeling languages, the concrete syntax could be textual, graphical, or mixed. Abstract syntax

describes the notion of a language, the relationships between the notions, and the well-

formedness rules, which specify how the concepts can be combined. Generally, the abstract

syntax is defined using an EBNF for programming languages and a metamodel for modeling

languages.

To develop a new graphical DSML, the requirements of the DSML can be described

using three language components: the abstract syntax, a mapping relationship between the

abstract syntax and concrete syntax, and semantics. However, it is not easy to describe the

requirements of a DSML completely and precisely, and domain experts may suffer from the lack

of an appropriate method, guidance, or tool support for capturing the requirements of a DSML.

We have investigated an approach to address these issues and have developed the idea of a

Syntax Map, which assists in capturing the requirements of a new graphical DSML. The Syntax

Map’s focus is to assist domain experts, who may have little experience or knowledge about

42

development of graphical modeling languages, in describing the requirements of their own

graphical DSML. The Syntax Map captures elements of syntax and the relationship (or structures)

between the elements.

The detailed requirements of a Syntax Map are specified as follows:

 A Syntax Map should be able to describe the requirements of DSMLs,

specifically graphical DSMLs, using graphical notations.

 A Syntax Map should be able to define classifiers, which are modeling elements

that describe behavioral or structural features in a system. Actors, Use Cases,

classes, and interfaces are examples of classifiers.

 A Syntax Map should be able to define at least three relationships: association,

aggregation, and inheritance. The relationship is a connection between modeling

elements and can assist in defining the semantics of a model. Association,

aggregation, and inheritance are the three key relationships in modeling a domain,

especially in Object-Oriented Modeling [UML Infrastructure; UML

Superstructure]. Association represents a structural relationship between two

model elements and depicts the possible connections from one instance of a

classifier to another instance of a classifier. In addition, association describes the

direction of navigation between linked modeling elements. An aggregation

relationship represents the whole-part relationship between classifiers; a classifier

is a part of (or subordinate to) another classifier [Barbier et al., 2003]. The

aggregation relationship is often used to represent the containment relationship by

describing how classifiers are assembled or configured together to create a more

43

complex classifier. The inheritance relationship expresses the is-a relationship

between two classifiers. It encourages the reuse of existing data and code. When

classifier A inherits from classifier B, we say A is the subclass of B, and A can

access all the attributes and methods of B.

 Each classifier and relationship in a Syntax Map shall be associated to the

relevant concrete syntax. Concrete syntax visualizes the notion of abstract syntax

using textual, graphical or mixed representation and helps domain experts to

understand the language. The association should be a one-to-one correspondence

between the abstract syntax and concrete syntax. By limiting the correspondence

between abstract syntax and concrete syntax as a one-to-one mapping, notations

used in the Syntax Map can address concerns of precision and concise

expressiveness [Moody 2009; Goodman, 1968].

 Each concrete syntax element of a Syntax Map should be distinguishable and

unique in the language.

 A Syntax Map should be able to describe the cardinality (or multiplicity) between

model elements linked by relationship. The cardinality expresses the upper or

lower limits when two classifiers are linked by a relationship.

 Each Syntax Map should have one start symbol, and each Syntax Map should be

able to have multiple end symbols. A Syntax Map should have at least one start

symbol and one end symbol to be a valid model.

44

3.3 Design of Syntax Map

This section describes the design of the concrete and abstract syntax of the Syntax Map

based on the requirements from Section 3.2.

3.3.1 Concrete Syntax of Syntax Map

In this section, we describe the concrete syntax of the Syntax Map. As described in

Chapter 2, DSML development may begin by designing either the abstract syntax design or the

concrete syntax design. Considering the abstract syntax first is useful when a domain is mature

and programming language development experts have deep domain knowledge and experience.

However, DSML development that is driven by concrete syntax is generally used more

frequently because identifying the concrete syntax is relatively easier than identifying the

abstract syntax. Also, domain experts may have already defined or used a set of notations to

model and communicate with their stakeholders.

Syntax Map development begins by defining the concrete syntax first. To describe the

requirements of a graphical DSML, the Syntax Map provides eight symbols, as shown in Table

3.1. To define the concrete syntax of a Syntax Map, we analyzed several diagrams (e.g., Activity

diagram, Flowchart, and Entity-Relationship Diagram) and then selected notations that have a

high probability of uniqueness among domain experts.

A valid Syntax Map must contain at least two symbols, Start and End, which represent

the start and end of the DSML requirements description. These two symbols are represented by a

circle (Start) and bar (End). Similar to declarative programming (or modeling) languages,

45

Symbol Start and End are defined to structure requirements of a DSML according to each syntax

usage scenario.

Table 3.1 Concrete Syntax of Syntax Map

Symbol Name Description

Start Indicate start of the Syntax Map.

End Indicate end of the Syntax Map.

Classifier

Represent classifiers (or entity) in abstract
syntax.

 Relationship Represent relationship between classifiers.

Attribute

Associate attribute to classifier. If necessary,
relationship can have an attribute.

Data Type

Represent attribute type. Basic data type (e.g.,
String and Numbers) is provided.

Mapped

Mapping between abstract syntax and concrete
syntax.

	
Link Link between the Syntax Map elements.

A classifier is denoted as a rectangle, and at least one classifier should be linked to the

Start and End symbols. If necessary, attributes can be associated to a classifier. When defining

attributes, the type of the attribute should be provided. Primitive data types (e.g., String and

Number) are provided as built-in Data Types. In addition, domain experts can define composite

data types by combining primitive data types. To represent relationships between classifiers, a

rounded rectangle is placed between classifiers.

46

To link between the Syntax Map symbols, two types of link symbols are provided. One is

a line and the other is an arrow-headed line. If an arrow-headed line is used to link between

classifiers and relationships, it implies that there is directional dependency or information flow

between the two. If a line is used, information can flow in both directions between classifiers and

relationships. After domain experts connect classifiers to relationships, they need to specify the

attributes of the relationship. The relationship has four attributes to characterize the relationship

between classifiers: Type, Directional, and Cardinality of Source and Target. Attribute Type

defines four types of relationships by default: association, aggregation, composition, and

inheritance. If a domain expert assigns one of these types as the name of the relationship, the

Syntax Map automatically sets the Type attribute corresponding to the assigned name. If a

domain expert assigns a name that is different from the name in the Type attribute, then the type

of the relationship needs to be defined. The attribute Direction specifies the direction of

information flow or dependency. The semantics of the Direction attribute is determined by

combining the types of links that connect between classifiers and relationships. The Cardinality

of Source and Target describes the number of possible classifiers linked by the relationship.

Finally, the symbol Mapped is used to map the abstract syntax to the concrete syntax. Mapped

has two attributes: Constraint and Rendering. The former is used optionally when an abstract

syntax needs to be mapped to multiple different types of concrete syntax. The mapping

constraint is specified informally using natural language because the Syntax Map is used to

capture requirements of a graphical DSML in the early development stage. The Rendering

attribute specifies a path where a graphic symbol is stored. When a domain expert specifies the

path attribute in Rendering, the Syntax Map reads the file and displays the concrete syntax in the

symbol Mapped.

47

3.3.2 Metamodel of Syntax Map

Based on the requirements and specifications described in the last section, a Syntax Map

metamodel is defined in Figure 3.1.

Figure 3.1 Syntax Map Metamodel

ModelElement is the top-most base class for all modeling elements (except Link).

ModelElement has string type attribute Name. The multiplicity of attribute Name is defined 0 or

1, because some modeling elements have attribute Name and some do not. For example,

modeling elements classifier, attribute, and relationship have attribute Name, but modeling

elements Start and End do not.

48

Because each modeling elements need to be connected to at least one or more other

modeling elements, a ModelElement is associated with Link in a bi-directional manner. If

ModelElement is the source, it can have more than one Link. On the contrary, if ModelElement is

target, a Link can be connected with only one model element. Thus, Link and ModelElement are

linked by a one-to-one relationship.

The Mapped class maintains the information about concrete syntax and an additional

attribute called Path is defined to specify the location of the concrete syntax notation. The

Datatypes class defines the data types that are used for a Syntax Map. To define the data types,

the Datatypes class refers to the TypeKinds class, which is the base construct for representing

datatypes; it has four subclasses (e.g., String, Integer, Double, and Boolean).

3.4 Guidelines for Describing DSML Requirements using Syntax Map

A good set of requirements usually contains at least three characteristics. First, each

requirement should be a complete sentence because single words, phrases, and collections of

acronyms may be interpreted several ways according to each reader’s background and

experiences. Thus, a requirement statement should have at least a subject and a predicate. Second,

a requirement may describe a defined, desirable quality (e.g., performance, reliability, or

usability). Finally, a requirement should contain metrics or a mechanism for testing against the

requirement. In order to describe the requirements of a graphical DSML using the Syntax Map,

the following steps are recommended to domain experts:

49

 Start with a classifier. Classifiers represent notions that are commonly

understood in a domain. A Syntax Map can describe the requirements of a DSML

based on the use cases of classifiers.

 Model flow from left to right. In general, a flow is implicitly modeled to run

from left to right or form top to bottom.

 Define classifiers. A Classifier is an abstract metaclass that is used to describe a

set of instances that have common features. The classifier is used for defining a

namespace, type, and redefinable elements.

 Add attributes to each classifier if necessary. A classifier may have structural

and/or behavioral characteristics in a specific domain. An attribute is one way to

represent the characteristics of a classifier.

 Define relationships and relate relationships with relevant classifiers.

Relationships play important roles in modeling languages because they describe

structural relationships between classifiers.

 Specify additional attributes to relationship (e.g., relationship type, cardinality,

and directional information). This can be added to provide semantic information

about the relationship after it is assigned to classifiers.

 Associate concrete syntax. If the concrete syntax of a graphical DSML has been

identified already, the concrete syntax can be associated with the corresponding

abstract syntax element.

50

3.5 Application of Syntax Map

This section shows how to use the Syntax Map for describing the requirements of a

DSML. To describe the requirements of the abstract and concrete syntax of a DSML, we will use

a Deterministic Finite Automation (DFA) as an example language. Consider the specific DFA,

shown in Figure 3.2, which computes whether the input binary numbers are multiples of 3. If a

binary number 11 is entered, the DFA jumps to S1 for the first 1 and then returns to S0, which is

the accepting state that represents the input binary number is multiples of 3. As shown in Figure

3.2, the DFA uses three unique symbols, Accepting State, State and Transition, to model the

DFA for checking multiples of three.

Figure 3.2 DFA for Checking the Multiples of 3

To describe the requirements of the DFA with a Syntax Map, a domain expert first

creates the skeleton scenarios by placing classifiers and relationships between the Syntax Map

symbol Start and End according to their usage scenarios. For instance, if the current state is the

Accepting State and a transition is triggered, the next state is determined by the transition

51

condition and can be either Accepting State or State. In addition, State can transition to either

Accepting State or State.

The skeleton Syntax Map for a DFA is shown in Figure 3.3.

Figure 3.3 The Skeleton of the Syntax Map

The upper part describes the state transition scenario from the Accepting State, and the

lower part is for the State. After the skeleton of a Syntax Map is created, a domain expert can

add additional information to each Syntax Map modeling element if necessary. If the classifiers

(or relationships) have the same attributes across the Syntax Map, a domain expert specifies the

attributes to only one classifier. Then, the rest of the classifiers will share the attributes. For

example, although another classifier State, which is connected with symbol End, is modeled

without any attributes, attribute Name will be associated automatically with classifier State,

which is connected to symbol Start. The complete Syntax Map is shown in Figure 3.4.

52

Figure 3.4 The Complete Syntax Map for the DFA

3.6 Related Work

Use Case Maps (UCMs) were proposed by Amyot et al. to provide “a notation to aid

humans in expressing and reasoning about large-grained behavior patterns in systems” [Buhr

and Casselman, 1995]. The basic idea of UCMs is to capture the requirements of a system by

introducing a scenario-based software engineering technique, which can “describe causal

relationships between responsibilities of one or more use cases” [Buhr and Casselman, 1995;

UseCase Maps]. Due to the nature of a scenario, UCMs are useful in capturing informal (or

functional) requirements, and validate logical errors in requirements. In addition, UCMs can be

transformed into Language Of Temporal Ordering Specification (LOTOS) [Amyot and Logrippo,

2000] or Specification Description Language (SDL) [He et al., 2003]. Due to simplicity, UCMs

have been applied successfully for capturing requirements of software systems, documenting

53

standards, and evaluating the alternates of architecture. The main ideas of UCMs (e.g., scenario-

based requirements capture and graphical representation) influenced the design of the Syntax

Map. To develop a graphical DSML using the Syntax Map, domain experts should first define

the concrete syntax and then the abstract syntax. In order to design the abstract syntax, domain

experts may examine possible scenarios of each element of the concrete syntax, and focus on the

possible relationship combinations among the elements of the concrete syntax. Thus, similar to

UCMs, the Syntax Map helps domain experts to design the abstract syntax by considering the

usages (or relationships) of each concrete syntax element.

A Syntax Graph [Taylor, 1961] is represented in a directed graph and also called a syntax

diagram, or syntax chart. The syntax graph was first used to document the syntax of ALGOL 60

in a condensed form for reference during compiler development. The syntax graph is similar to a

flow chart, which can represent flow. It is designed to be able to define language constructs as

metalinguistic formulas, which consist of metalinguistic variables and basic symbols. The syntax

graph helps in checking the syntax of a program and can be used to train programmers. Because

the syntax graph is useful to illustrate syntax structure and/or data structure visually, it is used to

illustrate the syntax for several different contexts, such as SQL [IBM Database Fundamental;

Oracle Syntax Diagram] and web services [SharePoint 2010 REST]. Similar to the syntax graph,

the Syntax Map can also be used to document abstract syntax or illustrate syntax structure. The

Syntax Map can be used as an input in order to develop a graphical DSML through

transformation.

54

3.7 Conclusion

Requirements are key artifacts for developing and evaluating a software system and, thus,

many researchers and practitioners have invested much time and effort to develop and manage a

good set of requirements. For instance, the Institute of Electrical and Electronics Engineers

(IEEE) define standard guidelines and processes for developing and managing requirements,

such as the IEEE Recommended Practice for Software Requirements Specifications (IEEE Std

830-1998). However, specifying and maintaining quality requirements are not easy tasks because

requirements are gathered through informal methods (e.g., interviews and brain storming) and

are often described using natural languages, which are inherently ambiguous. To address these

issues, researchers and practitioners have proposed many approaches, methods, and tools.

In this chapter, we presented a semi-formal modeling approach (named Syntax Map) for

specifying the requirements of DSMLs. The requirements for a DSML should describe all three

components of the language (i.e., abstract syntax, concrete syntax, and semantics). Domain

experts need to specify consistent and verifiable requirements of a DSML of three components

by referring to appropriate guidelines and methods. To address this need, Syntax Map offers a set

of graphical notations for specifying the requirements of a DSML. In addition, Syntax Map

offers several advantages, as follows:

 Syntax Map encourages domain expert involvement. One of the issues for quality

software development is that domain users are inadequately involved in

requirements elicitation. In addition, domain experts may not have expertise for

55

describing their requirements using traditional notations suitable for computer

scientists. To encourage domain expert involvement in describing quality

requirements, a Syntax Map provides a small set of graphical notations that can

assist domain experts in describing a DSML based on the usage scenarios of each

language.

 A Syntax Map helps domain experts and programming language development

experts to verify the requirements of a DSML. With a Syntax Map, the

requirements of a DSML are described by classifiers and their usage scenarios.

This allows domain experts to describe the requirements directly related to each

DSML.

 Each path in a Syntax Map represents a logically meaningful modeling unit. By

breaking the requirements of a graphical DSML into several logically meaningful

modeling units, domain experts and programming language development experts

can share their understanding about the DSML they are developing. In addition,

each modeling unit helps domain experts and programming language

development experts to find missing and/or redundant requirements of a DSML.

56

CHAPTER 4

METAMODEL DESIGN PATTERNS

Software reuse helps to develop quality software while shortening development time and

minimizing investment [Krueger, 1992; Mockus, 2007; Mohagheghi and Conradi, 2008].

Recently, design patterns have been adopted widely as a type of software reuse, especially for

design reuse, because they reflect the experience and knowledge of designers who have

successfully solved recurring problems in different contexts. Similarly, even though DSMLs are

developed to be used for a specific domain, there exist recurring problems when designing

modeling languages regardless of the domains of interest. Thus, extending the notion of design

patterns to metamodel design can contribute to the design quality of a metamodel. In addition,

metamodel design patterns are able to guide metamodel inference.

In the MLCBD approach, the abstract syntax (or metamodel) is inferred by the

Metamodel Inference Engine on the graph representation with the concrete syntax (see Chapter

5). Generally, metamodel inference can be considered a special case of inductive learning, which

induces output by learning from examples [Higuera 2005; Michalski, 1983]. To infer a quality

metamodel, the inference engine requires a large set of training data, which contains positive

examples (i.e., a set of data that belongs to the target) and negative examples (i.e., a set of data

that does not belong to the target), but preparing such training data is challenging in practice

[Kirsopp and Shepperd, 2002; Cho et al., 2011]. To address the issue of preparing training data

57

for inductive learning, we introduce the notion of metamodel design patterns and how those

patterns assist in generating a basic training data set.

4.1 Approach of Metamodel Design Pattern Mining

Metamodel design patterns extend the notion of design patterns onto metamodel design in

order to provide solutions for recurring problems when designing a metamodel. To mine

metamodel design patterns, we took the following steps [Cho and Gray, 2011]:

 Step 1 - Context setting: To identify issues of metamodel design, we reviewed

the concrete syntax of several DSMLs and modeled their commonality and

variability. Because complete DSMLs are challenging to obtain from industrial

settings, we include GPMLs such as UML diagrams, assuming that each diagram

can be tailored for a specific domain. A feature model [Kang et al., 1990] was

used to summarize our understanding of commonality and variability in the

DSML examples that we analyzed.

 Step 2 - Identification of metamodel design problems: Based on the feature

model that was created from the analysis of DSML concrete syntax, we observed

several metamodel design challenges. To derive the recurring metamodel design

idioms, we focused on the commonalities in the DSML feature model. These

commonalities represent a few of the common features at the core of

metamodeling.

58

 Step 3 - Metamodel design pattern creation: Based on the identified problems

from Step 2, we searched and analyzed relevant metamodels and created a

metamodel design pattern for each problem identified.

4.1.1 Context Setting

To identify the commonly recurring metamodel design problems, we examined the

concrete syntax of several DSMLs (see Table 4.1 for example domains), with a specific focus on

classifiers and relationships. To generalize the concrete syntax of DSMLs, we assume that most

modeling languages commonly use a Box-and-Line style, even though there is some

disagreement in the community on how to interpret and understand the syntax and semantics of

graphical languages [Balakrishnan and Reps, 2010; Kopp et al., 2009; Petre, 1995]. Typically,

Boxes represent the instances of the domain concepts such as key functionalities or behaviors,

and Lines that connect Boxes describe how the connected Boxes communicate or are related to

each other syntactically and semantically. The key benefit of using the Box-and-Line style is its

simplicity, and thus, many modeling languages inherently contain the notion of Box-and-Line

even though they are realized with different concrete syntax. For example, Petri Nets define four

basic symbols (i.e., Places, Transitions, Directed arcs, and Marks) to model and analyze

reachability, liveness, and boundedness of concurrent discrete event systems [Murata, 1989;

Ouardani et al., 2006]. Places and Transitions, denoted by circles and rectangles (or bars),

correspond to Boxes; Directed arcs, represented by arrows, correspond to Lines.

59

Table 4.1 Listing of Example Domains for Representative DSMLs

Domain Diagrams Brief Description
Key Modeling

Elements
Containment/

Nesting

Relationship

Style/
Boundedness

Concurrent
Discrete

Event System
Modeling

Petri Net
Modeling systems with
concurrency and
resource sharing

Place, Transition
(C), Directed Arc
(R)

A N Directed Closed

Data
Modeling

ERD
Model the logical
structure of database

Entity(C),
Relation(R)

N N Directed Closed

Project
Management

Gantt
Chart

Model project activities
with relevant
information (i.e.,
duration, cost, …)

Task(C),
Predecessor (R)

N N Directed Open

PERT
Chart

Identify the critical
path of the project by
modeling the sequence
of tasks

Task(C), Directed
arcs (R)

N N Directed Closed

Electronic
Circuit
Design

Schematic
Diagram

Represent how
electronic components
are connected with
others

Component (C),
Line(R)

N A Undirected Closed

PCB
Layout

Show the placement of
electronic components
on printed circuit board

Hole (C), Line (R) N N Undirected Closed

SW Design

Flowchart
Model process or
algorithm

Symbols (C),
Connector(R)

N N Directed Closed

Component
Diagram

Represent static
structure of
components and their
relations

Component,
Interface, Port (C),
Connector (R)

A A (Un)Directed Both

UseCase
Diagram

Describe system
functionalities or
behaviors with
UseCase and Actor

UseCase, Actor
(C), Relation (R)

N A
(Un)Directed

Typed
Closed

Class
Diagram

Describe the static
structure of the system
in terms of classes

Class (C), Relation
(R)

N N
(Un)Directed

Typed
Closed

60

Based on this observation, prior to identifying metamodel design patterns, the concrete

syntax of DSMLs should be identified and generalized from model instances. In particular, we

paid close attention to what and how many modeling entities are used in DSMLs, and what and

how the relationships link modeling elements both syntactically and semantically.

4.1.2 Identification of Metamodel Design Problems

Based on the analysis of existing DSMLs, we identified the commonality and variability

among several DSMLs and derived a feature model as shown in Figure 4.1.

Figure 4.1 Feature Model of DSML Concrete Syntax

Four major features (i.e., Classifier, Relationship, Style, and Boundedness) are defined as

mandatory features. There are two other features (i.e., Containment and Nesting), which describe

characteristics of a classifier, that are defined as optional features. In addition, Sub features of

61

Type, Orientation, Line Ends, and Boundedness are defined as an alternative feature because a

relationship can have only one kind of Type, Orientation, Line ends, and Boundedness.

Based on the feature model in Figure 4.1, we derived the following questions that relate

to metamodel design challenges:

 How to design a metamodel if the concrete syntax of the DSML consists of simple

boxes and lines? This question will examine how to design a metamodel for a

very primitive concrete syntax, which consists of classifiers and association

relationships. Thus, the solution for this problem will be the base metamodel, and

metamodels for complex DSMLs will be designed by extending this base

metamodel.

 How to design or evolve a base metamodel if the concrete syntax is more complex

(e.g., classifiers are linked with several different types of relationships)? This is

generally required for both GPMLs and DSMLs. For example, in a Use Case

diagram, a Use Case can be linked with other Use Cases that include or extend the

relation. This question may also be important in the design of DSMLs, which

heavily depend on relationships between classifiers to describe domain

knowledge.

 How to represent boundedness of a relationship? Generally, most DSMLs

implicitly enforce that both ends of a relationship are bounded to classifiers to

represent which classifier drives a behavior and which classifier reacts to the

action. In some cases, one end of the relation can be open. A DSML for

representing chemical structure [Bentley et al., 1987] can be a good example for

62

this case because some chemical structures have lone pairs of electrons, which are

not involved in chemical bond formation, as well as bonding pairs.

 How to design a metamodel to represent containment and nesting? Some DSMLs

may contain one or more types. Petri Nets and Activity Diagrams are examples of

languages that have containment. As mentioned above, Petri Nets are defined

with four modeling elements (i.e., Places, Transitions, Directed Arcs, and Marks).

Places represent the pre- and post-state of a system by transition, and a transition

shows the place where events occurr. Directed arcs show the direction of a

transition. Transitions between places are determined by the contained number of

tokens in a place and are fired when one or more start places, linked to the same

transition, contain enough tokens to satisfy the firing condition. Nesting can be a

special case of containment and used to control the level of abstraction by

organizing classifiers hierarchically.

4.2 Identification of Metamodel Design Patterns

Based on the questions described in Section 4.1.2, we introduce a set of solutions in this

section. The solutions are presented by investigating several metamodels, including UML. We

use object-oriented notations, such as those used in class diagrams, to represent metamodel

designs.

4.2.1 Metamodel Pattern for Base Metamodel

Extension to a base metamodel is proposed as a candidate solution for the first question

related to metamodel design when the concrete syntax consists of boxes and lines. Consideration

63

of metamodel design for the simple Box-and-Line style DSMLs is important because this style

may be used when requirements of a DSML are captured at an initial sketch level, which may

occur at the early stage of DSML development. This issue emerges when a domain needs to be

modeled with a very high level of abstraction.

In the Box-and-Line style, Boxes are generalized as a set of classifiers and Lines are

mapped to relationships. As a relationship normally links two classifiers, one for the source

classifier and the other for the target classifier, the classifier and relationship are linked with two

association relationships, source and target.

Multiplicity is assigned to the association in order to specify the number of participating

instances. In addition, it can also be used to describe the boundedness of a relationship. For

example, Figure 4.2(a) shows the relationship links for two classifiers with source and target,

which denotes the situation where at least one source and target exist due to both the multiplicity

of source and target being specified as one-to-many. On the contrary, in Figure 4.2(b), the

multiplicity of source and target is set to one-to-many and zero-to-many, respectively. This

means that there exists at least one source, but the target may or may not exist in the relationship.

Figure 4.2 Base Metamodel Design Pattern

64

4.2.2 Metamodel Pattern for Typed Relationships

Associations represent a common relationship type in DSMLs. However, several types of

relationships may exist to enrich the semantics between linked model elements. For example, a

Use Case diagram has two typed relationships, such as include and extend. A Class Diagram has

three typed relationships (i.e., inheritance, aggregation, and composition) in addition to

association.

Several metamodel designs for typed relationships and classifiers have been presented in

the literature. Figure 4.3(a) is from the UML Superstructure Specification v2.4 [UML

Superstructure], and Figure 4.3(b) is simplified from Ouardani et al. [Ouardani et al., 2006].

Figure 4.3 Metamodel Design Pattern for Typed Relationships

(adapted from [Ouardani et al., 2006] and [UML Superstructure])

Although the number of participating elements is equal, the two metamodel designs,

which are shown in Figure 4.3., are different in two key ways: linked elements and a typed

65

relationship to the linked metamodel elements. First, when looking at the linked elements, both

metamodels are designed to inherit typed relationships (i.e., include and extend) from the

common parent relationship. However, in Figure 4.3(a), each typed relationship is linked with a

classifier, but in Figure 4.3(b) the classifier and relationship are linked to each other instead of

linking the typed relationships.

In addition, the two metamodels use different typed relationships between the classifier

and relationship. In Figure 4.3(a), two different relationships, composition and association, are

used to link between classifiers and typed relationships (i.e., include and extend). In this

metamodel, a composition relationship may be introduced to describe that the source classifier is

strongly dependent on the target classifier. But in Figure 4.3(b), the association relationship is

used for both source and target links. Typically, association is used to link classifiers weakly, and

composition is used to describe a part-whole relationship. However, because the two

relationships are relevant to each other and the semantics of the two are defined slightly

differently among OO modeling approaches [Albert et al, 2003], it is difficult to say which one is

more appropriate. In general, we believe that association is to be preferred to composition if

there is no clear part-whole relationship.

4.2.3 Metamodel Pattern for Containment

Containment represents a part-whole hierarchy and is used to raise the level of

abstraction by grouping large and complex model elements with a simple element. The

Composite design pattern [Gamma et al., 1995] is commonly used for designing containment

needs, but containment also can be designed without using the Composite design pattern. Three

different containment metamodel designs are shown in Figure 4.4.

66

Figure 4.4(a) uses the Composite design pattern to design a metamodel that represents

containment. The design leverages the benefits of design patterns, such as facilitating the

addition of new kinds of classifiers and recursive composition. Figure 4.4(b) represents

containment with a unary composition relationship. Although Figure 4.4(b) represents a viable

design option for containment, the design is only applied for containing the same type of

classifiers and may violate the Open/Closed Principle (OCP) [Martin, 1996] when a container

needs to include new kinds of classifiers.

Classifier

co
nt

ai
ne

r

co
nt

en
t

0.
..1 1

Classifier

Container
container

content

0...1

0…*

(a) Modified
BPMN p119

(c) Modified from Q-
ImPrESS Project p49

(b) Excerpted from UML
Infrastructure V 2.4

Composite
Classifier

Classifier

1
1,…,*

Container

*
1

Figure 4.4 Metamodel Design Pattern for Containment

(adapted from [UML Infrastructure], [OMG BPMN], and [QImPrESS])

In Figure 4.4(c), the classifier is inherited from Composite Classifier, which represents an

abstract classifier that can have sub-classifiers. In addition, a classifier is linked with the

Container through an association relationship. The intent of the design is to treat the container

differently from the contents by introducing Container, which may have different characteristics

than other classifiers. For example, a deployment diagram (or allocation diagram) may be used to

illustrate how physical resources (i.e., storages, processors, and network interfaces) are allocated

67

onto execution environment vertices. Physical resources are often composed of the same or other

physical resource (i.e., a network interface may have a processor and storage to manage network

packets) to provide their own functionality, but the instance of the composed physical resources

are treated as composite physical resources. However, vertices are composed of physical

resources to offer services, but they can be designated as a container rather than composite

entities because they are grouped logically. The advantage of the design is that containers can

specify classifiers to be contents of the container through the links between classifiers and

container.

As described above, each metamodel design has its own intent, but the metamodel design

for containment can be unified into Figure 4.4(a), which is an overly general design for

containment that has the flexibility of extension for adding new classifiers or other properties.

For example, if a container should have different characteristics that are abstract (or logical)

from classifier, an attribute may be added to the classifier class to represent that need. Moreover,

Figure 4.4(a) can represent nested containers without additional descriptions.

4.3 Application of Metamodel Design Patterns

Describing the applicability of a metamodel design pattern is an important factor in

characterizing its usefulness and promoting its understanding. The metamodel design patterns

introduced in the last section can form the basis for designing the metamodel for a DSML. The

first metamodel design pattern can be applied to design a simple Box-and-Line style DSMLs.

The second and third patterns can be used to describe metamodels that support typed

relationships and containment, respectively. In addition to these applications, metamodel design

patterns can be used for composing and inferring metamodels.

68

Metamodel composition [Karagiannis and Höfferer, 2008; Emerson and Sztipanovits,

2006; Karsai et al., 2004; Mapelsden et al, 2002; Lédeczi et al., 2001a] is a technique that creates

a new metamodel by reusing all or part of existing metamodels. To make metamodels reusable

and/or composable, the metamodels are refined to abstract metamodels that are not designed for

specific DSMLs, but capture general structures and behaviors of DSMLs. The proposed

metamodel design patterns are elicited from commonality analysis and can represent general

characteristics of DSMLs, much like abstract design patterns.

Metamodel inference is the other application area of metamodel design patterns.

Metamodel inference has recently been considered as an application of grammar inference

[Berwick and Pilator, 1987; Fu and Booth, 1986; Gold, 1967] and used to recover metamodels

from existing model instances [Favre, 2004; Javed et al., 2008; Liu et al., 2010]. To infer a

metamodel accurately, a metamodel inference engine may require a large set of training data

[Kirsopp and Shepperd, 2002]. However, having a large set of existing training data may not be

practical in many cases. To complement the lack of training data, metamodel design patterns can

be used as a supplementary aid to generate representative instances for metamodel inference

through the commonality provided by DSMLs for recurring metamodel design problems.

4.4 Related Work

Mernik et al. [Mernik et al., 2005] defined DSL development phases with five process

areas such as decision, analysis, design, implementation, and deployment. They also identified

patterns for each of those process areas. For example, either language exploitation pattern or

language invention pattern can be used to design a DSL. The language exploitation pattern is a

pattern to guide how to tailor existing General-Purpose Languages (GPLs) or DSLs. On the other

69

hand, the language invention pattern guides DSL development from scratch. Although patterns

listed and structured in [Mernik et al., 2005] are well-defined, the patterns are described at a

much higher level of abstraction and focus on more of a textual DSL development process.

Elaasar et al. [Elaasar et al., 2006] proposed the Pattern Modeling Framework (PMF) to

specify and detect patterns in MOF-compliant modeling frameworks and languages. PMF was

designed to conform to OMG’s metamodeling architecture. EPattern is the top-most layer and

represents a meta-metamodel. Metamodel patterns are specified by conforming to an EPattern

and then metamodel instances can be instantiated from metamodel patterns. EPattern is also

applied to detect patterns. To detect metamodel patterns, the detection algorithm checks whether

each EPattern element conforms to a defined type and verifies associated constraints.

Schäfer et al. [Schäfer et al., 2011] proposed a pattern-based approach to develop a

metamodel. To create a metamodel, the approach applied patterns in a stepwise manner from

requirements elicitation to metamodel definition. For example, language elements are identified

at the requirements phase and modeled in a Use Case diagram. The language elements are

associated with appropriate language patterns to form an intermediate metamodel. Additional

language patterns are applied to the intermediate metamodel until the approach can build a

complete metamodel.

70

CHAPTER 5

INTERMEDIATE DESIGN SPACE

This chapter describes the main contribution of this dissertation for applying by-

demonstration concepts across the modeling language development lifecycle. The overall

process of the MLCBD framework is depicted in Figure 5.1.

Design domain
concepts with
shapes

OS

Process

Thread Task

Synchronization

Mutex Semaphore

... ...

...Process
Conditional

Variable

Recording and
optimizing user
actions

Intermediate
Design Space

Model Space
Exploration

Verify

Feedback

Figure 5.1 Overall Process of MLCBD

The framework consists of two parts: the front-end and back-end modules. The front-end

module is designed to address the first and second DSML challenges (i.e., preference of office

tools for domain modeling and lack of familiarity with metamodeling environments). The front-

71

end module provides an environment where domain experts can model concepts in the domain

using free-forms or sketch-level forms. The back-end module implements algorithms to resolve

the remaining DSML development challenges, such as capturing concrete syntax, inferring

abstract syntax, and formalizing static semantics based on the output of the front-end module.

The front-end module consists of two components: the modeling canvas and the

recording engine. The main issue of the first DSML development challenge is to recognize new

shapes that are drawn informally using free-forms and/or sketch-level shapes, for which domain

experts can understand without additional information. To support free-form shapes, Chen et al.

[Chen et al., 2008] developed a software design tool named SUMLOW to capture and formalize

sketch-level UML constructs. SUMLOW used a gesture recognition technique to recognize

sketch-level modeling elements progressively and formalize them while minimizing user

interaction. Ossher et al. [Ossher et al., 2010] introduced the concept of flexible modeling tools,

which use predefined free-form shapes for modeling pre-requirements. They built a prototype to

combine the advantages of office automation tools and traditional modeling tools.

In the MLCBD framework, a modeling canvas supports a combination of these two

approaches. The framework provides pre-defined modeling elements as a default, as well as a

shape authoring tool. To model a domain with free-form shapes, end-users need to draw shapes

that represent their domain and register them as pre-defined shapes using an authoring tool. In

addition, the modeling canvas is integrated with the recording engine to capture user actions. The

recording engine captures user actions; in particular, it records sequences of user actions that

demonstrate domain concepts on the canvas. The recording engine also optimizes the captured

actions by pruning unnecessary actions.

72

The back-end module, as shown at the bottom of Figure 5.1, consists of two major

components: the Intermediate Design Space and Model Space Exploration. The core functions of

Intermediate Design Space are (1) initially inferring an intermediate metamodel and semantics

(i.e., static constraints) using a set of domain model examples, and then (2) completing the

metamodel and static semantics based on feedback from Model Space Exploration. After the

intermediate metamodel and semantics are generated by the inference engine, the Model Space

Exploration component generates a set of model instances and then presents the generated model

instances to a domain expert who plays the role of an oracle to offer feedback about which model

instance correctly reflects the notions of the domain and which do not. The information provided

by the domain expert and a set of model instances are fed back to the Intermediate Design Space

to adjust the metamodel and static semantics that are inferred at the previous step. Finally, the

metamodel and static semantics are specified by iterating between the Intermediate Design Space

and Model Space Exploration components until the output of the approach meets the user

confirmed requirements of the target DSML.

This chapter specifically focuses on the Intermediate Design Space. The details of the

processes and algorithms required for inferring a metamodel and its static constraints are

described in the following sections.

5.1 Introduction to Intermediate Design Space

The main purpose of the Intermediate Design Space is to infer the metamodel and

semantics based on a set of domain model examples. A set of domain model examples is a small

number of models that the domain expert provides, and each domain model example describes

the particular notions and intents of a domain using the front-end module. Although the approach

73

offers a modeling environment, creating a large set of domain model examples is a tedious and

error prone process. As a result, domain experts may tend to demonstrate only a few of the

positive domain models. Thus, the goal of the Intermediate Design Space is to generate a

metamodel and its associated static constraints from a small set of domain model examples,

which satisfy the intent of a domain expert.

As shown in Figure 5.2, the Intermediate Design Space consists of two modules: Graph

Construction and Inference Engine.

Figure 5.2 Process of Intermediate Design Space

The Graph Construction component transforms a set of domain model examples that are

created by domain experts into a set of attributed graphs. This is done prior to inferring the

metamodel. During the process of graph construction, concrete syntax elements are identified (or

verified) and appropriate attributes are appended to the identified concrete syntax by domain

experts. After a set of attributed graphs are created from the set of domain model examples, the

74

graphs are passed into the inference engine to infer the metamodel and its associated static

constrains. When inferring a metamodel, the inference engine refers to metamodel design

patterns (please see Chapter 4) to complement the lack of a large number of domain model

examples. The following sections describe the details of each step for inferring a metamodel and

its static constraints.

5.2 Concrete Syntax Identification

Concrete syntax describes the concepts of a domain in terms of a human-readable format

(e.g., textual, graphical, or both). In a programming language, concrete syntax serves as the basis

of a parser that translates a program into an abstract syntax tree unambiguously using the tokens

and keywords of the language. However, in modeling languages, concrete syntax is often

described using graphical symbols.

Because the concrete syntax describes how modeling concepts (or abstract syntax) are

rendered with graphical and/or textual elements, the Concrete Syntax Identifier finds unique

modeling elements, which are modeled as vertices in a graph, by traversing each graph

representation. The identified unique modeling elements become the candidate concrete syntax

after checking against unique symbols that are captured during domain expert demonstration. By

doing this, Concrete Syntax Identifier can verify that all unique symbols are captured without

duplication or missing model elements. Then, the candidate concrete syntax is reviewed and

annotated by the domain expert. Initially, the candidate concrete syntax is selected with respect

to the uniqueness of the modeling elements (e.g., shapes and styles), such that different names

and labels can be associated to each modeling element. Thus, the MLCBD framework requires

interaction with the domain expert to review the candidate concrete syntax and annotate each

75

unique modeling element with a generalized name that can represent the notion of each modeling

concept precisely and clearly. If each unique modeling element has a label, the type of the label

(e.g., number or string) also needs to be specified by the domain expert.

During the review and annotation of candidate concrete syntax, domain experts may be

asked to assign additional information for links between example model elements, such as

directional information. A link is used to connect two or more classifiers and provides a static

semantic relationship between connected classifiers. The direction of a link adds constraints

between connected classifiers, such as direction of data or control flow. For example, a

dependency relationship in UML is used to represent how a change in a model element may

affect the semantics of dependent modeling elements. The arrow of a dependency specifies the

direction of a relationship between connected modeling elements.

For example, domain experts who design circuits for signal processing may demonstrate

their domain similar to Figure 5.3. As shown in Figure 5.3, the domain is described with several

components: Step, Transfer Fcn, Scope, Adder, Gain and directed arrow. The Step is a signal and

shows zero for negative and one for positive. The Transfer Fcn modifies its input signal and

produces a new signal as output. The Scope is a sink block used to display a signal much like an

oscilloscope. The Adder generates a signal by adding two input signals, and Gain increases an

input signal by a given factor. Finally, the directed arrow shows flow of signals.

In the diagrams of Figure 5.3, the Step, Adder, and Gain are shown once in each process

control model. But, the others (e.g., Transfer Fcn, and Scope) are shown multiple times. For

example, the Scope is shown two times with different names (e.g., Scope and Scope2) in Figure

5.3(d). The Transfer Fcn is also shown twice in Figure 5.3(e) named with PI Controller and

Plant. Based on the concrete syntax analysis, six unique modeling elements (e.g., Step, Transfer

76

Fcn, Scope, Adder, Gain and directed arrow) are selected as candidate concrete syntax after

eliminating duplicated symbols.

(a)

(b)

(c)

(d)

(e)

Figure 5.3 Domain Models of Process Control [Simulink]

The list of candidate concrete syntax and its related information is shown in Table 5.1. A

candidate concrete syntax could have multiple names and labels because roles and

responsibilities of the concrete syntax could be different for each model instance.

Domain experts are asked to review and annotate each symbol with generalized names

and labels after the candidate concrete syntax is captured. The possible result of the annotation is

shown in Table 5.2. For example, the symbol Scope appears in each diagram. In Figure 5.3(d),

two Scope symbols are used to display the output of Transfer Fcn with two different names,

77

Scope and Scope2. When capturing a unique modeling element, only one Scope symbol is

captured but its names (Scope and Scope2) are associated as attributes.

Table 5.1 Candidate Concrete Syntax

 Instance Name Label

Step

Gain 2.5

Scope, Scope2

Transfer Fcn, PI Controller,
Plant 1

1

s , 42

1
2 ss , 1

1

s , s

s 2

When domain experts review candidate concrete syntax, they review associated attributes

(e.g., name and label) and then annotate each modeling symbol with the name that represents the

notion in the domain, as well as the assigned type for the label. In addition, domain experts are

asked to specify mandatory attributes such as the type of the symbol and directional information.

For example, the Transfer Fcn is specified as classifier, and string type attribute Name is

associated to the Transfer Fcn. In addition, two string-type attributes (i.e., Numerator

coefficients and Denominator coefficients) are defined to specify coefficients of Transfer Fcn’s

numerator and denominator, respectively.

78

In case of an arrow, the link type is defined as an association and directional information

is set to True, which means the link is directional. Therefore, if a domain expert specifies a

symbol as an association, it implies that the symbol will be used as a link between two or more

classifiers, and domain experts are asked to assign directional information.

Table 5.2 Annotated Concrete Syntax

 Name Attribute

Step

Type = Classifier
Name = String

StepMax = Integer
StepMin = Integer

Step = Integer

Gain

Type = Classifier
Name = String
Gain = Integer

Scope

Type = Classifier
Name = String

 Adder

Type = Classifier
Name = String

Operand Left = Double
Operand Right = Double

Transfer Fcn

Type = Classifier
Name = String

Numerator coefficients = String
Denominator coefficients = String

 Link
Type = Association

Name = String

Directional = True

79

5.3 Graph Construction

Graph transformation is one of the key technologies of MDE because it can assist in the

creation, editing, and analysis of a model [Andries et al., 1999; Bézivin, 2005; Gerber et al.,

2002]. A graph and its transformation are widely used in the software modeling community and

are also a proven approach for representing a high-level programming language formally, which

can then be used to generate other types of artifacts by applying production/replacement rules

through graph rewriting [Blostein and Schürr, 1999; Saxena and Karsai, 2010]. Transforming

platform-independent models into platform-specific models is a common example of graph

transformation [Mens and Gorp, 2006]. In our approach, graph constructions are used in two

places: the Graph Builder and Graph Annotator phases.

The MLCBD approach uses a graph transformation in order to change the representation

of a set of domain model examples into the graph that is used for inferring the metamodel and its

associated static semantics, rather than transforming one model to another by applying rules. As

shown in Figure 5.2, the process for creating a DSML begins with the transformation of a set of

domain model examples into graph representations.

Using the Graph Builder, a set of domain model examples is transformed into a set of

graphs. The goal of the Graph Builder is to generate a representation-independent model from a

set of domain model examples that are created by a domain expert who demonstrates domain

notions using the modeling canvas. Because DSMLs can be developed in various languages,

domain models can be described with different representations. For example, to define the syntax

of a DSML and maintain model instance data, a DSML may use different file representations

80

such as XML, text, and binary forms. Although DSMLs may use the same file representation, the

schema representing the metamodel for the DSML can be structured differently for each DSML.

Thus, the Graph Builder reads a set of domain model examples and transforms them into the

corresponding internal graph representation, which are represented as G = (V,E,s,t), where V is a

set of vertices, E is a set of edges, and the functions s, t:E V, where s is the source and t is the

target functions.

To generate a graph representation, the Graph Builder maps each modeling element (or

classifier) into a vertex and transforms links into edges. In addition, the Graph Builder generates

an adjacency matrix that is used to specify the adjacency between modeling elements. The names

of the source modeling elements are listed in the left-most column and the names of the

destination modeling elements are listed in the first top row. If a cell in the matrix is marked 0, it

indicates that there is no relationship between the source and destination modeling elements. If a

cell value is larger than 1, it means that the source modeling element can be linked with the

destination modeling elements. Figure 5.4 shows the results of the Graph Builder for process

control models, which are depicted in Figure 5.3, as well as the corresponding adjacency matrix.

As shown in Figure 5.4, the Graph Builder generates undirected graphs because only

limited link information (e.g., name and participated classifiers) is provided when transforming

the domain model examples into graphs. Therefore, values of the adjacency matrix that represent

dependencies between the source and destination are also marked based on the undirected graph.

For example, when looking at the adjacency matrix for the graphs in Figure 5.4(b) and (c),

Transfer Fcn in the second row is marked as having a relationship with Step, even though

Transfer Fcn can be the only destination of Step.

81

(a)

Des
Src

Step Scope

Step 0 1
Scope 1 0

(b) Name = Step Name = Transfer Fcn

Label =
42

1
2 ss

Name = Scope Des
Src

Step
Transfer

Fcn
Scope

Step 0 1 0
Transfer

Fcn
1 0 1

Scope 0 1 0

(c)

1

1

s

(d)

1

1

s

Des
Src

Step
Transfer

Fcn
Scope Scope2

Step 0 1 0 0
Transfer

Fcn
1 0 1 1

Scope 0 1 0 0
Scope2 0 1 0 0

(e)

s

s 2
42

1
2 ss

Des
Src

Step N1 Gain PI Controller Plant Scope

Step 0 1 0 0 0 0
N1 1 0 1 0 1 0

Gain 0 1 0 1 0 0
PI

Controller
0 0 1 0 1 0

Plant 0 1 0 1 0 1
Scope 0 0 0 0 1 0

Figure 5.4 Results of Graph Builder

82

After a set of domain model examples is transformed into the internal graph

representation, the Concrete Syntax Identifier defines the concrete syntax of the DSML in a

semi-automated manner (i.e., this requires interaction with a domain expert for annotation). After

the concrete syntax is given as an example and annotated, the Graph Annotator transforms the

outputs of the Graph Builder, a set of undirected graphs, into the attributed graphs by combining

the information about the concrete syntax. An attributed graph (AG) [Ehrig et al., 2004] is a

graph where some attributes are associated to vertices and edges.

The attributed graph (AG) can be defined as AG = (G, D) where G is a normal

(un)directed graph, G=(V,E,s,t), and D is the data signature. The data signature defines data and

operations. It is defined as D = (SD, OPD) where SD is the type (e.g., Char, String, Nat) and OPD is

constants and/or operations (e.g., in, out, inout, and return).

In our approach, the Graph Annotator converts each vertex, V, into an attributed vertex

that has a pair, (name, attrs), where name is a generalized name that represents each vertex

uniquely in the graph, and attrs is a set of attributes attached to the vertex.

In addition, the Graph Annotator converts edges into attributed edges that have a 3-tuple,

(attrs, src, dst), where attrs is a set of attributes attached to the relationship such as type of

relationship and directional information, src and dst are a source and destination vertex linked by

the edge, respectively.

To generate a graph representation with concrete syntax, the Graph Annotator takes the

following three steps. First, all vertices and edges are renamed with the matched concrete syntax.

The name of the vertices and edges are initially assigned with arbitrary instance names, and the

other instance names are maintained as an attribute. The instance names are provided by the

domain experts when they review and annotate the candidate concrete syntax. After the concrete

83

syntax is defined, the arbitrary names need to be renamed with their corresponding concrete

syntax name. Second, the Graph Annotator checks the link information, which is also added

when the domain expert annotates the concrete syntax, and determines whether to change the

graph into a directed graph. Initially, the graph representation is constructed using an undirected

graph because only limited link information (e.g., name and participated classifiers) is provided

when transforming the domain model examples into a set of graph representations. If a domain

expert adds additional pieces of information about links (including the direction of a link) at the

concrete syntax identification phase, the Graph Annotator transforms the initial graphs into the

attributed graphs. Finally, the Graph Annotator completes the graph generation by merging

vertices that have the same concrete syntax name.

Figure 5.5 shows the result of the Graph Annotator for the graphs shown in Figure 5.4.

As the domain expert annotates each unique modeling element as shown in Table 5.2, the initial

graph representations are transformed into attribute graphs that have at least two attributes, Type

and Name.

For example, the graph shown in Figure 5.4(a) is changed from an undirected graph to a

directed graph because the link is specified as directional, and five attributes (e.g., Type, Name,

StepMin, StepMax, and Step) are associated to vertex Step to describe characteristics of the step

function. Similarly, the two attributes Type and Name are associated to vertex Scope. While

rewriting the initial graph representation, graphs shown in Figure 5.4(b), (c) and (d) are merged

into one graph as presented in (b) because the two graphs shown in Figure 5.4(b) and (c) are

identical in terms of the graph representation and adjacency matrix.

Along with rewriting graphs, the Graph Annotator updates the adjacency matrix. As the

domain expert annotates the arrow as a directed association, an adjacency that violates the

84

direction is set to zero. For example, an adjacency from Transfer Fcn to Step is reverted to zero

from one because signals can only flow from Step to Transfer Fcn.

When rewriting the graph shown in Figure 5.4(d), the resulting graph is also the same as

the graph shown in (b), but its adjacency matrix is slightly different to indicate that Transfer Fcn

can have two Scope outputs. To indicate this, the adjacency from Transfer Fcn to Scope is set to

2 instead of 1. The last graph shown in Figure 5.4(e) is rewritten as (c). N1, which is arbitrarily

named for Adder by the system, is renamed to Adder by annotation.

In addition, the PI Controller and Plant are annotated to Transfer Fcn, and the two

vertices are merged into one and named Transfer Fcn because they are mapped to the same

concrete syntax. A recursive link is added representing that Transfer Fcn can be linked with

some other Transfer Fcn as shown in Figure 5.5(c). Along with modifying the graph, the

adjacency matrix is reduced because PI Controller and Plant are merged to Transfer Fcn. In

addition, the adjacency value from Transfer Fcn to other modeling elements is updated

considering the link direction.

85

(a)

 Des
Src

Step Scope

Step 0 1
Scope 0 0

(b)

 Des
Src

Step Transfer Fcn Scope

Step 0 1 0
Transfer Fcn 0 0 2

Scope 0 0 0

(c) Des
Src

Step Adder Gain
Transfer

Fcn
Scope

Step 0 1 0 0 0
Adder 0 0 1 0 0
Gain 0 0 0 1 0

Transfer Fcn 0 1 0 1 1
Scope 0 0 0 0 0

Figure 5.5 Results of Graph Annotator

86

5.4 Metamodel Inference

After a set of domain examples are transformed into a set of graph representations with

concrete syntax, the Metamodel Inference Engine infers metamodel and static constraints based

on the graph representation. To infer a metamodel, the Metamodel Inference Engine loads each

graph representation and then compares the loaded graph representations against a set of

metamodel design patterns in order to determine if the graph representation matches a known

metamodel pattern. For example, the graph representation of the second process control model

instance, shown in Figure 5.3(b), consists of three concrete syntax elements: classifiers (Step,

Transfer Fcn and Scope) and a relationship (Link). Classifiers and relationships are mapped onto

vertices and edges as shown in Figure 5.5(b). Comparing this graph representation with the set of

metamodel design patterns, the Metamodel Inference Engine will find the base metamodel

pattern that best matches the graph representation. As shown in Figure 5.6(a), the base

metamodel design pattern is designed for DSMLs that consist of simple classifiers and

relationships, and can be transformed into three different graph representations as shown in

Figure 5.6(b). The top part of Figure 5.6(b) represents two different classifiers that are linked

with a relationship, and the middle part describes that two or more of the same classifiers are

linked with a circular relationship. The bottom part depicts that the two same classifiers are

linked to different classifiers.

While the Metamodel Inference Engine determines the design patterns that are matched

to each graph representation of domain model examples, the engine combines each graph

87

representation of the domain model examples and generates a single graph representation that

represents the entire set of domain model examples.

source

target

1,…,*

1,…,* *

*

(a) Base Metamodel
Design Pattern (b) Graph Representation

Classifier1 Classifier2

Classifier1 Classifier3Classifier2

Classifier3

Classifier2

Classifier1

Classifier3

Figure 5.6 Base Metamodel Design Pattern and its Graph Representation

When combining each domain model example, the type of each edge is classified based

on the appearance of a vertex. For instance, vertex Step and Scope are classified as mandatory

because they are used in every graph representation. However, vertex Adder and Gain are

optional because they are not present in some domain model examples (e.g., Figure 5.4(a), (b),

(c), and (d)).

The result of the graph combination is shown in Figure 5.7. The merged graph is similar

to the graph in Figure 5.5(c), but a link between vertex Step and vertex Scope is added in order to

cover the process control model that has only Step and Scope, such as Figure 5.3(a). In addition,

a dotted line is used between other vertices (e.g., Adder, Gain, and Transfer Fcn) to represent

that State can be used optionally in process control models.

88

After all graph representations are combined into a single graph, the single graph

representation also serves as input to the Metamodel Inference Engine to find the matched

metamodel design patterns. Besides combining the graph representations, the Metamodel

Inference Engine determines the cardinality between vertices. The identified cardinality is

maintained using a cardinality matrix, as shown in the bottom of Figure 5.7(c).

(a) Combined Graph Representation

Des
Src

Step Adder Gain Transfer Fcn Scope

Step 0 1 0 0 1
Adder 0 0 1 0 0
Gain 0 0 0 1 0

Transfer Fcn 0 1 0 1 2
Scope 0 0 0 0 0

(b) Adjacency Matrix

Des
Src

Step Adder Gain Transfer Fcn Scope

Step 0 0,1 0 0,1 1,2
Adder 1,1 0 1,1 0 0
Gain 0 1,1 0 1,1 0

Transfer Fcn 0,1 0,1 0,1 0,1 1,2
Scope 1,1 0 0 1,1 0

(c) Cardinality Matrix

Figure 5.7 Combined Graph Representation: Adjacency Matrix and Cardinality Matrix

89

Similar to the adjacency matrix, the left-most column represents the source vertices and

the top row lists the destination vertices. Values in each cell describe the minimum and

maximum appearance of the concrete syntax in the graph. The matrix is initially set to 0 for the

minimum and maximum value of each cell. When the first model instance, Figure 5.3(a), is

processed, both the minimum and maximum cardinality between Step and Scope is set to 1.

When the second model instance is introduced, the cardinality between Step/Scope and Transfer

Fcn is updated to (0,1). At this moment, the minimum cardinality between Step/Scope and

Transfer Fcn remains 0 because Transfer Fcn does not appear in the first model instance. The

matrix is finally completed by filling the cardinality between other vertices when the last model

instance is processed.

To infer a metamodel, a combined graph representation is tested over a set of graphs,

which is instantiated from metamodel design patterns in order to check (sub) graph isomorphism.

Thus, the algorithm needs to solve the one-to-many (sub)graph isomorphism problem: one

combined graph representation and many graphs instantiated from the metamodel design patterns.

To solve the issue, the algorithm extended and modified the algorithm proposed by Messmer and

Bunke [Messmer and Bunke, 1999], whose algorithm tests one-to-many (sub)graph isomorphism

in quadratic time. In order to test the (sub)graph isomorphism, the algorithm transforms a set of

reference graphs into a decision tree and then tests the input graph over the decision tree.

The Metamodel Inference algorithm consists of three parts: Instantiate_Tree(),

CreateDecisionTree(), and main (see Figure 5.8, Figure 5.9, and Figure 5.10, respectively).

Instantiate_Tree() generates a set of graphs from metamodel design patterns with size of m,

where m is the size of the vertex of the combined graph representation.

90

Figure 5.8 Metamodel Inference Algorithm: Main Algorithm

Let G be the combined graph representation, and

 M be the adjacency matrix of G and represented as M = (a1, a2, ..., am)

 where m = |V|, size of vertex in the graph G,

 and ai is the row-column element that is attached to vertex i.

Let GTD = (GTD1, GTD2, ..., GTDk) be a set of graph template

 of metamodel design patterns, and k is the number of metamodel design patterns

Measure size of vertex, m = |V|, of the combined graph

Instantiate_Tree(GTD, m)

Create the root vertex Root of the decision tree, GM if it does not yet exist.

For i =1 to k

 GM += CreateDecisionTree(Vertex Root, GTDi)

Next for

Let N = Root of GM

For i=1 to m

 Look up row-column elements that are attached to vertex N,

 and find an entry aN such that aN = ak

 if no matched element is found,

 the graph G is not isomorphic with GM, and exit with failure

 else N = NS and mark vertex N matched

Next for

Traverse GM to find the marked vertices and then transform the vertex with corresponding
metamodel design pattern.

91

Figure 5.9 Metamodel Inference Algorithm: Instantiate Tree

Figure 5.10 Metamodel Inference Algorithm: Merge Tree

Instantiate_ Tree (GTD, m)

 Instantiate GD = (GD1, GD2, ..., GDk) with size of m

 from graph templates of metamodel design patterns, GTD,

 where GDi = (GDi1, GDi2,..., GDil) is l different types of graph instances of

 ith metamodel design pattern with vertex size m

CreateDecisionTree(Vertex Root, GDi)

 Generate adjacency matrix of GDi,

 MDi = (MDi1, MDi2,..., MDil,), where dimension of MDi is m,
 and MDik = (aik1, aik2,..., aikm), where aikl is row-column elements

 that is attached to vertex l

 Let N = Root

 For l = 1 to m

 If there is successor vertex NS of N for which aikl = aNs, and N = NS

 Do next

 Else

 Generate a new vertex NS for aikl and make NS a direct successor of N.

 Set N = NS

 End if

 Next for

92

As shown in Figure 5.6, each metamodel design pattern is used as a template to

instantiate a set of graphs. CreateDecisionTree() merges graphs instantiated from

Instantiate_Tree() in order to make a decision tree. When graphs instantiated from metamodel

design patterns are passed into CreateDecisionTree(), a adjacency matrix is constructed and its

row-column representation for every graph is passed into CreateDecisionTree().

Figure 5.11 shows how the metamodel inference algorithm creates a decision tree from a

set of graphs, which are created from metamodel design patterns.

(a) Graph and Adjacency
Matrix

(b) Row-Column
Representation

(c) Decision Tree

Figure 5.11 An Example of Row-Column Representation and Decision Tree

When a graph and its adjacency matrix are passed into the metamodel inference engine,

the metamodel inference engine calculates the row-column representation of the graph from the

adjacency matrix. The result of row-column representation is shown in Figure 5.11(b), which

illustrates that the row-column representation has different dimensions depending on the vertex.

After the adjacency matrix and row-column elements are identified, CreateDecisionTree()

builds a new decision tree if it does not yet exist, or merges graphs into the existing decision tree.

93

When a graph shown in Figure 5.11(a) is passed into CreateDecisionTree(), the routine first

creates three row-column representations (i.e., a1={0}, a2={1,0,0}, and a3={1,1,0,0,0}) and then

creates a new decision tree from the small size of the row-column representation. Therefore, a

branch is created for a1={0} from Root vertex and then another branch is created from a1 for

a2={1,0,0}. Figure 5.11(c) shows the decision tree created using three row-column

representations in Figure 5.11(b). While creating the tree, each branch, which connects from one

vertex to another, is labeled with a row-column element. The row-column element associated to

the branch is used to determine whether the algorithm needs to traverse vertices further down, or

whether the input graph is isomorphic.

When a tree is created from the first graph, the Metamodel Inference Engine checks

whether the remaining graphs exist, and then expands the tree by processing the graphs if they

exist. As shown in Figure 5.6, three graphs are instantiated from the Base Metamodel Design

pattern so that the Metamodel Inference Engine has to process two remaining graphs. Figure

5.12(c) shows the decision tree when the Metamodel Inference Engine processes the middle part

of the graph in Figure 5.6(b).

Similar to the first graph, the adjacency matrix of the second graph can also be described

with a three row-column representation: a1={0}, a2={1,1,0}, and a3={0,1,0,0,0}. The first row-

column representation of Figure 5.12(a), a1={0}, is the same as the first row-column

representation of Figure 5.11(a) - the row-column representation does not make any change to

the decision tree. However, the second and third row-column representations create new

branches, as shown in Figure 5.12(c).

94

(a) Graph and

Adjacency Matrix
(b) Row-Column
Representation

(c) Decision Tree

Figure 5.12 Merged Decision Tree

After the first row-column, a1={0}, is processed, CreateDecisionTree() creates another

branch from the end of a1={0}, for the second row-column representation, a2={1,1,0}; and then,

another branch is created from a2={1,1,0} for a3={0,1,0,0,0}. The complete decision tree for the

graph representations of the Base Metamodel Design patterns shown in Figure 5.6 is the same as

Figure 5.12(c) because the row-column representations of the first instance of the metamodel

design patterns (i.e., a1={0}, a2={1,0,0}) do not affect the decision tree.

After the decision tree is created, the Metamodel Inference Engine traverses the decision

tree with the row-column representations of the combined graph, which is shown in Figure 5.7,

in order to find the matched vertex. The output of the Metamodel Inference Engine is shown in

Figure 5.13.

95

Figure 5.13 Inferred Metamodel

96

CHAPTER 6

MODEL SPACE EXPLORATION

In Chapter 5, we introduced how Intermediate Design Space infers metamodel and static

constraints from a set of domain model examples demonstrated by domain experts. However, the

inferred metamodel and semantics may not completely reflect the notion of a domain because

they are often inferred with a small set of domain model examples. As mentioned earlier, it is

challenging to expect that domain experts demonstrate a large set of domain model examples for

training the inference engine, even if there is tool support, because modeling every aspect of the

domain requires much time and effort. In addition, the example staging process can also be

mundane to domain users, especially, when it is performed just for the demonstration purposes.

Thus, Model Space Exploration is introduced as means of verification of the output of the

Intermediate Design Space. If the domain experts have modeling language development

expertise (which would be uncommon), they can verify the correctness of the inferred

metamodel and static constraints by reviewing the output of the Intermediate Design Space.

However, as the approach assumes that domain experts have only knowledge of their domain,

the MLCBD framework should provide a way to reason about the correctness of the inferred

metamodel and static constraints.

The notion of Model Space Exploration is borrowed from the area of Design Space

Exploration (DSE), which was originally introduced for hardware/software co-design. The goal

of DSE is to automate design (or find design alternatives) from a computational environment in

97

which hardware and software designers participate in design or modeling guided by a computer

system to an extent both computationally possible and desired by the designer [Neema et al.,

2003; Saxena and Karsai, 2010; Woodbury et al., 2000].

In our approach, the notion of DSE is extended to verification of the modeling language.

Model Space Exploration has been investigated as a way to verify metamodel and semantics

inference by exploring model spaces where a set of model instances are generated from the

output of the Intermediate Design Space. In addition, Model Space Exploration is applied to

identify missing notions, which need to be demonstrated by domain experts for inferring more

accurate metamodel and static constraints.

The following sections will describe the process for usage and the algorithms of Model

Space Exploration to verify the correctness and completeness of an inferred metamodel and its

static constraints.

6.1 Process of Model Space Exploration

The overall process of Model Space Exploration in the context of MLCBD is shown in

Figure 6.1. Model Space Exploration consists of two parts: Model Space Modeling and Model

Space Clustering. The role of Model Space Modeling is generating model instances from the

outputs of the Intermediate Design Space; these result in a metamodel, adjacency matrix, and

cardinality matrix. The Model Generator creates all computationally possible model instances

that represent the notion of the demonstrated domain, both positively and negatively, by

combining the output of the Intermediate Design Space with the constraint patterns.

The generated model instances are provided to domain experts in order to obtain

feedback about which model instances correctly describe the notions of the domain and which do

98

not. Feedback is then associated to each model instance in the form of a label, and then model

instances are classified and grouped by the Cluster. The Cluster classifies each model instance

based on the label and the number of participating modeling elements. After the model instances

are clustered, they are transformed into a graph representation and then passed back to the

Intermediate Design Space to evolve the metamodel and semantics. A complete DSML is created

by iterating over the phases of the Intermediate Design Space and Model Space Exploration.

Figure 6.1 Process of Model Space Exploration

In the following two sections, we will describe the details of the algorithm used in Model

Space Exploration and investigate issues related to model instantiation.

6.2 Model Instantiation and Clustering

Model Space Exploration originated from the notion of design space exploration, with the

goal of finding improvements of the inferred metamodel and static constraints by identifying

99

conflicts, which are recognized by domain experts who may respond differently to the expected

classification of a generated model instance. According to Gries [Gries, 2004], “an exploration

algorithm working on the problem space systematically chooses a system configuration,

evaluates it, and decides whether this configuration is feasible or not.” Thus, having a well-

designed exploration algorithm is a key factor to determine the success of Model Space

Exploration. Several exploration algorithms have been proposed to satisfy certain properties or

criteria, which provide the required or alternative characteristics to find a design solution.

Simulation-based [Halambi et al., 1999; Eker et al., 2003], equation-based [Blickle et al, 1998;

Erbas et al., 2003], and model-based [Bondé et al., 2005; Kangas et al., 2006] are example

contests for design space algorithms.

In our approach, we use the graph representation as the basis for developing the

exploration algorithm. Graph-based design space exploration is a commonly used approach in

design space exploration [Blickle et al, 1998; Oliveira et al., 2010]. In the MLCBD framework,

graph representation plays a vital role throughout the Intermediate Design Space. A set of

domain model examples is transformed into a set of attributed graphs based on the annotation

made by domain experts, and then the Metamodel Inference Engine uses the set of attributed

graphs in order to infer the metamodel and static constraints. Thus, we adopted the notion of

graph-based Model Space Exploration to reuse graph resources, which are created and

maintained in the Intermediate Design Space.

The design of Model Space Exploration follows the Y-chart philosophy [Kienhuis et al.,

1997] that is commonly applied in design space exploration (see Figure 6.2). As shown in Figure

6.2, a set of model instances, an inferred metamodel, and constraints are the artifacts of Model

Space Exploration. A set of model instances can be considered a set of alternative domain model

100

choices, which may or may not describe the notions of a domain. A metamodel and its

constraints can be used to check conformance. The mapping stage checks whether a set of model

instances conform to the inferred metamodel and its constraints. Each model instance is then

labeled according to the checked result. Finally, model instances are reviewed by domain experts

during the analysis of the exploration.

Figure 6.2 The Y-Chart for Model Space Exploration

To create model instances, a graph path finding algorithm is applied to the attributed

graphs. The graph path finding algorithm is useful to traverse reachable states exhaustively and

can check the syntax and constraints associated to the path. To find all paths between an arbitrary

number of two vertices exhaustively, the algorithm was designed by combining breadth-first

search and Dijkstra’s shortest path algorithm. The Model Space Exploration algorithm is

presented in Figure 6.3, Figure 6.4, and Figure 6.5.

The main algorithm shown in Figure 6.3 controls the whole process of Model Space

Exploration. Prior to exploring the model space, the algorithm retrieves graph information from

the Intermediate Model Space. The algorithm then checks the multiplicity from the cardinality

101

matrix. The multiplicity information is passed into the path search algorithm, which is shown in

Figure 6.5, to determine whether the algorithm can revisit a vertex during path finding. After the

algorithm gets information about the graph from the Intermediate Design Space, it explores the

positive model and then switches focus to a negative model. For exploration of negative models

in Model Space Exploration, the algorithm transposes the adjacency matrix of the initial graph.

By transposing the adjacency matrix, dependencies between vertices are reversed.

After all of the necessary information is prepared, a set of model instances is presented

and annotated by domain experts. The procedure of annotation is described in Figure 6.4. A

queue is created and initialized to store all distinctive paths between arbitrary vertices s and t (i.e.,

s-t paths). Then, the algorithm picks up an arbitrary two vertices from the graph and checks

whether vertices in the graph are connected with weighted edges. To check whether the graph is

weighted or not, function checkEdgeWeight() traverses the graph until it finds edges having

different weight rather than arbitrarily selected vertices s and t. If the graph has non-weighted

edges, the algorithm searches all paths s-t paths using modified breadth-first search (i.e.,

searchBFS()). Otherwise, paths are retrieved using a modified Dijkstra search algorithm (i.e.,

searchDijkstra()). The modified BFS algorithm is shown in Figure 6.4.

When a path between s and t is found, the path link is added to Paths. The path link is

used to instantiate a model by referring back to the inferred metamodel’s concrete syntax and

static semantics.

102

Figure 6.3 Main Algorithm of Model Space Exploration

Figure 6.4 Algorithm for Model Space Exploration

exploreModelSpace {

 // Initialization

 G = getGraph(); // Get graph information from the metamodel inference

 bMulti = checkMultiplicity(G);

 // Model Space Exploration

 exploreModelSpace(G, bMulti); // Explore positive model space

 GR = reverseGraph(G); // Reverse graph in order

 exploreModelSpace(GR, bMulti); // Explore negative

}

exploreModelSpace(graph G, Boolean bMulti) {

 Paths = {}; // Create a queue for managing paths between arbitrary two vertices

 for each (u in V of G) {

 for each (v in V of G) {

 do {

 checkEdgeWeight() ? searchBFS(G,src, dst, Paths, bMulti) :

 searchDijkstra(G,src, dst, Paths, bMulti);

 instantiateModels(Paths);

 showModel(Paths);

 } while(Paths is not null);

 }

 }

}

103

Figure 6.5 Graph Search: Breadth First Search with Backtracking

searchBFS (graph G, vertex src, vertex dst, queue Paths, boolean bMulti) {

 for each (u in V) { // initialization

 mark[u] = Unvisited

 d[u] = infinity // Initialize distance vector from src to u

 pred[u] = null // Initialize the predecessor vector, which determines the shortest path

 }

 mark[src] = Visited // Set source vertex src as discovered

 d[src] = 0

 Q = {src} // put src in the queue

 while(Q != Empty) {

 u = dequeue from Q // get next vertex from queue

 for each (v in Adj[u]) { // get adjacent vertex from adjacent matrix

 if (v == dst) {// v is the destination vertex

 if(G[u][v]!=0) {

 pred[v] = u // ...and its parent

 mark[v] = Visited //

 if pred not in Paths then add pred to Paths // Add path from src to dst to Paths

 }

 break;

 }

 else if(bMulti==true && (v==src || mark[v]==Visited)) // Continue if a vertex is

 continue; // source or visited.

 else {

 if (mark[v] == Unvisited && G[s][v)) { // Check v is visited vertex

 mark[v] = Visited // ...mark v visited

 d[v] = d[u]+1 // ...set its distance from u

 pred[v] = u // ...and its parent

 append v to the tail of Q // ...put it in the queue

 }

 }

 }

 }

}

104

For example, the combined graph representation shown in Figure 5.7(a) is simplified in

Figure 6.6 for computational convenience. If the search algorithm searches paths between Step

and Scope, which is numbered 0 and 4, respectively, Paths will contains path information as a

sequence of vertices like { {0,4}, {0,3,4}, {0,1,2,3,4}}. {0,4} represents a direct link from Step

to Scope, and {0,1,2,3,4} represents a series of sequential connection from Step, Adder, Gain,

Transfer Fcn to Scope.

0 4321
Step Adder Gain Transfer Fcn Scope

Figure 6.6 Numbered Graph Representation

After all possible paths between an arbitrary two vertices are found and stored in Paths, a

set of model instances are created based on the path sequences in Paths. While a set of model

instances is being created by function instantiateModels(), each model instance is annotated to

indicate whether it conforms to the inferred metamodel and static constraints. As mentioned in

Chapter 1, DSMLs should be designed to satisfy the layered modeling architecture, which

implies that a model in the top-most layer can conform to itself, and the rest of the models in

each layer should be designed to conform to models defined in the layer above. Thus, each

model instance created by a path link should be checked for conformance to the inferred

metamodel and semantics. The set of model instances are provided and reviewed by domain

experts to determine whether the models correctly describe the notion of the domain.

105

Table 6.1 shows some examples of model instances created by the algorithm described

above.

Table 6.1 Samples of Model Instances

 Model Instance Created From Expected Answered

(a)

Positive
Graph

True False

(b)

Positive
Graph

True False

(c)
Positive
Graph

True False

(d)

Positive
Graph

True False

(e)
Positive
Graph

True True

(f)

Negative
Graph

False True

The first five models are created based on a positive graph. The positive graph is created

by combining a set of graph representation from domain model examples that were used to infer

a metamodel. The combined graph of a process control DSML is shown in Table 6.1(a). The

bottom model is generated from the negative graph, which is created by transposing or reversing

the adjacency matrix of the combined graph representation.

106

Thus, a set of model instances generated from the positive graph will conform to the

inferred metamodel and semantics. The expected responses from the domain experts regarding

the presented model instances are initially set to True during the conformance check in function

instantiateModels() (i.e., all model instances describe the notions of domain correctly). However,

models instantiated from the negative graph will be assigned to False. In the example scenario

shown in Table 6.1, a domain expert answered False to all models except the model in Table

6.1(e); the domain expert also indicated True to the model instantiated from the negative graph.

Theoretically, the first four model instances should be labeled True because they are generated

from the positive graph and conform to their metamodel and static constraints. But, those models

are labeled False, which is different from expectation. This may imply that models conform to

the inferred metamodel and static constraints, but do not conform to the notions of the process

control domain.

The semantics of Adder generates a new signal for the next process element after adding

two input signals, and Gain increases the power or amplitude of a signal from the input to the

output. Thus, Adder and Gain should be connected with appropriate input and output to satisfy

their semantics. However, Adders shown in Table 6.1(a), (b), and (c) have only one input or no

input signals. In addition, Adders and Gains shown in Table 6.1(a), (b), and (c) are not connected

to appropriate output. A process model shown in Table 6.1(d) is False because Scope is not able

to show any signals because no input signals are provided to Gain and Transfer Fcn. Although

these models are correct syntactically and semantically in terms of the inferred modeling

language, they are incorrect in terms of notions of the domain. Thus, they are discarded while

informing the Model Space Modeling module not to generate them in future Model Space

Exploration sessions.

107

On the contrary, a model shown in Table 6.1(f) is labeled true even though the model is

generated from the negative graph. In addition, the model does not conform to the inferred

metamodel and static constraints. However, the model satisfies semantics of the process control

domain. Gain has an input signal to amplify and is connected to its output (Scope) which

displays the output signal of Gain. Thus, the model clearly describes the notions of the process

control such that a signal is amplified and then displayed. However, the model was not

demonstrated originally by the domain expert because such a wide variety of possible domain

models makes it challenging to demonstrate every detail of the domain notions.

After a set of model instances are explored by a domain expert, the models are clustered

based on the expectation and domain expert responses in order to improve the previously

inferred metamodel and semantics. To cluster the set of model instances, the cluster algorithm

finds models that generated different feedback from the expected expert response. For example,

model instances in Table 6.1(a), (b), (c), (d), and (f) are initially selected for improving the

previously inferred metamodel and static constraints. Based on the selection, each model is

examined whether in can be used for improvement or ignored. Model instances in Table 6.1(a),

(b), (c), and (d) are classified to be ignored because those models are syntactically correct, but

semantically incorrect. However, the model instance shown in Table 6.1(f) is labeled to be

updated for improving the previously inferred metamodel and static constraints.

6.3 Consideration of the Number of Models for Model Space Exploration

Graph traversal plays a key role in instantiating models for the Model Space Exploration.

Each vertex represents a modeling element, and edges between arbitrary two vertices represent

the relationship between the two vertices (or the relationships between two modeling elements).

108

Thus, vertices and edges in paths between arbitrary two vertices (i.e., s-t paths) can be subsets of

the domain models. In addition, the number of paths and the number of vertices contained in a

path affect the quality and effort needed during Model Space Exploration. For instance, if the

Model Space Exploration algorithm finds too many short paths, domain experts may need to

spend much time and effort to review and annotate semantically incorrect model instances. Thus,

estimating the number of paths between s-t paths is an important consideration for the Model

Space Exploration.

Counting the number of paths between s-t paths in a graph is simple if the graph has few

vertices. If the graph is a directed graph, the number of paths between s-t paths can be counted

easily even if done manually. However, counting the number of paths between s-t paths becomes

complicated and error-prone if a graph has a large number of vertices. Thus, counting the

number of paths between s-t paths is considered a #P-complete problems such that “the detection

of the existence of a solution is easy, yet no computationally efficient method is known for

counting their numbers” [Valiant, 1979].

Prior to investigating the number of possible model instances for Model Space

Exploration, we first investigate the number of diagramming elements in several well-known

software analysis and design modeling paradigms (e.g., UML, SysML, Structural Analysis and

Design, and Petri Nets) in order to estimate the number of model instances to be explored. As

shown in Table 6.2, most diagrams have less than 10 elements to model most notions.

Simple diagrams (e.g., Use Case, Petri Nets, and Context diagram) offer less than 5

elements. For instance, a Use Case diagram can model a requirement with only 3 elements:

actors, Use Cases, and relationships. A flowchart is the diagram that has the largest number of

diagramming elements and offers more than 20 distinctive elements.

109

Table 6.2 The Number of Diagramming Elements in Major Diagrams

The number of
diagramming

elements

Diagram

Directed Undirected

Less than 4 Petri Net, Context Diagram Use Case Diagram

Between 5 and 10
Statechart Diagram, Activity
Diagram, Package Diagram,
Entity-Relationship Diagram

Class Diagram, Component
Diagram, Deployment Diagram

More than 10
Data Flow Diagram, Flowchart,
Specification Description
Language (SDL)

Unknown

In addition, as shown in Table 6.2, most diagrams are classified as “directed,” which

means that the modeling elements are connected with other modeling elements using a directed

relationship. For example, Petri Nets use a directed relationship to represent the direction of

transitions. Modeling elements in a Use Case Diagram and Class Diagram can be connected with

the directed relationship. But, in most cases, the directed relationship is ignored and used to

specifically indicate the direction of controls or messages flow. Thus, we classify Use Case and

Class diagrams as undirected.

The relationship between the number of paths and modeling elements are shown in

Figure 6.7. To compute the number of paths between s-t paths, graphs are designed to have a

different number of vertices and graph density. The number of paths in Figure 6.7(a) is computed

when a graph density is 0.85, and the graph in Figure 6.7(b) is 0.15.

A graph density describes the general level of connectedness, and a graph is complete if

all vertices are adjacent to each other. In general, the more vertices that are adjacent, the greater

110

the graph density. The graph density can be calculated using the following equations, where

equation (a) is used for calculating the graph density of the undirected graph, and equation (b) is

for the directed graph. Generally, directed graphs are less dense than undirected graphs because

directed graphs do not form loops.

∆ൌ
2|E|

ሺ|V| ∗ ሺ|V| െ 1ሻሻ

,where V and E are vertices and edges in
graph G=(V,E)

(a)

∆ൌ
2|E|

ሺ|V| ∗ ሺ|V| െ 1ሻሻ
 (b)

As shown in Figure 6.7, the number of paths between s-t paths is dramatically different

according to the graph density. The higher the graph density, the higher number of paths that can

be found between s-t paths. If a graph has more than 10 vertices, the number of paths between s-t

paths is increased at least three times compared to a graph that has less than 10 vertices.

Considering the task of Model Space Exploration, from Figure 6.7(b), we can estimate

that the positive model instances will be between 20 and 60. The reason is that, as shown in

Table 6.2, most diagrams have less than 10 modeling elements, and modeling elements are

linked with the directed relationships. This means that models created using those diagramming

elements would have from a low to medium level of graph density. For instance, we could have

14 positive model instances and 41 negative modeling instances from network diagramming,

which is described in the next chapter. The graph density of the process model is 0.35 and 0.7 for

the positive graph and negative graph, respectively.

111

45 86
222

532

2399

5110

0

1000

2000

3000

4000

5000

6000

5 6 8 10 16 20

(a) Graph Density = 0.85

5 19
24

56

338

1001

0

200

400

600

800

1000

1200

5 6 8 10 16 20

(b) Graph Density = 0.15

Figure 6.7 The Number of Model Instances vs. Modeling Elements

Based on the observation, we suggest that the Model Space Exploration algorithm

instantiates a reasonable number of model instances to interact with domain experts if a DSML

consists of less than 8 modeling elements. For DSMLs with a larger number of modeling

112

elements, a possible solution to reduce the burden of responding to the number of generated

examples would be to break the exploration process into different stages, rather than providing

all of the sample instances at once.

6.4 Related Work

Model Space Exploration aims to improve previously inferred metamodel and static

constraints by reasoning about the domain through a set of model instances. The notion of Model

Space Exploration originated from design space exploration, which is used to choose an

optimized solution from a set of alternative design choices.

The DESERT tool suite [Neema et al., 2003] is a domain-independent tool chain for

defining design spaces and executing constraint-based design space exploration. To model a

design space, DESERT introduced the concept of an An AND-OR-LEAF tree and supports a

subset of the Object Constraint Language (OCL). AND-OR-LEAF tree captures the relationships

between design space properties and represented them hierarchically, and a subset of OCL

allows users to specify system requirements (e.g., compatibility constraints and performance

constraints) as constraints. In addition, Ordered Binary Decision Diagrams (OBDDs) are used to

model and prune the design space based on the constraints. By employing OBDDs, which can

search all design spaces exhaustively and prune irrelevant designs, DESERT can create a small

and complete design space that satisfies all design constraints. In addition, because DESERT is a

domain-independent tool, it can be applied to a variety of exploration problems with a single

encoding mechanism at the architecture level.

Schätz et al. [Schätz et al., 2010] proposed an interactive, incremental process using a

model transformation technique for deriving possible design alternatives. In their approach,

113

various solutions to the design problem are offered iteratively to engineers to make design

decisions, and the partial solutions generated by each iteration can be combined incrementally to

make a complete solution. Model transformation is used to instantiate concrete models (e.g.,

description of the technical architecture) automatically from the abstract models (e.g., description

of components, subsystems, and architecture) by applying relational and declarative rules. Thus,

different design options can be created through the model transformation.

The DaRT (Data Parallelism to Real Time) approach [Bondé et al., 2005] applied a

Model-Driven Architecture. DaRT needs to define metamodels to specify application,

architecture, and software/hardware association. DaRT adopted a model transformation

technique to create an optimized association model from metamodels. By adopting MDA, the

approach is able to reuse models and unifies the definition of the transformation rules.

6.5 Summary

The notion of Model Space Exploration is borrowed from the ideas of design space

exploration, which is widely used to automate the search for design alternatives. In our approach,

Model Space Exploration is applied to verify the correctness of an inferred metamodel and its

static constraints. The verification is based on a confirmation step that involved a domain expert

answering questions about a set of generated model instances. If the generated domain models

are annotated differently from the expected result, the models are presented to domain experts

again to resolve the conflict. The results of the Model Space Exploration are fed back to the

Intermediate Design Space to complement the previously inferred metamodel and static

constraints.

114

CHAPTER 7

CASE STUDIES APPLYING MLCBD

In previous chapters, we described our approach to create a DSML using a By-

demonstration approach. The approach utilizes several techniques such as by-demonstration,

grammar inference, and Model Space Exploration. In this chapter, we apply the MLCBD

framework for developing a finite state machine (FSM) and a network modeling language. In

addition, the two DSMLs are also developed with two other DSML development environments

(e.g., Graphical Modeling Framework (GMF) and Generic Modeling Environment (GME)) for

comparison purposes.

The rest of this chapter is divided into three sections: Section 6.1 describes the

development of a language to represent a FSM, Section 6.2 describes the development of a

network modeling language, and Section 6.3 concludes with an evaluation and summary

discussion.

7.1 Development of a Finite State Machine Modeling Tool

A Finite State Machine (FSM) is a primitigve, but useful computation machine. Some

exemplary application areas of FSM are pattern matching, sequential logic circuits modeling, and

natural language processing [Hopcroft et al., 2006].

An FSM can be formally defined as a 5-tuple (Q,∑,δ,i,F), where Q is a finite set of states,

∑ is a finite alphabet, i is the initial state (∈i Q), F is the set of final states (F Q), and δ is the

115

transition function mapping Q × ∑ to Q, which implies δ(q,a) is a state for each state q and input

a that is accepted when in state q.

A simple FSM is shown in Figure 7.1. This FSM is designed to check whether input

values are multiples of three.

Figure 7.1 An Example of FSM

For instance, if the input value is 3, which is represented 11 in binary, the FSM begins

from state S0 and moves to the next state S1 by first binary input 1, which corresponds to

transition 1 from S0 to S1. Finally, the FSM moves back to state S0 by the second value, which is

also 1.

In this section, we describe how to develop the simple FSM, illustrated in Figure 7.1,

with two approaches: MLCBD and the Graphical Modeling Framework (GMF).

7.1.1 FSM Requirements Modeling with Syntax Map

In this section, we describe the requirements of the FSM using a Syntax Map. To

describe the requirements of the FSM, domain experts first create the skeleton scenarios by

placing classifiers and relationships between the Syntax Map symbol Start and End according to

their usage scenarios. For instance, if the current state is S0 and a transition is triggered, the next

116

state is determined by the transition condition. Thus, the destination state can be either State S0 or

State S1.

A Syntax Map of the simple FSM is shown in Figure 7.2.

Figure 7.2 Syntax Map for FSM

As shown in Figure 7.2, State is assigned to classifier having an attribute, Name, with

type String to denote instance name. If multiple classifiers (or relationships) appear in a Syntax

Map, the attributes are automatically associated when attributes are tagged by the domain expert.

For example, two States appear in Figure 7.2. Attributes are only associated to State, located in

the left-most side, but not associated to State at the right-most end. This implies the same

attributes are also associated to State at the right-most side if other attributes are not associated to

it.

117

7.1.2 FSM Development with GMF

Several metamodeling tools are available to assist in developing graphical editors for a

DSML. However, creating a new graphical editor for a DSML can be slow and painful because

software engineers need to understand the intricacies of the metamodeling tool. This subsection

uses an Eclipse-based metamodeling environment to place into context the details needed to

create a DSML using metamodeling tools.

The Eclipse Modeling Framework (EMF) and the Graphical Editing Framework (GEF)

are well-known Eclipse frameworks for creating DSMLs. The EMF is “a modeling framework

that exploits the facilities provided by Eclipse and enables software engineers to rapidly build

robust tools and other applications based on a structured data model” [Steinberg et al., 2008].

EMF offers several features such as metamodeling, template-based Java code generation, and

XMI serialization and deserialization. The GEF was developed to “support the creation of rich

graphical editors and views for Eclipse-based tools and Rich Client Platform (RCP) applications”

[Rubel et al., 2011]. GEF consists of three components: Draw2D, Zest, and GEF. Draw2d is a

standard 2D drawing framework that supports a lightweight drawing. Zest is built on top of

Draw2D and provides interfaces to bind Java models. GEF provides APIs for enabling

interactive diagrams. Combining EMF and GEF, software engineers can develop any kind of

applications that require a graphical editing environment. Modeling applications (e.g., business

process modeling and UI design) are well-known domains that use EMF and GEF. However,

because EMF and GEF have been developed and evolved for different purposes, several

technical challenges (e.g., different command stack) may make it difficult for some developers to

118

create graphical editors using these two technologies. To address the technical challenges

integrating EMF model within the GEF framework, GMF was introduced.

The GMF provides a generative component and runtime infrastructure for developing

graphical editors based on the EMF and GEF. The GMF offers editors to model the notation and

semantics of a graphical editor, as well as a generator to produce the source code of a graphical

editor. In addition, GMF provides a run-time component that provides a consistent look and feel,

and allows extending its features by third parties.

As shown in Figure 7.3, to develop an application using GMF, software engineers have to

define four different models (e.g., domain model, graphical definition model, tooling definition

model, mapping model).

Figure 7.3 GMF Tooling Workflow

The domain model is the basis of all artifacts and defines the abstract syntax of an

application. The graphical definition model defines symbols (e.g., figures, nodes) that will be

displayed on the diagram. The tooling definition model specifies graphical elements such as

119

palette, creation tools, and actions. The mapping model specifies how to bind the three models to

form a language environment (i.e., it binds the domain model, graphical definition model, and

tooling model).

After all models are defined, a generation model is created by combining the four models

to generate some external artifact from the model (e.g., source code or some other artifact).

Finally, an application is obtained by compiling and linking Java code, which is generated from

the generation model.

As a first step of FSM development for this first case study, the FSM domain model is

defined as shown in Figure 7.4. The domain model can be defined in several ways: ECore,

annotations on a Java interface, UML models, or XML schema. The model presented in Figure

7.4 is defined using Ecore, which is a metalanguage developed based on the OMG’s MOF.

Figure 7.4 Ecore model for FSM [Kermeta]

120

Class FSM is the representative entity that manages all notions in the FSM domain.

Classes State and Transition are defined to describe the notion of State and Transition in the

FSM, respectively. In addition, other properties (e.g., cardinality and roles) are associated to the

relationship that links between State and Transition.

The graphical definition specifies how model elements in the domain model are mapped

to graphical elements. As shown in Figure 7.5, all domain model elements and possible graphical

representations are listed in a graphical definition dialog, and the mapping between them is

specified by selecting a checkbox. At this dialog, domain model elements can be mapped only to

fixed graphical notations; e.g., rectangle, line, or text (from left to right in callout). In this

example, Class State is mapped to rectangle, and its attribute name is linked with text. Similarly,

class Transition is mapped to line.

Figure 7.5 Specifying a Graphical Definition in GMF

121

After the graphical definition model is created, the graphical representation of each

domain model element can be further refined with more appropriate graphical representations in

order to provide better cognitive effectiveness as link to domain notation. Figure 7.6 shows the

graphical definition model for FSM.

(a) Graphical Definition (b) Predefined Properties
Figure 7.6 Refine Graphical Definition

To refine the graphical representation, the graphical definition model offers predefined

shapes (e.g., rounded rectangle, ellipses, and polygon). An SVG (Scalable Vector Graphics)

figure also can be used, which is designed with an XML-based scalable vector image that can

support interactivity and animation (see Figure 7.6(b)). In order to refine the graphical

representation, an existing definition should be removed and then replaced with a new definition.

In addition, all the related properties should be specified in accordance with the new graphical

definition.

122

Figure 7.7 illustrates the tooling definition model. This model defines the mapping rule

between model elements in the domain model and graphic representations for the palette.

Figure 7.7 Tooling Definition Model

Finally, the mapping model combines all three pieces of model information in order to

create a generation model, which contains control parameters for code generation. The mapping

and generation model are presented in Figure 7.8(a) and (b), respectively.

Based on the generation model, Java code is generated automatically by a model

transformation, which reads the generation model and then produces three plug-in source codes:

domain model, diagram editor, and domain editor. The domain model, diagram editor, and

domain editor correspond to the Model, View, and Controller (MVC) architecture, respectively.

Figure 7.9 shows the FSM modeling tool, which is built using the generated source code from

the various language models described in this section.

123

(a) Mapping Model (b) Generation Model

Figure 7.8 Mapping Model and Generation Model

Figure 7.9 FSM Tool Created using GMF

GMF offers more advanced technologies and convenient methods for building graphical

editors by combining EMF and GEF. Thus, software engineers can build graphical editors semi-

automatically by just defining a few language definition models and mapping them properly. In

addition, the GMF user interface offers a consistent look and feel, which may help software

engineers maintain their focus of interest when specifying domain instance models.

124

7.1.3 FSM Development with MLCBD

In this section, we describe how to develop the FSM modeling tool with MLCBD. To

build a DSML, MLCBD follows three steps: Recording, Creating, and Exploring Model Space.

The recording step begins by clicking a button placed at the far left of the toolbar (see Figure

7.10 (a)). When the button is clicked, a new page is created and two stencils, Basic Shapes and

Default, are loaded into Visio.

(a) Start Recording Step (b) Identified Concrete Syntax

Figure 7.10 Creating FSM By-Demonstration

When a domain expert demonstrates a FSM model in an MS Visio Page (see Figure

7.10(b)) by dragging from the stencil Basic Shapes to the editor canvas, each user action is

captured by a background process in order to identify the unique symbols as candidate concrete

syntax elements. The unique symbols are copied to stencil Default, which functions as a concrete

125

syntax repository. As shown in Figure 7.10(b), only one circle and one line are placed in the

stencil Default, even though three circles and five lines are used to demonstrate a FSM model.

After completing the FSM model demonstration, a domain expert annotates symbols to

add information that guides the metamodel and static constraints inference. Figure 7.11

represents screenshots of the annotation. The annotation is performed on the demonstrated model

instead of master symbols in stencil Default. As shown in Figure 7.11(a), if a symbol is mapped

to a classifier, a domain expert can only add attributes. A domain expert does not need to

annotate every symbol. If a symbol is annotated, MLCBD automatically annotates the

information to the same type of symbols and corresponding master in stencil Default.

(a) Annotating Classifier (b) Annotating Relationship

Figure 7.11 Annotating Concrete Syntax in MLCBD

For example, if the left-most circle is annotated as depicted in Figure 7.11(a), the rest of

the two circles and a circle in stencil Default will be attached to the same annotation information

126

as the left-most circle. If a symbol is a relationship, two additional properties (i.e., Directional

and Relationship Type) need to be specified along with attributes.

Finally, the MLCBD framework creates the FSM modeling language while inferring

static constraints. As illustrated in Figure 7.12, two types of static constraints (e.g., link

boundness and structural constraints) can be inferred while a domain expert demonstrates the

FSM concepts. In addition, the “Not allowed to use shapes in other master” option is provided to

prevent the domain expert from using shapes in another stencil when the FSM modeling tool is

created. This is needed because MLCBD is developed over MS Visio, and MS Visio handles a

DSML as just a stencil without any underlying knowledge. MLCBD provides the constraints as

underlying Visual Basic scripts to enforce the static semantics.

Figure 7.12 Creating FSM while Inferring Static Constraints

127

7.1.4 Comparison FSM Development: MLCBD vs. GMF

FSM is a useful example for comparison between approaches because it is simple and

intuitive. Thus, FSM was chosen in this section to assist with the comparison between MLCBD

and more traditional approaches, such as GMF. There are four criteria in which the advantages

and disadvantages of the two approaches can be compared:

 Complexity of development: The learning curve is an important factor to

determine whether to adopt a new technology. Although GMF simplifies

graphical editor development by combining EMF and GEF, software engineers

need to invest some time and effort to learn how to create and define a new

DSML (e.g., domain model, graphical definition model, tooling definition model,

and mapping model). For example, software engineers have to possess knowledge

about metamodeling for domain model definition and also understand how

models are related to each other by specifying the mapping between them. Thus,

developing a DSML with GMF requires software engineers to invest some time

and effort to learn the GMF tooling mechanism. If domain experts who have

domain knowledge (but do not have knowledge about this kind of tool

development environment) try to develop their own DSML with GMF, they will

likely need to spend more time and effort than software engineers who are experts

in software development, but do not have domain knowledge. For many domain

experts, the likelihood of actually using a framework like GMF is not possible.

128

On the other hand, MLCBD does not require the same amount of effort and time

as GMF in order to develop a new language. With MLCBD, a DSML can be built

by demonstrating the notions of the domain on the modeling canvas. The

MLCBD framework does not require language development expertise. Domain

experts need only domain knowledge and a basic understanding of Visio in order

to develop their own DSML with MLCBD.

 Completeness of graphical representation: Both tools support a set of predefined

symbols to represent notions of a domain. In addition, both tools also support the

use of image files for graphical completeness. However, as shown in Figure 7.5

and Figure 7.6, GMF uses a menu-driven approach in order to replace a graphical

definition. For example, to change a graphical definition from a regular rectangle

to a rounded rectangle, a language designer must delete the existing graphical

definition for a rectangle and then instantiate the context menu to add the new

graphical definition. The context menu needs to be instantiated whenever the

language designer wants to add additional attributes or styles to the newly added

graphic definition.

On the contrary, MLCBD, which supports WYSIWYG (What You See Is What

You Get), it is possible to drag and drop new shapes after deleting existing shapes.

Thus, a domain expert can change the graphic definition more intuitively than

with GMF.

 Analysis and Debug Capability: GMF offers a validation feature to check whether

a model is correctly specified. If there is an error in any model, the graphical

editor cannot be generated. Although GMF can locate where the error occurred,

129

the changes cannot be propagated to other related models. Thus, a language

designer needs to traverse every model to reflect the changes.

 Language Evolution: When the domain model is changed or evolved, GMF must

change every related model to support backward compatibility. In addition, all

source codes should be recompiled to build a new version that contains the

changes. GMF does not support backward compatibility. In MLCBD, the domain

expert only needs to reload the language definition and re-demonstrate the

evolved changes to the DSML.

130

7.2 Development of Network Diagramming Tool

Computer networks have become an important part of daily life by allowing many

different types of users to share resources and information. In order to provide more convenient

services, a computer network consists of various types of hardware components, which are

interconnected by communication channels. Routers, switches, gateways, (cable) modem, servers

(e.g., DHCP, DNS, file, mail, and etc), and computers (e.g., desktops, laptops, and tablets) are

examples of components that make up a computer network.

A network diagram depicts how hardware components are interconnected with the

communication channels. A network diagram is useful to describe the placement of the

network’s various components and data flows within a network.

This section describes the development of a simple network diagramming tool as a case

study of MLCBD. For comparison purposes, a simple network diagramming tool is also

developed with the Generic Modeling Environment (GME), a traditional metamodeling tool.

7.2.1 Network Diagramming Tool Requirements Modeling with Syntax Map

Requirements of the network diagramming tool are illustrated in Figure 7.13 using a

Syntax Map. For modeling a network, nine elements (e.g., Server Farm, Media Server, Router,

Network, Group, Cable Modem, Laptop, Desktop, and Tablet) are connected to each other with a

link. In this case study, a Server Farm and a Media Server are only connected with a Router to

provide services. Because a link is an association relationship that is undirected, the reverse

connection (e.g. from Router to Server Farm) is also allowed.

131

Figure 7.13 Syntax Map for Network Digramming

A Network is connected with a Router by a link, but it cannot be linked to Server Farm

and Media Server directly. A Network is also connected to Group, which can define a sub-

network domain. Group can have different network components. To specify the network

elements to be contained in a Group, constraints are associated to the Group. The constraints are

expressed using natural language, but must be formalized to have an operational effect in a

modeling tool. In Figure 7.13, constraints specify Laptop, Desktop, Tablet, and Cable Modem as

contained parts of Group. In the sub-network domain, the Laptop, Desktop, and Tablet are linked

132

to a Cable Modem to communicate with each other. As mentioned in the constraints, the string

type attribute Name is omitted in Laptop, Desktop, Tablet, and Cable Modem for simplicity.

Figure 7.14 depicts the sample network models that conform to the requirements described using

the Syntax Map from Figure 7.13.

a) Top Layer (b) Sub-Network Layer

Figure 7.14 Sample Network Digramming Model

7.2.2 Development of Network Modeling Tool using GME

The GME is “a domain-specific, model-integrated, configurable program synthesis tool

for creating and evolving domain-specific, multi-aspect models of large-scale engineering

systems” [GME, 2012; Lédeczi et al., 2001]. GME provides various features to build DSMLs.

Metamodeling, hierarchy, multiple aspects, sets, references, and explicit constraints are examples

of the capabilities that GME offers for language definition. A metamodel plays a key role in

GME and contains all of the syntactic, static semantics, and presentation information about the

domain. Hierarchy is introduced to model the containment between modeling elements, and

multiple aspects enable multiple views of the models. Sets are used for metamodeling to show a

133

set of metamodel elements that are related to a particular object. References enable reuse of

existing metamodeling elements. Constraints check and/or specify context types and multiplicity

using OCL.

To develop a DSML with GME, the language designer must have expertise about the

core GME modeling concepts, such as root folder, atom, model, and aspect. The root folder is

located at the very top of the project hierarchy, and each modeling project should have at least

one root model. Atom is a basic GME entity and has no internal structure except attributes.

Model is very similar to atoms, but can contain atoms, other models, and other types of objects.

An Aspect is not a modeling element, but is used to provide different views of model structures.

The GME user interface consists of several features, as shown in Figure 7.15.

Figure 7.15 User Interface of GME

134

The Part Browser is a repository that contains all the parts that are required for

metamodeling. The Part Browser consists of five different tabs (e.g., Class Diagram,

Visualization, Constraints, Attributes, and All) and each tab has a different set of parts to support

different modeling notions. For example, the Visualization tab has Aspect and AspectProxy, and

SameAspect, which can manage various modeling aspects. The Model Browser consists of three

tables: Meta, Aggregate, and Inheritance. The Meta tab lists all metamodeling elements used in

the Model Edit Window, and the Aggregate tab shows the project management information

hierarchy using tree-based containment. The Inheritance tab informs the type inheritance of a

model. The attribute browser lists all attributes and preferences of an object. The Console area

displays error information during model interpretation (i.e., transformation of the model to some

other form, such as source code).

The metamodel for the network diagramming tool is shown in Figure 7. 16.

Figure 7.16 Metamodel for Network Diagramming

135

The metamodel includes two models, eight atoms, two connections, two aspects, and

seven connectors. Model NetworkDiagram is defined as the root folder, and all metamodel

elements except atoms, which are used in the sub-network layer, are linked to model

NetworkDiagram with an aggregation relationship. Another model, called Group, is a container

and manages the network elements in the sub-network domain. Atoms are used to define eight

network hardware elements (e.g., Network, Router, Media Server, Server Farm, Desktop, Tablet,

Laptop, and Cable Model). Connection Link links hardware elements in the top layer, and

connection GroupConn is for connecting hardware elements in model Group. Seven connectors

are defined to specify how atoms (or models) are linked each other and which connections are

associated to the link. For example, atom ServerFarm is the source of a link and linked to atom

Router through connection Link.

In addition, the metamodel has two aspects: TopConnectivity and SubConnectivity. As

mentioned previously, an aspect is used to provide different structural views of a metamodel. In

Figure 7.17(a), when aspect TopConnectivity is selected, a language designer can see metamodel

elements only for the top layer (e.g., Router, Network, Server Farm, Media Farm, Group, and

Link). Metamodel elements that are not related to the top layer are grayed. On the other hand,

aspect SubConnectivity is selected, shown in Figure 7.17(b), a language designer can see all

metamodel elements for the sub-network domain.

To define concrete syntax, a language designer must specify a value of the attribute Icon.

The attribute Icon only accepts a string representing a file name to a graphics file. As shown in

Figure 7.18, the Option box is opened to specify the icon path, and then the icon name and

displayed name are specified in the attribute browser. If concrete syntax is not specified as icons,

a default symbol is associated to each atom.

136

(a) Aspect for the top layer

(b) Aspect for the sub network layer

Figure 7.17 Aspects of Network Diagramming Metamodel

137

Figure 7.18 Concrete Syntax Specification

The last step for network diagramming tool development in GME is to generate and

validate the metamodel by the GME environment generator. If no errors are found in the

metamodel, the network diagramming tool is created and registered for domain experts to then

use. The generated environment contains all the syntactic and semantic information about the

domain to support the creation of a family of models in that domain.

Figure 7.19 depicts the creation of a new network diagram from the generated metamodel

in GME. To create a new network diagram, a domain expert selects the NetworkDiagram

metamodel from a new project dialog. The dialog box lists all available registered metamodels

that have been created.

Figure 7.20 illustrates examples of network diagrams created from the NetworkDiagram

metamodel. As shown in Figure 7.20, a network model can be created using the same user

interface that was used for the network diagramming tool development (thus, showing the meta

138

nature of the GME and other similar metamodeling tools – this is the concept introduced in

Chapter 2 that showed the relationship between a metamodel and a domain instance model).

Figure 7.19 Creating a New Network Model

To create a network diagram, the network hardware components are listed in the Part

Browser (during the previous step for defining the metamodel, the same area instead contained

metamodeling elements). The Part Browser contains different hardware components depending

on the model. In Figure 7.20(a), the Part Browser contains Group, Network, Media Server, and

Router, which are aggregated parts of model NetworkDiagram and defined for modeling the top

layer. On the other hand, the Part Browser in Figure 7.20(b) contains hardware components (e.g.,

139

Cable Modem, Laptop, Desktop, and Tablet), which are linked to model Group with the

aggregation to model the sub-network domain.

(a) Top-Layer

(b) Sub-Layer

Figure 7.20 Network Models in GME

140

7.2.3 Development of Network Modeling Tool using MLCBD

In this section, we describe the development of the same network diagramming tool using

MLCBD. Because network hardware components are not provided as predefined symbols in

MLCBD, domain experts need to gather all of the images of the network hardware components

used for modeling their network in a folder prior to demonstrating the network model examples,

as shown in Figure 7.21.

Figure 7.21 Image Files of Network Hardware Components

To create a network diagramming tool in Visio using MLCBD, a domain expert drags the

network image files and drops them into an MS Visio page after clicking the Recording button

(see Figure 7.10). Then, MLCBD records all the actions and behaviors of the domain expert, and

then stores the unique symbols into the Default stencil to represent the concrete syntax. Figure

7.22 illustrates two network models demonstrated by domain experts using MLCBD in Visio.

141

Figure 7.22(a) depicts the demonstration of the top-layer network model. A symbol

Folder is a special symbol representing a container. If Folder is dragged on to the Visio canvas

area, a new page named Folder is created.

(a) Demonstration of Top-layer Network Model

(a) Demonstration of Sub-Network Layer Model

Figure 7.22 Demonstration of the Network Model in MLCBD

142

In addition, if the Folder name is changed, the name of the newly created page is also

changed. In Figure 7.22(a), a new page Group is located beside the Default. A Folder is added

and then renamed from Folder to Group. In addition, a new stencil named Group is created to

manage the symbols that are required to model the sub-network domain (see Figure 7.22(b)).

Figure 7.23 shows some examples of Model Space Exploration during network

diagramming tool creation. All three model instances are negative models, which do not conform

to the inferred metamodel and static constraints. During Model Space Exploration, a domain

expert should respond either Yes or No without guided information when model instances are

presented.

(a) (b) (c)

Figure 7.23 Examples of Model Space Exploration

If a domain expert responds Yes to one or more of the example models shown in Figure

7.23, that implies those models correctly describe notions of network modeling even though they

are instantiated from a negative graph and do not conform to the inferred metamodel and static

constraints. Based on the collective responses from the domain expert, the Model Space

Exploration presents models, which may contain conflicted feedback, to the domain expert again

to confirm whether the expert responded to the conflicted answer mistakenly or not.

143

After all conflicts are confirmed by domain experts, the result of Model Space

Exploration is summarized as shown in Figure 7.24 The summary includes categories for Models,

Expected, Answered, and Confirmed. Column Models lists all model elements used for a model

instantiation. Column Expected specifies the expected answer of the model instance. To specify

the expected answer, each model instance is checked against the inferred metamodel and static

constraints. If a model instance conforms to the inferred metamodel and static constraints,

Expected is set to Yes. Otherwise, it is set to No. Column Answered is the response from the

domain expert when the model instance is presented, and column Confirmed is the decision of

the domain expert for the conflicted model instances.

Figure 7.24 Summary of Model Space Exploration

The first model instance is a negative model because two Media Servers are connected

with a Server Farm without a Router, which is not allowed. The second and third model

instances are also negative models because Media Servers and Server Farms are connected

without a Router. However, they were answered and confirmed Yes by the domain expert. This

144

means that the two model instances illustrate notions of the network model correctly, but were

not initially inferred as correct from the information provided in the demonstration. The fourth

case is similar to the second and third cases regarding confirmation of an expected negative

model. The information about these models from the domain expert interaction is passed back to

the Intermediate Model Space to update the previously inferred metamodel and static constraints.

7.2.4 Comparison between MLCBD and GME

The development of a network diagramming tool is briefly described in previous sections.

Section 7.2.2 presents a network diagramming language based on GME and Section 7.2.3

describes the same language based on MLCBD. In the following, we summarize the advantages

and disadvantages of MLCBD-based language development by comparing it to the GME-based

approach.

 Complexity of development: Similar to GMF, which is used to develop the FSM

modeling language in Section 7.1, a domain expert must invest effort and time to

learn important metamodeling notions in order to develop a DSML using GME.

For example, atom, model, paradigm, and aspect are unique concepts in GME that

enrich the syntax and semantics of a defined DSML. In GME, at least one Model

should be defined in the metamodel to manage the entire metamodel elements.

For this reason, designers tend to forget to link Model and other atoms with an

aggregation relationship when they focus on domain entities and their structural

relationships. The missing connections between model and atoms cause errors

145

when generating the language environment, which often takes time and effort to

resolve.

 Completeness of graphical representation: Both tools support a set of predefined

symbols to represent notions of a domain. In addition, both tools also support the

use of image files for graphical completeness. However, as shown in Figure 7.18,

GME can only point to an image file in an atom’s attribute and binds the file at

build time. One advantage of this approach is that concrete syntax can be changed

by copying the image file to a folder where GME is directed. However, if the

image file is replaced with the wrong file mistakenly, the error cannot be detected

until domain experts create a new model using the DSML.

 Analysis and Debug Capability: When a language designer executes a model

interpreter, the model interpreter checks the syntactic and semantics errors of the

metamodel. However, even though GME can analyze the metamodel to check its

completeness and correctness using a model interpreter, a language designer must

have profound knowledge and experience to resolve the errors because GME

cannot directly locate the problem to specific metamodel elements that cause

those errors. Thus, the language designer must be able to analyze errors and find

appropriate resolutions within the specific tooling features in GME.

 Language Evolution: GME supports backward compatibility by applying its own

version control mechanism. When the metamodel is changed or evolved, GME

checks between the versions of the past and current models and asks the domain

expert whether to upgrade to a new metamodel. The overall evolution process is

relatively easy in GME.

146

7.3 Summary

In this chapter, MLCBD was applied to develop two DSMLs, a FSM and network

diagramming DSML. GMF and GME, which are well-known DSML metamodeling

environments, were used to develop the same FSM and network diagramming DSML in order to

evaluate the comparative capabilities of MLCBD.

Table 7.1 provides a quick overview of the strengths and weakness of each approach.

Table 7.1 Overview of Comparison

 GMF GME MLCBD

Complexity of Development High High Low

Completeness of the Graphical
Representation

High High High

Analysis and
Debug

Metamodel Support Support N/A

Model N/A N/A
Model Space
Exploration

Language Evolution Medium High Support

MLCBD required less effort to develop a DSML than GMF and GME because the

MLCBD framework does not require language development expertise such as syntax definition

and semantics specification. MLCBD needs only domain knowledge (or a set of domain model

examples) to develop a DSML. However, GMF needs modeling language development expertise

147

to define and manage four different models (e.g., domain, graphical, tooling, and mapping) as

well as domain knowledge. Similarly, GME also needs knowledge and experience about

metamodeling.

All three approaches offer a high-level of graphical representation completeness.

However, GMF needs to use a menu-driven approach to redefine the graphical model, and GME

may need to use a decorator mechanism to support complex graphical representation.

GMF and GME have a feature to analyze and debug (meta) models before generating the

language environment. However, to resolve errors, software engineers should have substantial

knowledge about either GMF or GME. On the contrary, MLCBD does support model analysis

and debug features because it targets the generation of syntactic and semantics elements of a

DSML from a set of domain model examples. Model Space Exploration is used to validate the

correctness of the inferred metamodel and static constraints by presenting the user with a set of

model instances generated from the inferred metamodel and static constraints. Model Space

Exploration is also used to find the missing notions of a domain, which are accidentally not

demonstrated domain experts.

Finally, language evolution is the weakest area of MLCBD. When change requests are

submitted, GMF and GME can evolve a DSML by applying the change request to (meta) models

and rebuilding the (meta) models. However, MLCBD requires iteration of the same DSML

development process (e.g., demonstration of a domain, inferring metamodel and semantics, and

model space exploration) to apply change requests.

148

CHAPTER 8

FUTURE WORK

This chapter outlines future research directions in the area of demonstration-based

language development. To further enhance the expressiveness and functionality of MLCBD,

several new features are proposed that may assist domain experts in describing precise and

complete DSMLs. Section 8.1 lists several features that may improve the Intermediate Design

Space capability, and Section 8.2 describes extensions of Model Space Exploration. Finally,

formalization and tool support are described as improvements of the Syntax Map in Section 8.3.

8.1 Enhancements to the Intermediate Design Space Capability

This section describes extensions to the capabilities of the Intermediate Design Space,

which plays a vital role for DSML creation from a set of domain model examples. A set of

model examples are transformed into a set of attributed graphs and then passed into the inference

engine to generate a metamodel and the static constraints representing the envisioned DSML.

Some domain-independent models are created from Metamodel Design Patterns to complement

the lack of a complete set of domain model examples. This section describes extensions of

metamodel design patterns and the semantic inference process in order to widen the application

areas of MLCBD.

149

8.1.1 Improve Metamodel Design Patterns

Design patterns have been widely adopted to promote software design reuse because they

reflect the experience and knowledge of designers who have successfully solved recurring

problems in different domains. Design Patterns were adopted in MLCBD in order to improve the

quality of a metamodel. Specifically, metamodel design patterns guide the metamodel inference

process by complementing the lack of domain model examples that can be provided by the

domain expert. Thus, the more metamodel design patterns that can be identified from existing

metamodels can help to guide the metamodel inference in order to build DSMLs that are closer

to the notions of the domain.

In addition, further research is needed for the formal specification of metamodel design

patterns. Similar to traditional software design patterns, metamodel design patterns can be

applied to encourage the reuse of metamodel design. For example, metamodel design patterns

can be used to create a new metamodel by composing them instead of designing each metamodel

from scratch. Lédeczi et al. [Lédeczi et al., 2001a; Lédeczi et al., 2001] proposed metamodel

composition to build a new language by applying composition rules to two existing metamodels.

Their approach was implemented successfully in GME. Similarly, if metamodel design patterns

are formally specified in a similar manner as formal component specification, then a metamodel

can be created by applying simple composition (or weaving) rules to metamodel design patterns.

150

8.1.2 Consideration about Dynamic Semantics

Semantics describe the meaning of a language, and syntax is concerned with the form of

a language’s expression. Semantics, thus, plays the role of a bridge between the concepts of the

language and the representations used to express the domain expert’s intention. Specifying the

semantics of a language using formal techniques can often be tedious and error-prone. In

addition, formal specification of behavioral semantics requires much time and effort for even

well-trained computer scientists. Currently, the MLCBD framework captures only static

semantics, specifically static constraints, that are inferred when a domain expert demonstrates a

set of domain model examples. The static constraints are associated to the corresponding

metamodel and are used to verify if any structural pattern violation occurred when the domain

expert demonstrated an example model. However, to extend MLCBD’s features, an ability to

capture dynamic semantics is needed from either a set of domain model examples or from a

series of actions produced while a domain expert operationally demonstrates the concepts in their

domain.

8.2 Enhancements to the Model Space Exploration Functionality

Model Space Exploration provides a set of models instantiated from the inferred

metamodel with static constraints that can be used to verify and improve previously inferred

DSML constructs. There are several limitations in the current approach and this section points

out these issues as areas for future work to improve design space exploration within the MLCBD

context.

151

8.2.1 Enhance Model Space Exploration Algorithm

One improvement that can be investigated further to improve Model Space Exploration is

an approach to reduce significantly the traversed model space. Because the model space is

created based on the graph search algorithm, some of the short paths actually could be sub-paths

of the long paths. For example, model instances, shown earlier in Table 4.5(a) and (c), consist of

two modeling elements, which are adjacent to each other. However, these two model instances

also can be obtained from the model in Table 4.5(b) by breaking the model into to two sub-paths.

Therefore, when presenting these three model instances to domain experts, the expert may lose

attention easily because the model instances are too trivial and may cause the domain expert to

lose focus. Thus, the algorithm needs to consider path reduction in order to minimize the

production of model instances that are identical in terms of semantics.

The adaptation of graph transformation is another option for improving the algorithm of

Model Space Exploration. As mentioned in Chapter 2, the model transformation technique is a

key technology of MDE. The graph grammar and transformations have been recognized as

promising techniques for specifying complex transformation. For example, the ideas of the

Graph Rewriting and Transformation Language (GReAT) [Agrawal, 2003; Karsai et al., 2003;

Balasubramanian et al., 2006-a] can be applied to model space creation. GReAT is a graphical

model transformation language that can be used to specify graph transformations between

DSMLs. GReAT consists of a Pattern Specification Language, Graph Rewriting/Transformation

Language, and Control Flow Language. The Pattern Specification Language specifies patterns of

152

objects and their links over graphs, where the vertices and edges map to specific classes and

associations. In addition, a pattern matching algorithm is used to represent complex graphs

concisely. The Graph Rewriting/Transformation language defines graph transformation steps by

embellishing pattern graphs as well as specifying pre-conditions and post-conditions. The

Control Flow Language is used to define the control structures of rules and provides features

(e.g., rule sequencing, modularization and branching) in order to process control structures

hierarchically.

The model exploration algorithm can be improved by adopting the ideas of the three

major parts of GReAT (e.g., pattern specification, graph rewriting/transformation, and control

flow) to handle a set of domain model examples used to infer a metamodel and static constraints.

8.2.2 Improve Layout Management

To arrange the models instantiated for Model Space Exploration, the implementation uses

the layout management algorithm provided by Microsoft Visio. Because Microsoft Visio does

not provide broader APIs to manage shape layout, programmers cannot fully control the layout

of modeling elements, and a clumsy layout may hinder the domain experts from understanding

the model instances.

The most commonly used approach to arrange the layout of models automatically is to

develop a language-specific algorithm. A number of modeling tools (e.g., GMF, GME, and

MetaCase+ [MetaCase+, 2011]) provide an automatic layout feature in their model editors using

their own fixed algorithms. The algorithms rearrange the layout of the models and make models

more readable by avoiding the overlaps of model elements and connections. However, most of

these algorithms do not consider the implicit semantics of the model elements and their

153

connections. In addition, fixed layout algorithms usually do not consider the underlying mental

map of domain users [Misue et al., 1995].

Thus, a new layout management algorithm is needed to address these issues. For example,

we may apply By-Demonstration techniques to address the ignorance of the underlying mental

map. Currently, a By-Demonstration technique is applied to identify the concrete syntax by

capturing a series of domain expert actions, but it can be extended for capturing the layout of

each domain model example [Sun et al., 2011].

8.3 Improvements for the Syntax Map

The Syntax Map was introduced to assist in defining the requirements of DSMLs. The

Syntax Map mainly uses the graphical representations in order to describe the syntactic and

semantics requirements of a DSML visually. In addition, the Syntax Map assists domain experts

in describing the requirements of the syntax according to the anticipated usages. Thus, the two

characteristics of the Syntax Map (i.e., scenario-based and graphical representation-based

requirements specification) help domain experts to describe the requirements of DSMLs

precisely and completely. However, the Syntax Map needs to be improved to model additional

DSML requirements. This section identifies these needs issues as future work to improve the

Syntax Map.

8.3.1 Formalization of Syntax Map

The Syntax Map does not apply a formal technique to specify each requirements

modeling element. The specification of modeling elements is provided in English prose. Thus,

the modeling elements can be understood differently and inconsistently by requirements

154

modelers. For example, the concept of containment could be specified more precisely using

formal specification techniques.

8.3.2 Tool Support

Additional tool support could encourage the use of the Syntax Map for DSML

requirement modeling and management. If a DSML does not have complex structural patterns,

the Syntax Map can be drawn using basic diagramming tools. However, if a DSML has many

constructs that are deeply related to each other, domain users may be challenged in managing the

Syntax Map without tool support. Thus, tool support is necessary to deal with the volume and

complexity of anticipated DSML requirements.

155

CHAPTER 9

CONCLUSION

MDE has been proposed to address the challenges in software development by raising the

level of abstraction. DSMLs and model transformation are key technologies enabling MDE.

Unlike GPMLs, DSMLs offers precise and concise syntax and semantics to satisfy specific

domain needs. Thus, DSMLs can improve productivity and quality while minimizing the

learning curve [Kelly and Tolvanen, 2008]. However, DSML development requires much time

and effort.

The overall goal of the research described in this dissertation was to provide a systematic

and end-user (or domain expert) centered approach for building DSMLs. The key contributions

include: 1) applying a demonstration-based approach to capture domain knowledge, specifically

capturing concrete syntax, 2) designing and implementing an inference engine to generate a

metamodel and static semantics from domain model examples, which are demonstrated by

domain experts, 3) applying Model Space Exploration to investigate the correctness of the

inferred metamodel and static constraints, as well as identify missing elements of the domain that

need to be present in the inferred DSML. In addition, the concept of a Syntax Map was

introduced to model the requirements of a DSML semi-formally using a graphical representation.

The core contributions are summarized in the following sections of this chapter.

156

9.1 Syntax Map

Requirements describe the features of a system as demanded by end-users. A good set of

requirements are critical for project success and play a primary role for communication among

stakeholders. In addition, they are used to measure software quality. By its nature, elaborating a

set of complete and precise requirements is challenging. Many researchers and practitioners have

proposed and developed various approaches and tools to identify and manage requirements

formally and systematically - examples include Use Case diagrams, Behavior Trees, CCS and

CSP for modeling requirements (semi)-formally. However, little attention has been given to the

issue of specifying and managing the requirements of DSMLs. As part of our contribution

toward specifying DSML requirements, the concept of the Syntax Map is introduced in this

dissertation. The Syntax Map is intended to model the requirements of graphical DSMLs and

offers its own language to model the syntactic and semantics requirements of a DSML visually.

With a Syntax Map, the requirements of the syntax are modeled by placing and linking the

graphical symbols according to the usage of the syntax by domain experts. The goals of the

Syntax Map are: 1) to minimize miscommunication between end users and programming

language development experts, 2) to reason about correctness and completeness of the DSML

requirements.

9.2 Intermediate Design Space

DSMLs can express a specific domain more precisely and concisely than GPMLs and

they offer several advantages such as productivity improvement and shorter learning time [Kelly

157

and Tolvanen, 2008]. However, DSMLs can be a challenge to design using current practice

because: 1) domain experts may need programming (or modeling) language development

expertise, as well as domain knowledge, 2) lack of tool support hampers the progress of DSML

development and can be an error prone process, and 3) the static semantics of a DSML is often

hard to define by a domain expert.

The MLCBD approach described in this dissertation addresses the challenges of DSML

development by providing an active role for the domain expert. The Intermediate Design Space

is a core part of MLCBD and allows domain experts who do not have programming language

development expertise to create their own DSMLs by themselves. To build a DSML, domain

experts need to demonstrate a set of model examples using the MLCBD tool, which is a plugin to

Microsoft Visio. The MLCBD tool captures the core parts of the concrete syntax as a domain

expert demonstrates concepts from a specific domain. A set of model examples provided by the

domain expert are transformed into a set of attribute graphs and then passed into the metamodel

inference engine to infer a metamodel and its static constraints. Model instances are generated

from metamodel design patterns, which reflect the experience and knowledge of designers who

have successfully solved the recurring problems in metamodeling. The metamodel design

patterns are provided to the metamodel inference engine as supplementary inputs.

Using MLCBD, domain experts can build their own DSML environment without the help

of programming language experts. One current limitation of DSML creation with MLCBD is the

level of detail that can be captured with respect to the semantics of the DSML. Although

semantics offers a bridge between the concepts of the language and the representations used to

express the concepts, it is difficult to capture and specify the behavioral semantics from a set of

static model examples. Although some static semantics can be inferred with MLCBD, further

158

research is needed to extend the level of support to allow domain experts to express behavioral

semantics more deeply.

9.3 Model Space Exploration

Model Space Exploration is used in MLCBD to improve the correctness of the inferred

metamodel and its static constraints. Although domain experts have profound knowledge and

deep experiences in their domain, modeling every possible domain concept may not be possible.

Because of this, the metamodel and static constraints inferred from a set of user-supplied model

examples may not have all of required syntax and semantics to model the domain. This has a

detrimental effect on the completeness and correctness of the inferred DSML.

To address the need to improve the completeness of the demonstration-based approach of

MLCBD, Model Space Exploration was investigated. In Model Space Exploration, a set of

domain models is instantiated from the inferred metamodel and static constraints. The set of

domain models includes both positive and negative models. The generated model examples are

presented randomly to the domain expert, who is asked to confirm whether each example

correctly represents an example in the envisioned DSML. The domain expert’s feedback is sent

back to the Intermediate Design Space inference engine to update the inferred metamodel and

static constraints. Thus, Model Space Exploration allows domain users to verify the correctness

of the inferred metamodel and static constraints by exploring a set of domain models that are

generated from the current representation of the DSML from past model examples.

159

9.4 Dissertation Conclusion

Although DSMLs offer many benefits, developing a DSML is challenging for domain

experts who have in-depth domain knowledge, but do not have programming language

development expertise. In addition, the lack of tool support hampers the development and usage

of DSMLs in everyday software development activities.

To address these issues, the research described in this dissertation provides a systematic

and end-user (or domain expert) centered approach for building DSMLs. The approach consists

of two major activities: Intermediate Design Space and Model Space Exploration. The

Intermediate Design Space offers flexible modeling environments where domain experts can

demonstrate notions of a domain with a graphical notation. In addition, the Intermediate Design

Space infers a metamodel and its static constraints based on a set of domain model examples,

which are demonstrated by domain experts. Metamodel design patterns were also investigated to

assist with the inference. Model Space Exploration assists domain experts in reasoning about the

correctness of the inferred metamodel and finding language concepts that were missed during the

original demonstration. By iterating between the Intermediate Design Space and Model Space

Exploration, domain experts can define their own DSML.

In addition, the Syntax Map helps domain experts to describe the requirements of a

DSML semi-formally. A Syntax Map can visualize what notions of a DSML (i.e., abstract syntax)

are required for describing a domain and how those notions are related with concrete entities (i.e.,

concrete syntax).

160

LIST OF REFERENCES

[Abrial, 2005] Jean-Raymond Abrial, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 2005.

[Agrawal et al., 2003] Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End
Domain-Driven Software Development Framework,” In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications, Anaheim, CA, October 2003, pages 8-15.

[Aichenig, 1999] Bernhard K. Aichernig, “Automated Black-Box Testing with Abstract VDM
Oracles,” In Proceedings of the 18th International Conference on Computer Safety, Reliability,
and Security, September 1999, Toulouse, France, pages 250-259.

[Albert et al, 2003] Manoli Albert, Vicente Pelechano, Joan Fons, Marta Ruiz, and Oscar Pastor,
“Implementing UML Association, Aggregation, and Composition: A Particular Interpretation
Based on a Multidimensional Framework,” In Proceedings of the International Conference on
Advanced Information Systems Engineering, Klagenfurt/Velden, Austria, June 2003, pages 143-
158.

[Amyot and Logrippo, 2000] Daniel Amyot and Luigi Logrippo, “Use Case Maps and Lotos for
the Prototyping and Validation of a Mobile Group Call System,” Computer Communications, vol.
23, no. 12, July 2000, pages 1135-1157.

[Amyot et al., 2006] Daniel Amyot, Hanna Farah, and Jean-François Roy, “Evaluation of
Development Tools for Domain-Specific Modeling Languages,” System Analysis and Modeling:
Language Profiles, 2006, pages 183-197.

[Andries et al., 1999] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-
Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer, “Graph
Transformation for Specification and Programming,” Journal of Science of Computer
Programming, vol. 34, no. 1, April 1999, pages 1-54.

[Angluin, 1980] Dana Angluin, “Inductive Inference of Formal Languages from Positive Data,”
Information and Computation/Information and Control, vol. 45, no. 2, 1980, pages 117-135.

[Armstrong, 2006] Deborah J. Armstrong, “The Quarks of Object-Oriented Development,”
Communications of the ACM, vol. 49, no. 2, February 2006, pages 123-128.

[Atkinson and Kuhne, 2003] Colin Atkinson and Thomas Kuhne, “Model-Driven Development:
A Metamodeling Foundation,” IEEE Software, vol. 20, no. 5, May 2003, pages 36-41.

161

[Backus 1978] John Backus, “Can Programming be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs,” Communications of the ACM, vol. 21, no. 8,
August 1978, pages 613-641.

[Balakrishnan and Reps, 2010] Gogul Balakrishnan and Thomas Reps, “WYSINWYX: What
You See Is Not What You eXecute,” ACM Transactions on Programming Languages and
Systems, vol. 32, no. 6, Article 23, August 2010, pages 23:1-23:84.

[Balasubramanian et al., 2006] Daniel Balasubramanian, Anantha Narayanan, Chris van Buskirk,
and Gabor Karsai, “The Graph Rewriting and Transformation Language: GReAT,” Electronic
Communication of the European Association of Software Science and Technology, vol. 1, 2006,
8 pages.

[Barbier et al., 2003] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and
Jean-Michel Bruel, “Formalization of the Whole-Part Relationship in the Unified Modeling
Language,” IEEE Transactions on Software Engineering, vol. 29, no. 5, May 2003, pages 459-
470.

[Bass et al., 2012] Len Bass, Paul Clements, and Rick Kazman, Software Architecture in
Practice (3rd ed.), Addison-Wesley Professional, 2012.

[Bentley et al., 1987] Jon L. Bentley, Lynn W. Jelinski, and Brian W. Kernighan, “Chem: A
Program for Phototypesetting Chemical Structure Diagrams,” Computers and Chemistry, vol. 11,
no. 4, 1987, pages 281-297.

[Bergstra and Klop, 1982] Jan A. Bergstra and Jan Willem Klop, “Algebraic Specifications for
Parameterized Data Types with Minimal Parameter and Target Algebras,” In Proceedings of the
9th Colloquium on Automata, Languages and Programming, Aarhus, Denmark, July 1982, pages
23-34.

[Berwick and Pilator, 1987] Robert C. Berwick and Sam Pilato, “Learning Syntax by Automata
Induction,” Machine Learning, vol. 2, no. 1, March 1987, pages 9-38.

[Bézivin, 2005] Jean Bézivin, “Model Driven Engineering: An Emerging Technical Space,”
Generative and Transformational Techniques in Software Engineering, Braga, Portugal, July
2005, pages 36-64.

[Bjørner and Jones, 1978] Dines Bjørner and Cliff B. Jones, The Vienna Development Method:
The Meta-Language, Springer, 1978.

[Blickle et al, 1998] Tobias Blickle, Jürgen Teich, and Lothar Thiele, “System-Level Synthesis
Using Evolutionary Algorithms,” Design Automation for Embedded Systems, vol. 3, no. 1, 1998,
pages 23-58.

[Blostein and Schürr, 1999] Dorothea Blostein and Andy Schürr, “Computing with Graphs and
Graph Transformations,” Software: Practice and Experience, vol. 29, no. 3, March 1999, pages
197-217.

[Boehm, 1988] Barry W. Boehm, “A Spiral Model of Software Development and Enhancement,”
IEEE Computer, vol. 21, no. 5, May 1988, pages 61-72.

162

[Bondé et al., 2005] Lossan Bondé, Cédric Dumoulin, and Jean-Luc Dekeyser, “Metamodels and
MDA Transformations for Embedded Systems,” Advances in Design and Specification
Languages for SoCs, September 2005, pages 89-105.

[Booch, 1997] Grady Booch, Object-Oriented Analysis and Design with Applications, Addison-
Wesley, 1997.

[Brand et al., 1996] Mark Brand, Arie van Deursen, Paul Klint, A. S Klusener, and Emma
Meulen, “Industrial Applications of ASF+SDF,” Algebraic Methodology and Software
Technology, 1996, pages 9-18.

[Brooks, 1987] Frederick Brooks, “No Silver Bullet - Essence and Accident in Software
Engineering,” IEEE Computer, vol. 20, no. 4, April 1987, pages 10-19.

[Bruns, 1997] Glenn Bruns, Distributed Systems Analysis with CCS, Prentice Hall, 1997.

[Buchmann, 2012] Thomas Buchmann, “Towards Tool Support for Agile Modeling: Sketching
Equals Modeling,” In Proceedings of Extreme Modelling Workshop, Innsbruck, Austria, October
2012.

[Budinsky et al., 2004] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose, Eclipse Modeling Framework, Addison-Wesley, 2004.

[Buhr and Casselman, 1995] R. J. A. Buhr and R. S. Casselman, Use Case Maps for Object-
Oriented Systems, Prentice Hall, 1995.

[Burnett et al., 2004] Margaret Burnett, Curtis Cook, and Gregg Rothermel, “End-user Software
Engineering,” Communications of the ACM, vol. 47, no. 9, January 2004, pages 53-58.

[Buschmann et al., 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal, Pattern-Oriented Software Architecture Volume 1: A System of Patterns,
Wiley, 1996.

[Chen et al., 2008] Qi Chen, John Grundy, and John Hosking, “SUMLOW: Early Design-Stage
Sketching of UML Diagrams on an E-Whiteboard,” Software Practice and Experience, vol. 38,
no. 9, July 2008, pages 961-994.

[Chen et al., 2009] Kai Chen, Joseph Porter, Janos Sztipanovits, and Sandeep Neema,
“Compositional Specification of Behavioral Semantics for Domain-Specific Modeling
Languages,” International Journal of Semantic Computing, vol. 3, no. 1, March 2009, pages 31-
56.

[Cheng and Atlee, 2007] Betty H. C. Cheng and Joanne M. Atlee, “Research Directions in
Requirements Engineering,” In Proceedings of the ICSE 2007 Workshop on the Future of
Software Engineering, Minneapolis, MN, May 2007, pages 285-303.

[Cho et al., 2011] Hyun Cho, Yu Sun, Jeff Gray, and Jules White, “Key Challenges for Modeling
Language Creation By Demonstration,” In Proceedings of the ICSE 2011 Workshop on Flexible
Modeling Tools, Honolulu, HI, May 2011.

163

[Cho and Gray, 2011] Hyun Cho and Jeff Gray, “Design Patterns for Metamodels,” 11th
Workshop on Domain-Specific Modeling, Portland, OR, October 2011, pages 25-32.

[Cho et al., 2012] Hyun Cho, Jeff Gray, and Eugene Syriani, “Creating Visual Domain-Specific
Modeling Languages from End-User Demonstration,” In Proceedings of the ICSE 2012
Workshop on Modeling in Software, Zurich, Switzerland, June 2012, pages 22-28.

[Cho et al., 2012] Hyun Cho, Jeff Gray, and Eugene Syriani, “Syntax Map: A Modeling
Language for Capturing Requirements of Graphical DSML,” The 19th Asia-Pacific Software
Engineering Conference, Hong Kong, Hong Kong, December 2012, pages 705-708.

[Claßen, 1989] Ingo Claßen, “Revised ACT ONE: Categorical Constructions for an Algebraic
Specification Language,” In Proceeding of Workshop on Categorical Methods in Computer
Science with Aspects from Topology, 1989, pages 124-141.

[Claßen et al., 1993] Ingo Claßen, Hartmut Ehrig, and Dietmar Wolz, Algebraic Specification
Techniques and Tools for Software Development, World Scientific Pub Co. Inc., 1993.

[Clarke and Baniassad, 2005] Siobhàn Clarke and Elisa Baniassad, Aspect-Oriented Analysis and
Design, Addison-Wesley Professional, 2005.

[Clements et al., 2010] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford, Documenting Software
Architectures: Views and Beyond (2nd ed.), Addison-Wesley Professional, 2010.

[Cockburn, 2000] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley Professional,
2000.

[Consel and Danvy, 1991] Charles Consel and Olivier Danvy, “Static and Dynamic Semantics
Processing,” In Proceedings of the Symposium on Principles of Programming Languages,
Orlando, FL, 1991, pages 14-24.

[Constantine and Yourdon, 1979] Larry Constantine and Edward Yourdon, Structured Design:
Fundamentals of a Discipline of Computer Program and Systems Design, Prentice Hall, 1979.

[Crosby, 1979] Philip B. Crosby, Quality is Free: The Art of Making Quality Certain, Penguin
Books, 1979.

[Czarnecki and Eisenecker, 2000] Krzysztof Czarnecki and Ulrich Eisenecker, Generative
Programming: Methods, Tools, and Applications, Addison Wesley, 2000.

[Czarnecki and Helsen, 2006] Krzysztof Czarnecki and Simon Helsen, “Feature-Based Survey of
Model Transformation Approaches,” IBM Systems Journal, vol. 45, no. 3, 2006, pages 621-645.

[Cypher, 1993] Allen Cypher, Watch What I Do: Programming by Demonstration, MIT Press,
1993.

[Deursen and Klint, 1998] Arie van Deursen and Paul Klint, “Little Languages: Little
Maintenance,” Journal of Software Maintenance, vol. 10, no, 2, March 1998, pages75-92.

164

[Deursen et al., 2000] Arie van Deursen, Paul Klint, and Joost Visser, “Domain-Specific
Languages: An Annotated Bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, June 2000,
pages 26-36.

[DeMarco, 1979] Tom DeMarco, Structured Analysis and System Specification, Prentice Hall,
1979.

[Dijkstra, 1972] Edsger W. Dijkstra, Structured Programming, Academic Press Ltd., 1972.

[Dijkstra, 1976] Edsger W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[Dimitrov, 2010] Vladimir Dimitrov, “Finite State Automata Semantics in Communicating
SequentiaL Processes,” Labour On Scientific, vol. 49, no. 6.1, 2010, pages 66-71.

[Dromey, 2003] Geoff R. Dromey, “From Requirements to Design: Formalizing the Key Steps,”
In Proceedings of First International Conference on Software Engineering and Formal Methods,
Brisbane, Australia, September 2003, pages 2-11.

[Ehrig et al., 2004] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer, “Fundamental Theory
for Typed Attributed Graphs and Graph Transformation,” In Proceeding of 2nd International
Conference on Graph Transformation, Roma, Italy, September 2004, pages 161-177.

[Eker et al., 2003] Johan Eker, Joern W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong, “Taming Heterogeneity-The
Ptolemy Approach,” Proceedings of the IEEE, vol. 91, no. 1, January 2003, pages 127-144.

[Elaasar et al., 2006] Maged Elaasar, Lionel C. Briand, and Yvan Labiche, “A Metamodeling
Approach to Pattern Specification and Detection,” Technical Report SCE-06-08, Carleton
University, March 2006.

[Elrad et al., 2002] Tzilla Elrad, Omar Aldawud, and Atef Bader, “Aspect-Oriented Modeling:
Bridging the Gap between Implementation and Design,” International Conference on Generative
Programming and Component Engineering, Pittsburgh, PA, October 2002, pages 189-201.

[Emerson and Sztipanovits, 2006] Matthew Emerson and Janos Sztipanovits, “Techniques for
Metamodel Composition,” In The 6th OOPSLA Workshop on Domain-Specific Modeling,
Portland, OR, October 2006, pages 123-139

[Erbas et al., 2003] Cagkan Erbas, Selin C. Erbas, and Andy D. Pimentel, “A Multiobjective
Optimization Model for Exploring Multiprocessor Mappings of Process Networks,” In
Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, Newport Beach, CA, October 2003, pages 182-187.

[Erwig, 1998] Martin Erwig, “Abstract Syntax and Semantics of Visual Languages,” Journal of
Visual Languages and Computing, vol. 9, no. 5, 1998, pages 461-483.

[Fantechi et al., 2002] Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami, and Alessandro
Maccari, “Application of Linguistic Techniques for Use Case Analysis,” In Proceedings of the
10th Anniversary IEEE Joint International Conference on Requirements Engineering, September
2002, Essen, Germany, pages 157-164.

165

[Favre, 2004] Jean-Marie Favre, “CacOphoNy: Metamodel Driven Architecture Reconstruction,”
In Proceedings of the 11th Working Conference on Reverse Engineering, Delft, The Netherlands,
2004, pages 204-213.

[Fey, 1988] Werner Fey, “Pragmatics, Concepts, Syntax, Semantics, and Correctness Notions of
ACT TWO: An Algebraic Module Specification and Interconnection Language,” Ph.D. Thesis,
Report 88/26, Technische Universität Berlin, 1988.

[Flood and Carson, 1993] Robert L. Flood and Ewart R. Carson, Dealing with Complexity: An
Introduction to the Theory and Applications of Systems Science, Plenum Press, 1993.

[Fokkink, 2009] Wan Fokkink, “Process Algebra: An Algebraic Theory of Concurrency,” In
Proceedings of the 3rd International Conference on Algebraic Informatics, Thessaloniki, Greece,
May 2009, pages 47-77.

[Fowler, 2003] Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Addison-Wesley Professional, 2003.

[France and Rumpe, 2007] Robert France and Bernhard Rumpe, “Model-Driven Development of
Complex Software: A Research Roadmap,” In Proceedings of the ICSE 2007 Workshop on the
Future of Software Engineering, Minneapolis, MN, May 2007, pages 37-54.

[Fu and Booth, 1986] King-Sun Fu and Taylor L. Booth, “Grammatical Inference: Introduction
and Survey-Part I,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-5, no. 1,
January 1975, pages 95-111.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

[Gane and Sarson, 1979] Chris Gane and Trish Sarson, Structured Systems Analysis: Tools and
Techniques, Prentice Hall, 1979.

[Garlan and Shaw, 1994] David Garlan and Mary Shaw, “An Introduction to Software
Architecture,” Technical Report CMU/SEI-94-TR-021, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1994.

[Gerber et al., 2002] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew
Wood, “Transformation: The Missing Link of MDA,” In First International Conference of
Graph Transformation, Barcelona, Spain, October, 2002, pages 90 -105.

[Goan et al., 1996] Terrance Goan, Nels Benson, and Oren Etzioni, “A Grammar Inference
Algorithm for the World Wide Web,” In Proceedings of AAAI Spring Symposium on Machine
Learning in Information Access, Stanford, CA, 1996, pages 41-48.

[Gold, 1967] E. Mark Gold, “Language Identification in the Limit,” Information and Control,
vol. 10, no. 6, May 1967, pages 447-474.

[Goodman, 1968] Nelson Goodman, Languages of Art: An Approach to a Theory of Symbols,
Bobbs-Merrill Co., 1968.

166

[Gray et al., 2007] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, Sandeep
Neema, and Jonathan Sprinkle, Handbook of Dynamic System Modeling, CRC Press, 2007.

[Gries, 2004] Matthias Gries, “Methods for Evaluating and Covering the Design Space During
Early Design Development,” Integration, the VLSI Journal, vol. 38, no. 2, December 2004,
pages 131-183.

[Grönniger et al., 2007] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel, “Text-Based Modeling,” In 4th International Workshop on Software Language
Engineering, Nashville, TN, September/October 2007.

[Grose et al., 2002] Timothy J. Grose, Gary C. Doney, and Stephen A. Brodsky, Mastering XMI:
Java Programming with XMI, XML, and UML, Wiley, 2002.

[Grunske et al., 2005] Lars Grunske, Peter Lindsay, Nisansala Yatapanage, and Kirsten Winter,
“An Automated Failure Mode and Effect Analysis Based on High-Level Design Specification
with Behavior Trees,” In Proceeding of 5th International Conference of Integrated Formal
Methods, Eindhoven, The Netherlands, December 2005, pages 129-149.

[Grunske et al., 2008] Lars Grunske, Kirsten Winter, and Nisansala Yatapanage, “Defining the
Abstract Syntax of Visual Languages with Advanced Graph Grammars-A Case Study Based on
Behavior Trees,” Journal of Visual Languages and Computing, vol. 19, no. 3, June 2008, pages
343-379.

[Günther, 2011] Sebastian Günther, “Development of Internal Domain-Specific Languages:
Design Principles and Design Patterns,” In Proceedings of Pattern Languages of Programs,
Portland, OR, October 2011.

[Hagenbuchner et al., 2009] Markus Hagenbuchner, Alessandro Sperduti, and Ah-Chung Tsoi,
“Graph Self-Organizing Maps for Cyclic and Unbounded Graphs,” Neurocomputing, vol. 72, no.
7-9, March 2009, pages 1419-1430.

[Halambi et al., 1999] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt,
and Alex Nicolau, “EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability,” In Proceedings of the Conference on Design, Automation,
and Test in Europe, Dresden, Germany, March 1999, pages 485-490.

[Harel and Rumpe, 2004] David Harel and Bernhard Rumpe, “Meaningful Modeling: What’s the
Semantics of “Semantics”?” IEEE Computer, vol. 37, no. 10, October 2004, pages 64-72.

[He et al., 2003] Yong He, Daniel Amyot, and Alan W. Williams, “Synthesizing SDL from Use
Case Maps: An Experiment,” In Proceedings of the 11th International Conference on System
Design, Stuttgart, Germany, July 2003, pages 117-136.

[Hemingway et al., 2007] Graham Hemingway, Hang Su, Kai Chen, and T. John Koo, “A
Semantic Anchoring Infrastructure for the Design of Embedded Systems,” In Proceedings of the
Computer Software and Applications Conference, vol. 1, Beijing, China, 2007, pages 287-294.

167

[Herndon and Berzins, 1988] Robert M. Herndon Jr. and Valdis A. Berzins, “The Realizable
Benefits of a Language Prototyping Language,” IEEE Transactions on Software Engineering,
vol. 14, no. 6, June 1988, pages 803-809.

[Higuera, 2005] Colin De La Higuera, “A Bibliographical Study of Grammatical Inference,”
Pattern Recognition, vol. 38, no. 9, September 2005, pages 1332-1348.

[Hoare, 1969] Charles Antony Richard Hoare, “An Axiomatic Basis for Computer Programming,”
Communications of the ACM, vol. 12, no. 10, October 1969, pages 576-580.

[Hoare, 1973] Charles Antony Richard Hoare, “Hints on Programming Language Design,”
Technical Report STAN-CS-73-403, Stanford University, Stanford, CA, October 1973.

[Hoare, 1978] Charles Antony Richard Hoare, “Communicating Sequential Processes,”
Communications of the ACM, vol. 21, no. 8, August 1978, pages 666-677.

[Hopcroft et al., 2006] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction
to Automata Theory, Languages, and Computation (3rd ed.), Prentice Hall, 2006.

[Hsia et al., 1993] Pei Hsia, Alan Davis, and David Kung, “Status Report: Requirements
Engineering,” IEEE Software, vol. 10, no. 6, November 1993, pages 75-79.

[Javed et al., 2008] Faizan Javed, Marjan Mernik, Jeff Gray, and Barrett R. Bryant, “MARS: A
Metamodel Recovery System Using Grammar Inference,” Information and Software Technology,
vol. 50, no. 9-10, August 2008, pages 948-968.

[Jouault and Bézivin, 2006] Frédéric Jouault and Jean Bézivin, “KM3: A DSL for Metamodel
Specification,” International Conference on Formal Methods for Open Object-based Distributed
Systems, Bologna, Italy, June 2006, pages 171-185.

[Julliand and Kouchnarenko, 2007] Jacques Julliand and Olga Kouchnarenko, “B 2007: Formal
Specification and Development in B,” In Proceedings of 7th International Conference of B Users,
Besançon, France, January 2007.

[Kaindl et al., 2002] Hermann Kaindl, Sjaak Brinkkemper, Janis A. Bubenko Jr., Barbara Farbey,
Sol J. Greenspan, Constance L. Heitmeyer, Julio Cesar Sampaio do Prado Leite, Nancy R. Mead,
John Mylopoulos, and Jawed Siddiqi, “Requirements Engineering and Technology Transfer:
Obstacles, Incentives, and Improvement Agenda,” Requirements Engineering, vol. 7, no. 3, 2002,
pages 113-123.

[Kang et al., 1990] Kyo C. Kang, Sholom Cohen, James Hess, William Novak, and Spencer
Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report
CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, Pittsburgh, PA, November 1990.

[Kangas et al., 2006] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko
Hännikäinen, Timo D. Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna, “UML-Based
Multiprocessor SoC Design Framework,” ACM Transactions on Embedded Computing Systems,
vol. 5, no. 2, May 2006, pages 281-320.

[Karagiannis and Höfferer, 2008] Dimitris Karagiannis and Peter Höfferer, “Metamodeling as an
Integration Concept,” Software and Data Technologies, vol. 10, 2008, pages 37-50.

168

[Karsai et al., 2004] Gabor Karsai, Miklos Maroti, Akos Lédeczi, Jeff Gray, and Janos
Sztipanovits, “Composition and Cloning in Modeling and Meta-Modeling,” IEEE Transactions
on Control Systems Technology, vol. 12, no. 2, pages 263-278.

[Karsai et al., 2009] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel, “Design Guidelines for Domain Specific Languages,” In
Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling, Orlando, FL, October
2009.

[Kelly and Tolvanen, 2000] Steven Kelly and Juha-Pekka Tolvanen, “Visual Domain-Specific
Modeling: Benefits and Experiences of Using MetaCASE Tools,” International Workshop on
Model Engineering, Sophia and Cannes, France, June 2000.

[Kelly and Tolvanen, 2008] Steven Kelly and Juha-Pekka Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE Computer Society Press, 2008.

[Kieburtz et al., 1996] Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James Hook, Alex
Kotov, Jeffrey Lewis, Dino P. Oliva, Tim Sheard, Ira Smith, and Lisa Walton, “A Software
Engineering Experiment in Software Component Generation,” In Proceedings of the 18th
International Conference on Software Engineering, Berlin, Germany, March 1996, pages 542-
552.

[Kienhuis et al., 1997] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf, “An
Approach for Quantitative Analysis of Application-Specific Dataflow Architectures,” In
Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures and Processors, Zurich, Switzerland, July 1997, pages 338-349.

[Kirsopp and Shepperd, 2002] Colin Kirsopp and Martin J. Shepperd, “Making Inferences with
Small Numbers of Training Sets,” Software, IEE Proceedings, vol. 149, no. 5, pages 123-130.

[Kolovos et al., 2006] Dimitrios S. Kolovos, Richard F. Paige, Tim Kelly, and Fiona A.C. Polack,
“Requirements for Domain-Specific Languages,” In Proceedings of ECOOP Workshop on
Domain-Specific Program Development, Nantes, France, July 2006.

[Kopp et al., 2009] Oliver Kopp, Daniel Martin, Daniel Wutke, and Frank Leymann, “The
Difference Between Graph-Based and Block-Structured Business Process Modelling Language,”
Enterprise Modelling and Information Systems, vol. 4, no. 1, 2009, pages 3-13.

[Krueger, 1992] Charles W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24, no. 2,
June 1992, pages 131-183.

[Kurlander and Feiner, 1993] David Kurlander and Steven Feiner, “Inferring Constraints from
Multiple Snapshots,” ACM Transactions on Graphics, vol. 12, no. 4, October 1993, pages 277-
304.

[Kurtev et al., 2006] Ivan Kurtev, Jean Bezivin, Frederic Jouault, and Patrick Valduriez, “Model-
based DSL Frameworks,” ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages and Applications, Portland, OR, October 2006, pages 602-616.

169

[Larman and Basil, 2003] Craig Larman and Victor R. Basili, “Iterative and Incremental
Development: A Brief History,” IEEE Computer, vol. 36, no. 6, June 2003, pages 47-56.

[Lédeczi et al., 2001] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg
Nordstrom, Jonathan Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design
Environments,” IEEE Computer, vol. 34, no. 11, November 2001, pages 44-51.

[Lédeczi et al., 2001a] Ákos Lédeczi, Greg Nordstrom, Gábor Karsai, Péter Völgyesi, and
Miklós Maróti, “On Metamodel Composition,” In Proceedings of the International Conference
on Control Applications, Mexico City, Mexico, September 2001, pages 756-760.

[Lenz and Wienands, 2006] Gunther Lenz and Christoph Wienands, Practical Software
Factories in .NET, Apress, 2006.

[Liskov and Zilles, 1975] Barbara Liskov and Stephen Zilles, “Specification Techniques for Data
Abstractions”, SIGPLAN Notices, vol. 10, no. 6, April 1975, pages 72-87.

[Liu et al., 2010] Qichao Liu, Barrett R. Bryant, and Marjan, Mernik, “Metamodel Recovery
from Multi-Tiered Domains using Extended MARS,” In Proceedings of the 34th Annual
International Computer Software and Applications Conference, Seoul, South Korea, July 2010,
pages 279-288.

[Lucas et al., 1994] Simon M. Lucas, Enrique Vidal, A. Amiri, S. Hanlon, and Juan-Carlos
Amengual, “A Comparison of Syntactic and Statistical Techniques for Offline OCR,” In
Proceedings of the International Colloquium of Grammatical Inference, Alicante, Spain,
September 1994, pages 168-179.

[Luisa et al., 2004] Mich Luisa, Franch Mariangela, and Inverardi Pierluigi, “Market Research
for Requirements Analysis Using Linguistic Tools,” Requirements Engineering, vol. 9, no. 1,
February 2004, pages 40-56.

[Maiden and Robertson, 2005] Neil Maiden and Suzanne Robertson, “Developing Use Cases and
Scenarios in the Requirements Process,” In Proceedings of the 27th International Conference on
Software Engineering, May 2005, St. Louis, MO, pages 561-570.

[Mapelsden et al, 2002] David Mapelsden, John Hosking, and John Grundy, “Design Pattern
Modelling and Instantiation using DPML,” In Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for Internet, Mobile and Embedded Applications, Sydney,
Australia, February 2002, pages 3-11.

[Martin, 1967] James Martin, Design of Real-Time Computer Systems, Prentice-Hall, 1967.

[Martin, 1996] Robert C. Martin, “The Open-Closed Principle,” More C++ Gems, vol. 8,
January 1996, pages 97-112.

[Mazanek and Minas, 2009] Steffen Mazanek and Mark Minas, “Business Process Models as a
Showcase for Syntax-Based Assistance in Diagram Editors,” International Conference on Model
Driven Engineering Languages and Systems, Denver, CO, October, 2009, pages 322-336.

170

[Medvidovic and Rosenblum, 1997] Nenad Medvidovic and David S. Rosenblum, “Domains of
Concern in Software Architectures and Architecture Description Languages,” In Proceedings of
the Conference on Domain-Specific Languages on Conference on Domain-Specific Languages,
Berkeley, CA, October 1997, pages 199-212.

[Mens and Gorp, 2006] Tom Mens and Pieter Van Gorp, “A Taxonomy of Model
Transformation,” Electronic Notes in Theoretical Computer Science, vol. 152, March 2006,
pages 125-142.

[Mernik et al., 2005] Marjan Mernik, Jan Heering, and Anthony M. Sloane, “When and How to
Develop Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4, December 2005,
pages 316-344.

[Messmer and Bunke, 1999] Bruno T. Messmer and Horst Bunke, “A Decision Tree Approach to
Graph and Subgraph Isomorphism Detection,” Pattern Recognition, vol. 32, no. 12, December
1999, pages 1979-1998.

[Michalski, 1983] Ryszard S. Michalski, “A Theory and Methodology of Inductive Learning,”
Artificial Intelligence, vol. 20, no. 2, February 1983, pages 111-161.

[Milanović et al., 2009] Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, and
Vladan Devedžić, “Bridging Concrete and Abstract Syntaxes in Model-Driven Engineering: A
Case of Rule Languages,” Software Practice & Experience, vol. 39, no 16, November 2009,
pages 1313-1346.

[Milner, 1989] Robin Milner, Communication and Concurrency, Prentice Hall, 1989.

[Misue et al., 1995] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama, “Layout
Adjustment and the Mental Map,” Journal of Visual Languages and Computing, vol. 6, no. 2,
June 1995, pages 183-210.

[Mockus, 2007] Audris Mockus, “Large-Scale Code Reuse in Open Source Software,” In
Proceeding of First International Workshop on Emerging Trends in FLOSS Research and
Development, Minneapolis, MN, May 2007, p.7.

[Mohagheghi and Conradi, 2008] Parastoo Mohagheghi and Reidar Conradi, “An Empirical
Investigation of Software Reuse Benefits in a Large Telecom Product,” ACM Transactions on
Software Engineering and Methodology, vol. 17, no. 3, Article 13, June 2008.

[Moody, 2009] Daniel L. Moody, “The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering,” IEEE Transactions on Software
Engineering, November/December 2009, pages 756-779.

[Morris et al., 1999] Michael G. Morris, Cheri Speier, and Jeffrey A. Hoffer, “An Examination
of Procedural and Object-oriented Systems Analysis Methods: Does Prior Experience Help or
Hinder Performance?” Decision Sciences, vol. 30, no. 1, January 1999, pages 107-136.

[Murata, 1989] Tadao Murata, “Petri Nets: Properties, Analysis, and Applications,” Proceedings
of the IEEE, vol. 77, no. 4, April 1989, pages 541-580.

171

[Nakatani et al., 1999] Lloyd H. Nakatani, Mark A. Ardis, Robert G. Olsen, and Paul M.
Pontrelli, “Jargons for Domain Engineering,” In Proceedings of the 2nd Conference on Domain-
Specific Languages, Austin, TX, October 1999, pages 15-24.

[Narayanan et al., 2010] Krishna Kumar Narayanan, Luis Felipe Posada, Frank Hoffmann, and
Torsten Bertram, “Robot Programming by Demonstration,” Simulation, Modeling, and
Programming for Autonomous Robots, Darmstadt, Germany, November 2010, pages 288-299.

[Nardi, 1993] Bonnie A. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, MIT Press, 1993.

[Naumann and Jenkins, 1982] Justus D. Naumann and A. Milton Jenkins, “Prototyping: The
New Paradigm for Systems Development,” MIS Quarterly, vol. 6, no. 3, September 1982, pages
29-44.

[Naur and Randell, 1969] Peter Naur and Brain Randell, (Eds.), “Software Engineering: Report
of a Conference Sponsored by the NATO Science Committee,” Garmisch, Germany, October
1968, Brussels, Scientific Affairs Division, NATO (1969).

[Neema et al., 2003] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts,
“Constraint-Based Design-Space Exploration and Model Synthesis,” In Third International
Conference on Embedded Software, Philadelphia, PA, October 2003, pages 290-305.

[Ney, 1992] Hermann Ney, “Stochastic Grammars and Pattern Recognition,” Speech
Recognition and Understanding, vol. 75, 1992, pages 313-344.

[Nordstrom et al., 1999] Greg Nordstrom, Janos Sztipanovits, Gábor Karsai, and Ákos Lédeczi,
“Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling Environments,”
International Conference on Engineering of Computer-Based Systems, Nashville, TN, April
1999, pages 68-74.

[Nuseibeh and Easterbrook, 2000] Bashar Nuseibeh and Steve Easterbrook, “Requirements
Engineering: A Roadmap,” In Proceedings of the Conference on The Future of Software
Engineering, Limerick, Ireland, June 2000, pages 35-46.

[Offen, 1999] Ray J. Offen, “CASE Tools and Constraint, CADPRO - Experiments in CASE
Tool Use and Constraint Conditions,” North Ryde: Macquarie University Joint Research Centre
for Advanced Systems Engineering, September 1999, pages 3-12

[Oliveira et al., 2010] Marcio FS Oliveira, Francisco A. Nascimento, Wolfgang Mueller, and
Flávio R. Wagner, “Design Space Abstraction and Metamodeling for Embedded Systems Design
Space Exploration,” In Proceedings of the 7th International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, Antwerp, Belgium, September 2010,
pages 29-36.

[Ossher et al., 2010] Harold Ossher, Rachel Bellamy, Ian Simmonds, David Amid, Ateret
Anaby-Tavor, Matthew Callery, Michael Desmond, Jacqueline de Vries, Amit Fisher, and
Sophia Krasikov, “Flexible Modeling Tools for Pre-requirements Analysis: Conceptual
Architecture and Research Challenges,” In Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications, Reno/Tahoe, NV, October 2010, pages 848-864.

172

[Ouardani et al., 2006] Adel Ouardani, Philippe Esteban, Mario Paludetto, and Jean-Claude
Pascal, “A Meta-Modeling Approach for Sequence Diagrams to Petri Net Transformation within
the Requirements Validation Process,” In Proceedings of the European Simulation and Modeling
Conference, Toulouse, France, October 2006, pages 345-349.

[Paakki, 1995] Jukka Paakki, “Attribute Grammar Paradigms - A High-Level Methodology in
Language Implementation,” ACM Computing Surveys, vol. 27, no. 2, June 1995, pages 196-255.

[Paige et al., 2000] Richard F. Paige, Jonathan S. Ostroff, and Phillip J. Brooke, “Principles for
Modeling Language Design,” Information and Software Technology, vol. 42, no. 10, July 2000,
pages 665-675.

[Parnas, 1999] David Lorge Parnas, “Software Engineering Programmes are not Computer
Science Programmes,” IEEE Software, vol. 6, no. 1, November/December 1999, pages 19-37.

[Pedersen and Klein, 1988] Jan S. Pedersen and Mark H. Klein, “Using the Vienna Development
Method (VDM) to Formalize a Communication Protocol,” Technical Report CMU/SEI-88-TR-
026, SEI, Carnegie Mellon University, Pittsburgh, PA, November 1988.

[Petre, 1995] Marian Petre, “Why Looking isn’t Always Seeing: Readership Skills and Graphical
Programming,” Communications of the ACM, vol. 38, no. 6, June 1995, pages 33-44.

[Pohl et al., 2005] Klaus Pohl, Günter Böckle, and Frank J. van der Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques, Springer-Verlag Inc., 2005.

[Potter et al., 1996] Ben Potter, David Till, and Jane Sinclair, An Introduction to Formal
Specification and Z (2nd ed.), Prentice Hall, 1996.

[Pu et al., 1997] Calton Pu, Andrew Black, Crispin Cowan, Jonathan Walpole, and Charles
Consel, “Microlanguages for Operating System Specialization,” In Proceedings of the
Conference on Domain-Specific Language, Paris, France, January 1997, pages 49-57.

[Qattous et al., 2010] Hazem Qattous, Philip Gray, and Ray Welland, “An Empirical Study of
Specification By Example in a Software Engineering Tool,” In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, Bolzano-Bozen, Italy, 2010,
article 16.

[Repenning and Perrone, 2000] Alexander Repenning and Corrina Perrone, “Programming By
Example: Programming By Analogous Examples,” Communications of the ACM, vol. 43, no. 3,
March 2000, pages 90-97.

[Rieger, 1995] Anke Rieger, “Inferring Probabilistic Automata from Sensor Data for Robot
Navigation,” In Proceedings of the MLnet Familiarization Workshop and Third European
Workshop on Learning Robots, Crete, Greece, 1995, pages 65-74.

[Rolland et al., 2003] Colette Rolland, Carine Souveyet, and Mohamed Ben Ayed, “Guiding
Lyee User Requirements Capture,” Intention and Software Process, vol. 16, no. 7-8, November
2003, pages 351-359.

[Roscoe, 1997] Andrew William Roscoe, Charles Antony Richard Hoare, and Richard Bird, The
Theory and Practice of Concurrency, Prentice Hall, 1997.

173

[Rose et al., 2012] Louis M. Rose, Dimitrios S. Kolovos, and Richard F. Paige, “EuGENia Live:
A Flexible Graphical Modelling Tool,” In Proceedings of Extreme Modelling Workshop,
Innsbruck, Austria, October 2012.

[Rosson and Alpert, 1990] Mary Beth Rosson and Sherman R. Alpert, “The Cognitive
Consequences of Object-Oriented Design,” Human Computer Interaction, vol. 5, no. 4,
December 1990, pages 345-379.

[Royce, 1987] Winston W. Royce, “Managing the Development of Large Software Systems:
Concepts and Techniques,” In Proceedings of the 9th International Conference on Software
Engineering, Monterey, CA, April 1987, pages 328-339.

[Rubel et al., 2011] Dan Rubel, Jaime Wren, and Eric Clayberg, The Eclipse Graphical Editing
Framework (GEF), Addison-Wesley Professional, 2011.

[Saxena and Karsai, 2010] Tripti Saxena and Gabor Karsai, “Towards a Generic Design Space
Exploration Framework,” In Proceedings of the 10th International Conference on Computer and
Information Technology, Bradford, UK, 2010, pages 1940-1947.

[Schäfer et al., 2011] Christian Schäfer, Thomas Kuhn, and Mario Trapp, “A Pattern-Based
Approach to DSL Development,” In Proceedings of Workshops on Domain-Specific Modeling,
Portland, OR, October 2011, pages 39-46.

[Schätz et al., 2010] Bernhard Schätz, Florian Hölzl, and Torbjörn Lundkvist, “Design-Space
Exploration through Constraint-Based Model-Transformation,” In Proceedings of the 17th
International Conference and Workshops on the Engineering of Computer-Based Systems,
Oxford, England, UK, March 2010, pages 173-182.

[Schmidt, 1988] David A. Schmidt, Denotational Semantics: A Methodology for Language
Development, William C. Brown Pub, 1988.

[Schmidt, 2006] Douglas C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39, no.
2, 2006, pages 25-31.

[Selic, 2009] Bran Selic, “The Theory and Practice of Modeling Language Design for Model-
Based Software Engineering: A Personal Perspective,” In Proceedings of the 3rd International
Summer School Conference on Generative and Transformational Techniques in Software
Engineering III, Braga, Portugal, July 2009, pages 290-321.

[Sendall and Kozaczynski, 2003] Shane Sendall and Wojtek Kozaczynski, “Model
Transformation - The Heart and Soul of Model-Driven Software Development,” IEEE Software,
vol. 20, no. 5, September 2003, pages 42-45.

[Smith, 1975] David Canfield, “Pygmalion: A Creative Programming Environment,” Stanford
Technical Report STAN-CS-75-499, Stanford University, June 1975.

[Snyder, 1986] Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming
Languages,” In Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications, Portland, OR, 1986, pages 38-45.

174

[Solomonoff, 1959] Ray Solomonoff, “A New Method for Discovering the Grammars of Phrase
Structure Languages,” In Proceedings of the International Conference on Information
Processing, Paris, France, 1959, pages 285-289.

[Steinberg et al., 2008] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks,
EMF: Eclipse Modeling Framework (2nd ed.), Addison-Wesley Professional, 2008.

[Stevson and Fleck, 1997] Daniel E. Stevenson and Margaret M. Fleck, “Programming Language
Support for Digitized Images or, The Monsters in the Closet,” In Proceedings of the Conference
on Domain-Specific Languages, Paris, France, January 1997, pages 271-284.

[Sun et al., 2009] Yu Sun, Jules White, and Jeff Gray, “Model Transformation By
Demonstration,” International Conference on Model Driven Engineering Languages and
Systems, Denver, CO, October 2009, pages 712-726.

[Sun et al., 2011] Yu Sun, Jeff Gray, Gerti Kappel, Philip Langer, Manuel Wimmer, and Jules
White, “A WYSIWYG Approach to Support Layout Configuration in Model Evolutions,”
Emerging Technologies for the Evolution and Maintenance of Software Models, IGI Global,
2012, pages 92-120.

[Sutton, 2005] Stanley M. Sutton Jr., “Aspect-Oriented Software Development and Software
Process,” In Proceeding of International Software Process Workshop, Beijing, China, May 2005,
pages 177-191.

[Taylor et al., 1961] Warren Taylor, Lloyd Turner, and Richard Waychoff, “A Syntactical Chart
of ALGOL 60,” Communications of the ACM, vol. 4, no. 9, September 1961, pages 393-396.

[Thollard et al., 2000] Franck Thollard, Pierre Dupont, and Colin De La Higuera, “Probabilistic
DFA Inference using Kullback-Leibler Divergence and Minimality,” In Proceedings of the 17th
International Conference on Machine Learning, Stanford, CA, July 2000, pages 975-982.

[Uchitel et al., 2002] Sebastian Uchitel, Jeff Kramer, and Jeff Magee, “Negative Scenarios for
Implied Scenario Elicitation,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 6,
November 2002, pages 109-118.

[Valiant, 1979] Leslie G. Valiant, “The Complexity of Enumeration and Reliability Problems,”
SIAM Journal on Computing, vol. 8, no. 3, 1979, pages 410-421.

[Visser, 2007] Eelco Visser, “WebDSL: A Case Study in Domain-Specific Language
Engineering,” In Generative and Transformational Techniques in Software Engineering II,
Braga, Portugal, July 2007, pages 291-373.

[Wang and Acero, 2001] Ye-Yi Wang and Alex Acero, “Grammar Learning for Spoken
Language Understanding,” In Proceedings of the Workshop on Automatic Speech Recognition
and Understanding, Madonna di Campiglio, Italy, 2001, pages 292-295.

[Watson, 2008] Andrew Watson, “A Brief History of MDA,” Upgrade-the European Journal for
the Informatics Professional, vol. 9, no. 2, 2008, pages 7-11.

[Wegner, 1987] Peter Wegner, “Dimensions of Object-Based Language Design,” ACM
SIGPLAN Notices, vol. 22, no. 12, December 1987, pages 168-182.

175

[Wen and Dromey, 2004] Lian Wen and Geoff R. Dromey, “From Requirements Change to
Design Change: A Formal Path,” In Proceeding of International Conference on Software
Engineering and Formal Methods, September 2004, Beijing, China, pages 104-113.

[Wiegers, 1999] Karl E. Wiegers, “Writing Quality Requirements,” Software Development, vol.
7, no. 5, May 1999.

[Wile, 1997] David S. Wile, “Abstract Syntax from Concrete Syntax,” In Proceedings of the
19th International Conference on Software Engineering, Boston, MA, May 1997, pages 472-480.

[Woodbury et al., 2000] Robert Francis Woodbury, Sambit Datta, and Andrew Lincoln Burrow,
“Erasure in Design Space Exploration,” In Proceedings of the 6th International Conference on
Artificial Intelligence in Design, Worcester, MA, June 2000, pages 521-543.

[Woodcock and Davies, 1996] Jim Woodcock and Jim Davies, Using Z: Specification,
Refinement, and Proof, Prentice-Hall, 1996.

[Zhang and Xu, 2004] Yingzhou Zhang and Baowen Xu, “A Survey of Semantic Description
Frameworks for Programming Languages,” ACM SIGPLAN Notices, vol. 39, no. 3, March 2004,
pages 14-30.

[Zloof, 1975] Moshé M. Zloof, “Query-By-Example: The Invocation and Definition of Tables
and Terms,” International Conference on Very Large Data Bases, Framingham, MA, September
1975, pages 1-24.

[EMF, 2011] Eclipse Modeling Project, http://www.eclipse.org/modeling/, 2011.

[GEF, 2011] Graphical Editing Framework, http://www.eclipse.org/gef/, 2011.

[GEMS, 2011] Generic Eclipse Modeling System (GEMS), http://www.eclipse.org/gmt/gems/,
2011.

[GME, 2012] Generic Modeling Environment, http://www.isis.vanderbilt.edu/Projects/gme/,
2012.

[IBM Database Fundamental] IBM Database Fundamentals,
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.sq
l.ref.doc%2Fdoc%2Fr0006726.html.

[IBM Rational DOORS] IBM Rational DOORS, Get it Right the First Time, IBM Rational
DOORS Manual.

[IEEE 1471, 2000] Rich Hilliard, “IEEE-std-1471-2000: Recommended Practice for
Architectural Description of Software Intensive Systems,” The Architecture Working Group of
the Software Engineering Committee, Standards Department, IEEE.

[Kermeta] Kermeta,
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.chu
nked/KerMeta-The-FSM-example/index.html.

[MDA, 2011] MDA Specifications, http://www.omg.org/mda/specs.htm#MDAGuide

176

[MetaCase+, 2011] MetaCase+, http://www.metacase.com/, 2011.

[MOF, 2011] Object Management Group Meta Object Facility Specification,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF.

[OCL, 2011] Object Management Group Object Constraint Language Specification,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL, 2011.

[Oracle Syntax Diagram] Oracle Syntax Diagram,
http://docs.oracle.com/cd/B28359_01/server.111/b28286/ap_syntx.htm#i624534.

[OMG BPMN] OMG Business Process Model And Notation (BPMN) Ver. 2.0,
http://www.omg.org/spec/BPMN/2.0/.

[QImPrESS] QImPrESS Service Architecture Metamodel, http://www.q-
impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf.

[SharePoint 2010 REST] SharePoint 2010 REST Service Syntax Diagram,
http://blogs.msdn.com/b/sharepointpictures/archive/2011/03/30/sharepoint-2010-rest-service-
syntax-diagram.aspx.

[Simulink] Simulink Tutorial,
http://www.colorado.edu/mechanical/programs/undergraduate/matlab_tutorials/simulink/simulin
k.htm.

[UML Infrastructure] OMG Unified Modeling Language (OMG UML) Infrastructure Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF.

[UML Superstructure] OMG Unified Modeling Language (OMG UML) Superstructure Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[OMG XMI, 2011] Object Management Group XMI Specification,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI.

[UseCase Maps] Use Case Maps, http://www.usecasemaps.org.

