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Abstract 

Software is an important part of industrial process 

control systems. However, the state-of-the-practice for 

developing industrial process control software still has 

several key challenges that need to be addressed (e.g., 

migration to platforms of different vendors, lack of 

automation). This paper introduces a model-driven 

engineering approach to the development of industrial 

process control software, which is based on the 

ProcGraph domain-specific modeling language. The 

paper discusses and offers solutions to several of the 

development challenges that have not been addressed by 

existing techniques in the process controls domain. The 

contributions of the paper are a model-driven 

engineering approach for the industrial process control 

domain and a supporting tool infrastructure. The 

approach is demonstrated by a case study focused on the 

development of a control system for a TiO2 (titanium 

dioxide) pigment production subprocess. 

1. Introduction 

Industrial process control systems are used in many 
industrial sectors to achieve production improvement, 
process optimization and time and cost reduction [1]. 
These systems are responsible for controlling a particular 
industrial process (e.g., a chemical process), which 
transforms the process inputs into the desired outputs. 
The current state-of-the-practice for developing 
industrial process control systems faces several 
challenges (e.g., migration problems and the lack of 
automation) [2] which are outlined in Section 2. 

Some of the approaches and concepts that are used to 
develop software in other domains could also be used to 
address the challenges of process control systems 
development. This paper discusses two such approaches. 
The first concept are Domain-Specific Modeling 
Languages (DSMLs) [3], which enable the modeling of 
software and systems using concepts (e.g., terms, 
symbols and pictures) and abstractions that are common 
to a specific domain. Practitioners and researchers have 

reported several advantages [4, 5] (e.g., expressing a 
design intent in familiar terms) of using DSMLs instead 
of General-Purpose Modeling Languages (GPMLs), such 
as the Unified Modeling Language (UML) [6]. A second 
promising approach that has been successfully 
introduced into several organizations and domains is 
Model-Driven Engineering (MDE) [7], which promotes 
a systematic development process based on precise 
models at different levels of abstraction from which 
automated analysis and synthesis is possible. Together 
these two approaches foster considerable gains in 
productivity and software quality [8]. 

The few existing proposals (e.g., [1, 9]) for the 
application of MDE to the engineering of industrial 
process control systems have not received widespread 
adoption by the industry [10]. The main contributions of 
this paper are: an MDE approach to the engineering of 
industrial process control applications (based on the 
ProcGraph DSML [11]) and the tool infrastructure for 
supporting such an approach. Both were developed in 
consideration of the challenges that have hindered 
previous adoption of MDE in the discussed domain. 

In Section 2, we identify several challenges that are 
not being addressed by the state-of-the-practice of 
industrial process control systems development. Section 
3 presents promising technologies that could be used to 
overcome these challenges. Section 4 shows how our 
MDE process has been made possible through the 
development of the necessary infrastructure. Section 5 
introduces our MDE process, which is based on the 
ProcGraph DSML. This process is demonstrated through 
a case study in Section 6. A discussion of our research 
and its benefits is contained in Section 7. In Section 8, an 
overview of the related work is provided. The paper ends 
with a conclusion and consideration of future work. 

2. Challenges of engineering industrial 

process control applications 

The current state-of-the-practice for developing 
industrial process control applications is not meeting the 



demands of the market (e.g., short time-to-market 
periods and high reliability). It has faces several 
challenges [2], which are the obstacles on the way to 
meet these demands. Based on Streitferdt et al. [2] and 
our experiences gained from several industrial projects 
in the domain of process control, we believe that the 
most important of these challenges are: 
 
i. Lack of automation in the development process – it 

is hard to transform the deliverables of the design 
phase into an implementation of a process control 
system [10]. Therefore, the translation between the 
design and implementation is commonly performed 
manually. Colla et al. [10] supported this claim with 
a survey, which showed that none of the surveyed 
companies in the process control industry is 
employing automatic code generation. The reason 
for this is either the use of too informal approaches 
or the use of general-purpose approaches like UML 
without profiles, where the gap between the 
procedural-imperative IEC 6113-3 programming 
languages and object-oriented concepts is too wide. 

ii. The migration challenge – the majority of industrial 
process measurement and control systems are 
implemented on Programmable Logical Controllers 
(PLCs) [12], which usually can only be programmed 
in the development environment of their vendors. 
This can be problematic because such environments 
are intentionally closed and often have only a 
proprietary import and export facility. Because of 
that it is very challenging to migrate a system (i.e., 
its implementation) from the platform of one vendor 
to the platform of another vendor. Efforts such as the 
XML interchange schema proposed by the 
PLCOpen worldwide association [13] have not been 
able to solve this challenge.  

iii. The use of improper abstractions – the developers 
often use the means (e.g., valves and pumps) instead 
of the goals of the system (e.g., operations and 
activities) as the central abstractions in their system 
analysis and design models. Such a function-centric 
and low-level view, where physical devices are used 
instead of high-level domain-specific abstractions, 
can lead to a suboptimal decomposition of the 
system, which can lead to a suboptimal system [11]. 
In other words, unnecessary complex models that 
are too focused on implementation concerns can 
arise in the early phases of the development, which 
makes it hard to develop an optimal system. This 
problem can quickly occur with UML and other 
object-oriented approaches, because these 
approaches are too general and do not constrain the 
developers to the use of the right abstractions. 
Failure to determine the right abstraction entities is 
likely the main source of problems in the 
development of process-control software [11]. 

iv. The lack of verification and validation – the state-of-
the-practice relies on testing instead of verification 
and validation to address the need for high quality 
(e.g., reliability) of process control systems. These 
systems are often tested and approved on sight (e.g., 
in the factory) [14]. In this setting, errors that may 
cause accidents on the plant floor and/or the 
discontinuance of production can be quickly 
overlooked or even introduced with the ad-hoc 
corrections that are made. Downtime costs of large 
industrial factories are very high and can go up to 
several million dollars per day [2]. 

v. Specifics of the developers – the majority of the 
software developers who work on process control 
systems have an electrical engineering background. 
They are not familiar with object-oriented concepts 
and with extensive modeling languages, but are 
accustomed to IEC (International Electrotechnical 
Commission) languages and concepts. Therefore, 
they have difficulties to learn and to use UML [15] 
and UML profiles. Another challenge for these 
developers with most of their experience in 
programming [2] is the shift from a code-centric 
way of development to a model-centric way (where 
models are altered instead of the code), because the 
mindset of the developers has to change. 

 
These challenges corroborate the need for 

improvements in the development process of industrial 
control systems. The next section will briefly introduce a 
concept that has the potential to address these challenges 
if it is used and applied wisely. 

3. Overview of model-driven engineering 

MDE is a software development paradigm that has the 
potential to sustainably raise development productivity 
[16] and to reduce the complexity of software 
development [7]. The adoption of MDE offers a 
development environment that promotes the systematic 
and disciplined use of models throughout the lifecycle of 
a software system. The essential idea of MDE is to shift 
the attention from program code to models, such that 
models become the primary development artifacts [17]. 
MDE relies on DSMLs and model transformations, 
which can be realized through appropriate tool support. 

3.1. Domain-specific modeling languages 

Some software/systems development organizations 
specialize within one or only a few application domains. 
With each new project, such an organization can develop 
new expert knowledge about the domain of their core 
competency. Such domain-specific knowledge is often 
the prime intellectual property of an organization [16]. 
To shield the organization against losing its competitive 
advantage due to personnel fluctuation, this knowledge 



should be made explicit. An excellent way to preserve 
the institutional knowledge of an organization is to 
develop a DSML, which can formalize the application 
structure, behavior, and requirements within a particular 
domain [7]. This formalized knowledge is reused every 
time when a model instance is created in a particular 
DSML. The two common ways to define a DSML are: 

− UML-based definition: This approach specializes 
UML for a specific domain through the definition of a 
UML profile that consists of a set of stereotypes, 
tagged values and constraints. 

− Metamodel definition: This approach defines the 
DSML “from scratch” with the use of a metamodeling 
language (e.g., Meta Object Facility [18]). 

3.2. Model transformations 

A model transformation generates one or more target 
models from a source model, based on the defined 
transformation rules. With model transformations, MDE 
can automate many of the complex but routine 
development tasks that are often performed manually 
[21]. This is possible only when formally defined and 
precise modeling languages are used. Examples of tasks 
that can be automated with model transformations are 
the generation of lower level models and eventually code 
from higher level models [22] and model refactoring 
[23]. A strong benefit of using model transformations 
together with DSMLs is that a large portion of the code 
(up to 100%) can be automatically generated, which is 
not possible with GPMLs like UML. 

3.3. Tool support 

To enable MDE in practice, sophisticated tools must 
be developed that support the used DSML(s) and the 
defined model transformations. If the DSML is realized 
through a UML profile, then tool support may be 
provided with the use of existing modeling tools (e.g., 
AndroMDA [19]). If a DSML is realized through 
metamodeling, then several tools that enable different 
development tasks (e.g., modeling and code generation,) 
must be developed. Based on the literature [20] and our 
own experience, the effort needed to develop a basic set 
of these tools (e.g., graphical model editor and code 
generator) without the use of a specialized toolset is 
measured in several person-years. Fortunately, 
metamodeling environments (e.g., GME - Generic 
Modeling Environment [21] and GMF - Graphical 
Modeling Framework [22]) facilitate the development of 
the tools needed to use the selected DSML(s). These 
metamodeling environments can automatically generate 
(portions of) the needed tools based on a formal 
definition of the DSML and the model transformations. 

3.4. Using model-driven engineering in the industrial 

process control domain 

Several attempts to convey the concepts of MDE 

and/or DSMLs to the engineering of industrial process 
control systems have already been made. However, these 
have not been widely adopted into the industry, mainly 
because of their immaturity [10] and inability to properly 
address the challenges that were presented in Section 2. 
An overview of the existing approaches can be found in 
the related work section (Section 7). The following 
section briefly describes the development and 
introduction of our MDE approach, which is based on 
the ProcGraph DSML. 

4. Introducing model-driven engineering 

into the process control domain 

In order to realize our MDE approach we had to 
develop several artifacts, which are the basis of our tool 
infrastructure. The necessary parts of this infrastructure 
were: a formalized version of the ProcGraph language, a 
model repository, a graphical model editor and a code 
generator (currently only for Mitsubishi PLCs). These 
tools are realized in the form of an integrated 
development environment (IDE). The components of the 
IDE are shown in Figure 1. A screenshot of our IDE can 
be seen in Figure 4. 

 

 

Figure 1. The structure of the tool support that 
enables MDE with the ProcGraph DSML. 

Before we started to formally define the ProcGraph 
language we had to decide which of the two approaches 
mentioned in Section 3.3 (i.e., UML extension or 
metamodeling) to use. We decided to adopt the 
metamodeling approach, where we defined the 
metamodel (i.e., a model of the modeling language) and 
some additional models (e.g., the model of the notation 
representing the concrete syntax), from which a partially 
automatic generation of the infrastructure tools was 
achieved. It is important to point out that the ProcGraph 
language emerged in the 1990s, before the UML was 
officially standardized; therefore, ProcGraph was 
initially developed independently from any knowledge 
of the UML. Even before starting the current effort, we 
deliberated on whether to use UML profiles as our 
implementation approach. We decided against the UML 
for the following reasons: the UML is unsuitable for the 
developers in this domain; the UML is complex, vast and 
non-orthogonal; the UML extension mechanisms 



complicate UML even more; the extension mechanisms 
do not (easily) allow to delete or omit parts of the UML 
metamodel; the inability to fully customize the concrete 
syntax (ProcGraph’s concrete syntax should not change, 
because existing developers have grown accustomed to 
it); the inability to remove the UML semantics in place 
of the domain semantics implied by ProcGraph. 

The model repository was developed with the Eclipse 
Modeling Framework (EMF) [23], which generates the 
model repository based on the formal definition of the 
language metamodel (i.e., its abstract syntax).  

For the graphical model editor, we used the GMF 
(Graphical Modeling Framework) [22] metamodeling 
tool. GMF can automatically generate a generic visual 
modeling editor for an arbitrary DSML, as defined by a 
collection of models. These models are a domain model 
(i.e., the language metamodel), a notation model (that 
defines the visual part of the language), a tooling model 
(that defines what can be added to a diagram), a mapping 
model (that relates elements of the domain, notation and 
models to each other) and a generator model (that allows 
the fine tuning of the generated editor). Often the basic 
generated model editor has to be extended through a 
considerable amount of additional code to become 
suitable for the use in industrial projects. Therefore, a lot 
of custom code had to be written to implement some of 
the features of the ProcGraph language. 

For the code generator, we first had to select a target 
programming language. PLCs can be programmed 
through one of the following programming languages, 
which are defined by the IEC 61131-3 standard:  

 
- Instruction list (IL), a low-level assembler-like 

textual language.  
- Structured text (ST), which is a high-level textual 

language similar to Pascal. 
- Ladder diagram (LD), which is a graphical language 

that has the same elements as electromechanical 
relay systems (e.g., contacts and coils of relay). 

- Function block diagram (FBD), which is a graphical 
language consisting of function blocks (they can be 
hierarchically arranged via decomposition) with 
wire-like connections between them. 

- Sequential function chart (SFC), which is a 
graphical language that focuses on structuring 
sequential tasks of an application through programs 
and function blocks. 

 
The most suitable target language is the one that has 

the closest semantics to the ProcGraph DSML 
(introduced in Section 5). In the beginning of our 
project, we eliminated the most primitive languages (i.e., 
the IL and LD). Because the ProcGraph language is 
based on hierarchical decomposition into more diagrams, 
the target language also has to have some kind of 
decomposition mechanism. Based on this requirement 

we decided against SFCs, which in some development 
environments cannot be structured into a hierarchy. In 
the end we chose the FBD language, which has an 
appropriate decomposition mechanism, with the 
combination of ST, which is used to specify the detailed 
processing actions. For the implementation of the code 
generator, we used the openArchitectureWare tool [24], 
which enables the specification of model-to-text 
transformations that generate code through templates. 
We decided to initially develop a generator for PLCs 
from Mitsubishi, because these are the most used PLCs 
of our industrial partners. Most of the development 
environments have import/export capabilities, which 
enable the definition of IEC 61131-3 compatible 
programs with a proprietary textual format or an XML 
format. With this capability it is possible to import the 
generated code into a development environment and 
execute it on proprietary PLC platforms. However, 
achieving this goal is not easy, because the format of 
these interfaces usually is not documented. This is also 
the case for the Mitsubishi GX IEC Developer, which 
has an undocumented and proprietary format of textual 
files that can be parsed to construct FBDs. 

In addition to the components, Figure 1 also shows 
two interfaces. The user interface presents information 
that is understandable for domain experts and application 
developers. The other interface is used to output the 
generated code that is imported into the development 
environments of arbitrary PLC vendors, where it can be 
compiled into code, uploaded onto a PLC and executed.  

The next section presents our MDE process for the 
development of process control software and the 
ProcGraph DSML. 

5. Model-driven engineering of industrial 

process control applications 

This section presents the activities of our MDE 
process, which is based on the ProcGraph DSML and the 
developed tool infrastructure. A detailed presentation of 
these activities is given through a case study, which is 
described in Section 6. 

5.1. The ProcGraph Language 

The ProcGraph language [11] is a DSML that was 
developed for modeling process control systems. It 
enables the conceptual modeling of such systems and 
can be used to construct specifications (i.e., models) in 
the early stages of the software lifecycle (i.e., in the 
analysis and design phases). The language gradually 
evolved from information gained in applying it to over 
20 industrial projects. 

The ProcGraph DSML addresses two of the key 
challenges that emerge in this domain: the challenge of 
using improper abstractions (iii.) and the challenge of the 
specific developer profile (v.), because it has only a 



small number of domain-specific and goal
abstractions, which are well-known by the developers.

The ProcGraph language was initially developed as a 
notation that was defined in a semi-formal way. 
used for the specification of control systems “on paper” 
(i.e., specifications were drawn in a general
graphical tool, such as Visio). The idea arose to build a 
tool infrastructure that would enable modeling with this 
language and eventually computer-aided engineering of 
process control systems. Before the existence of the 
ProcGraph tool infrastructure that is described in this 
paper, ProcGraph models were converted into code 
manually by developers. 

5.2. The Model-Driven Engineering Process

The development process and its activities are 
strongly influenced by ProcGraph and the developed tool 
infrastructure. This process consists of the following 
activities: Requirements definition, Structural modeling, 
Modeling of behavior, Modeling of interdependent 
behavior, Platform selection, Software to hardware 
mapping, and Testing. To demonstrate how industrial 
process applications are developed with ProcGraph and 
the associated tool support, a case study is presented in 
the next section. 

6. Case study: the control system for drying 

of a TiO2 suspension 

In this case study, we present a control system for an 
industrial process, which is depicted through a Piping 
and Instrumentation Diagram (P&ID), as shown in 
Figure 2. The studied process (taken fro
continuous process of drying the titanium dioxide (TiO
suspension, which is one of the last subprocesses in TiO
pigment production. The TiO2 suspension enters the 
storage vessel (A), from where it is pumped into the 
rotating vacuum-dryer (B) that dries it. The dried 
suspension is transported into the dispergator vessel (C) 
from where it is pumped to the drying chamber (D). In 
this drying chamber, the water instantly evaporates 
because of the hot gasses from the thermo
The gained pigment is transported into silos H and I. 
This pneumatic transport is powered by fans F and G. 
Inside the silos, most of the pigment falls to the bottom 
from where it is transported by the screw
transport system (M) to the next subprocess of the whole 
production process. However, some pigment may remain 
on the bag filter on top of the silos, where it is separated 
from the wet flue gasses. The gasses proceed through the 
scrubbing system, as indicated by the 
(J) and water-gas separator (K) to the chimney (L).

The requirements for control applications are often 
defined through a P&ID and supporting documents (e.g., 
informal operational and safety related requirements)

Structural modeling can begin after the requirements 

specific and goal-oriented 
the developers. 

The ProcGraph language was initially developed as a 
formal way. It was 

used for the specification of control systems “on paper” 
drawn in a general-purpose 

graphical tool, such as Visio). The idea arose to build a 
tool infrastructure that would enable modeling with this 

aided engineering of 
process control systems. Before the existence of the 
ProcGraph tool infrastructure that is described in this 
paper, ProcGraph models were converted into code 

Process 

The development process and its activities are 
and the developed tool 

infrastructure. This process consists of the following 
activities: Requirements definition, Structural modeling, 
Modeling of behavior, Modeling of interdependent 
behavior, Platform selection, Software to hardware 

To demonstrate how industrial 
process applications are developed with ProcGraph and 
the associated tool support, a case study is presented in 

Case study: the control system for drying 

a control system for an 
industrial process, which is depicted through a Piping 
and Instrumentation Diagram (P&ID), as shown in 

. The studied process (taken from [11]) is the 
continuous process of drying the titanium dioxide (TiO2) 
suspension, which is one of the last subprocesses in TiO2 

suspension enters the 
rom where it is pumped into the 

dryer (B) that dries it. The dried 
suspension is transported into the dispergator vessel (C) 
from where it is pumped to the drying chamber (D). In 
this drying chamber, the water instantly evaporates 

f the hot gasses from the thermo-aggregate (E). 
The gained pigment is transported into silos H and I. 
This pneumatic transport is powered by fans F and G. 
Inside the silos, most of the pigment falls to the bottom 
from where it is transported by the screw-conveyors 
transport system (M) to the next subprocess of the whole 
production process. However, some pigment may remain 
on the bag filter on top of the silos, where it is separated 
from the wet flue gasses. The gasses proceed through the 

s indicated by the Venturi scrubber 
gas separator (K) to the chimney (L).  

for control applications are often 
supporting documents (e.g., 

informal operational and safety related requirements). 
can begin after the requirements 

are defined. The first step of these activities is to identify 
Procedural Control Entities (PCEs), which are the main 
abstractions used in ProcGraph. A PCE can abstract a 
process, an operation or an acti
parts of the process domain. PCEs can be identified by 
the system analyst communicating with domain
(process engineers) in a relatively easy way 
on high coherence and low coupling between potential 
PCEs. After all the relevant PCEs of an industrial 
process are found, the next step is to model a PCE 
dependency diagram. This is the main domain
diagram type of ProcGraph, which shows all the PCEs  
of the control system under design and a high
of the dependencies among them (these are defined on a 
different diagram). Figure 3 
were identified in the case study. For instance, the 
“Rotating Vacuum Drying” PCE abstracts the 
subprocess, which is carried out on the storage vessel 
(A) and the rotating vacuum
presented P&ID. 

 

 

Figure 2. Process of TiO

Figure 3. The PCE dependency diagram for the 
case study shown in 

The next activity is the modeling of behavior

done with PCE state transition diagrams. This diagram 
type defines the behavior of a specific PCE. Each 
elementary PCE (i.e., a PCE 
decomposed into a state transition diagram. This diagram 
type is an extended Finite State Machine (FSM), which 
differs from other extended FSM variants (e.g., 
Statecharts and UML state diagram
details: a) the functionality and the behavior are not 
separated – there is a single unified model with all the 
processing being assigned to distinct parts of the 
behavior model as its action sequences, b) the processing 

are defined. The first step of these activities is to identify 
Procedural Control Entities (PCEs), which are the main 
abstractions used in ProcGraph. A PCE can abstract a 
process, an operation or an activity, which are all central 
parts of the process domain. PCEs can be identified by 
the system analyst communicating with domain-experts 
(process engineers) in a relatively easy way [11], based 

oherence and low coupling between potential 
PCEs. After all the relevant PCEs of an industrial 
process are found, the next step is to model a PCE 
dependency diagram. This is the main domain-specific 
diagram type of ProcGraph, which shows all the PCEs  

he control system under design and a high-level view 
of the dependencies among them (these are defined on a 

 shows all the PCEs that 
identified in the case study. For instance, the 

“Rotating Vacuum Drying” PCE abstracts the 
subprocess, which is carried out on the storage vessel 

rotating vacuum-dryer (B) parts of the 

 

of TiO2 suspension drying.  

 

. The PCE dependency diagram for the 
case study shown in Figure 2.  

modeling of behavior, which is 
done with PCE state transition diagrams. This diagram 
type defines the behavior of a specific PCE. Each 
elementary PCE (i.e., a PCE that has no sub-PCEs) is 
decomposed into a state transition diagram. This diagram 
type is an extended Finite State Machine (FSM), which 
differs from other extended FSM variants (e.g., 
Statecharts and UML state diagrams) in the following 

ctionality and the behavior are not 
there is a single unified model with all the 

processing being assigned to distinct parts of the 
behavior model as its action sequences, b) the processing 



is organized into a richer set of action sequence types 
(entry, loop, exit, always and transient action sequences 
of states and one action sequence of transitions), c) all 
action sequences have a duration, d) overlapping 
superstates, and e) two transition types. Such a diagram 
consists of states and transitions, and also allows state 
hierarchies. A state transition diagram for a part of the 
case study is depicted in Figure 4. The two available 
types of transitions are: 1) the transition on event, which 
is denoted by a filled arrowhead, is triggered when the 
PCE is in the source state of the transition and the event 
(either an operator command or a process equipment 
signal) specified as the guard of the transition occurs; 2) 
the transition on completion, which is denoted by an 
empty arrowhead, is triggered when the source state of 
the transition is finished with its loop processing. The 
actions, which are the basis of the processing performed 
in states and transitions, are defined with the structural 
text language (defined in IEC 61131-3 standard). 
 

 

Figure 4. The PCE state transition diagram of 
the “EPT.Core” from Figure 3.  

The modeling of interdependent behavior is done with 
the PCE dependencies state transition diagram. Such a 
diagram exactly defines the mutual behavior 
dependencies between two PCEs. A dependencies state 
transition diagram for a part of the case study is given in 
Figure 5. This diagram type consists of the state 
transition diagrams of two interdependent PCEs and 
dependency relationships, which define the behavior 
dependencies among them. A dependency can be either a 
conditional dependency, which is denoted by a normal 
line with a filled arrowhead, or a propagation 
dependency, which is denoted by a dashed line with 
filled arrowhead. The source state of a conditional 
dependency has to be the active state of its parent PCE 
so that a transition, which is at the end of this 
dependency, can be fired. The transition into which a 
propagation dependency sinks is fired, when the source 
state of this dependency is the active state of its parent 
PCE and if the other PCE is in the source state of the 
target transition of this dependency. All of the behavior 
interdependencies between two PCEs that are defined on 

a dependency state transition diagram are summarized 
on the dependency diagram as a union of the defined 
dependencies. The high-level view dependency between 
two PCEs on a dependency diagram is decomposed into 
a dependency state transition diagram. 

The platform selection follows after a complete 
ProcGraph model has been constructed. A platform is 
determined through the selection of a code generator. A 
code generator for a specific platform should be 
developed by tool developers. In our case study, we used 
the code generator for Mitsubishi PLCs (i.e., for the 
Mitsubishi GX IEC developer). Figure 6 shows a part of 
the generated code for our case study. 

 

 

Figure 5. The PCE dependencies state 
transition diagram of “EPT.Core” and “Screw 

Conveyer Transport”. 

The next activity is the mapping of software onto the 

hardware, which consists of mapping software onto 
computation nodes, processors and tasks. Currently, our 
MDE process based on ProcGraph does not allow the 
visual modeling of this mapping. The mapping is 
described in either the generator or in the development 
environment of the PCE vendor.  

The testing of the application can begin after the 
generated code is imported into the IDE of the selected 
platform vendor, compiled and uploaded on the PLC. 

7. Discussion 

An earlier attempt to implement a modeling 
environment for ProcGraph was made (reported in [25]), 
but was only partly successful and was eventually 
discontinued. In that attempt the tool was built from 
scratch, without the use of any metamodeling tools. That 
attempt was problematic because the result was hard-
coded and not flexible enough to evolve based on 
requests for new features. Also, the first attempt at 
ProcGraph tool support did not provide many of the 
needed features and was developed inefficiently (i.e., it 
was labor intensive and challenging to develop). This 
motivated us to start another attempt to provide tool 
support that was based on a formal definition of 
ProcGraph and the use of existing metamodeling tools. 



 

Figure 6. The generated FBD for the state transition diagram of “Screw Conveyer Transport”, which 
is a part of the whole generated code.  

The adoption of MDE, which is based on the 
ProcGraph DSML, has brought the following benefits: 
- Increased software quality: Because the 

transformations are repeated each time the code is 
generated, the code does not contain human coding 
errors. Because ProcGraph is used, the knowledge 
about how to optimally decompose the system is 
reused every time a model instance is created. Both 
of these factors increase the software quality. 

- Increased productivity: Because the model-to-code 
transformations are formally defined the translation 
into the implementation could be automated with the 
code generator for Mitsubishi PLCs. This addresses 
one of the identified challenges (i.) and saves 
development time. Another factor that improves 
productivity is the inherent reuse of knowledge that 
occurs when the ProcGraph language is used. 

- Platform independence and platform migration: The 
developed tool infrastructure allows the migration to 
a new PLC platform (it addresses challenge ii.), 
which can be achieved by developing a new code 
generator. This enables the platform-independent 
ProcGraph models to be reused across different PLC 
environments and thus offers consistent and safe 
platform migration, without losing functionality. 

- Improved communication and interaction between 

development participants: Due to the improved 
formalization of the ProcGraph language, the 
communication between development participants is 
improved because common misunderstandings are 
reduced due to the used domain abstractions. 

8. Related work 

In the domain of industrial process control, MDE is 
still an upcoming technology [26], although a few 
approaches were already proposed. The one proposed by 
Estevez et al. [27] is based on two different UML 
profiles that are used to model three different views on 
the system (the functional, hardware architecture and the 
software-to-hardware mapping view) and to achieve 
code generation. Compared to our approach, it also 
allows the modeling of the software to hardware 
mapping. However, our approach is on a higher level of 
abstraction and is more suitable for the developers in this 
domain. Another approach [28] from the same research 

group, where XML is used as the modeling language. 
However XML is not easily comprehensible by humans.  

Thramboulidis [15] relies on the transformation of 
UML models to function block models (defined with a 
UML profile) and eventually to an implementation in the 
C programming language. This approach does not enable 
the generation of code, which is executable on PLCs. In 
[9], the authors present a function block based DSML 
with tool support (developed with the GME 
metamodeling tool), which enables the model-to-model 
transformation into CORBA (Common Object 
Requesting Broker Architecture) component models. 
However, they do not mention how code for PLCs can 
be generated from CORBA component models. 

The usage of the UML-PA profile, which is promoted 
in [12], enables automatic code generation into a 
combination of structured text and sequential function 
charts. This approach has the same drawback as other 
UML based approaches and is therefore relatively 
unnatural for control system developers. 

Maurmaier [29] proposes a MDE framework, which is 
extended trough specific model transformations and a 
project specific platform to enable the modeling of the 
software to hardware mapping. However this proposal 
does not mentioned, which modeling language it uses 
and if automatic code generation is already achieved. 

9. Conclusion and future work 

This paper presents an approach to the engineering of 
industrial process control systems, which is based on the 
MDE paradigm and uses the ProcGraph DSML for 
modeling. We identified the current challenges that 
negatively influence the engineering of process control 
systems, which are not covered by the state-of-the-
practice. We described the development of our MDE 
approach through the important design decisions that 
were made during the development of the software tool 
infrastructure, which enables this approach. We 
presented our MDE process through the activities of 
which it consists. To demonstrate this process, we 
introduced a case study where a control system from a 
real industrial project was engineered. An observation 
and discussion of our approach revealed several benefits, 
which were experienced through its usage, and showed 



that our approach addresses the identified challenges. It 
is our belief from using ProcGraph and the associated 
tool infrastructure that we realized improved software 
quality, increased productivity, platform independence 
and easier platform migration, and improved 
communication between development participants. 

Our plans for the future are to develop additional tools 
that support new engineering tasks. More concretely, we 
want to enable the verification of these systems, which is 
currently not carried out in the state-of-the practice. This 
will allow us to shift from a construct-by-correction way 
of development, which relies on testing, to a correct-by-
construction process, which minimizes the need for 
testing, since verification is employed (and it addresses 
the challenge iv. that was identified in Section 2). 
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