
Model-Driven Engineering of

Industrial Process Control Applications

Tomaž Lukman1, Giovanni Godena1, Jeff Gray2, Stanko Strmčnik1

1 Jožef Stefan Institute
Department of Systems and Control
Jamova 39, 1000 Ljubljana, Slovenia

tomaz.lukman, giovanni.godena,
stanko.strmcnik@ijs.si

 2 University of Alabama
Department of Computer Science

Tuscaloosa, AL 35487-0290, USA
gray@cs.ua.edu

Abstract

Software is an important part of industrial process

control systems. However, the state-of-the-practice for

developing industrial process control software still has

several key challenges that need to be addressed (e.g.,

migration to platforms of different vendors, lack of

automation). This paper introduces a model-driven

engineering approach to the development of industrial

process control software, which is based on the

ProcGraph domain-specific modeling language. The

paper discusses and offers solutions to several of the

development challenges that have not been addressed by

existing techniques in the process controls domain. The

contributions of the paper are a model-driven

engineering approach for the industrial process control

domain and a supporting tool infrastructure. The

approach is demonstrated by a case study focused on the

development of a control system for a TiO2 (titanium

dioxide) pigment production subprocess.

1. Introduction

Industrial process control systems are used in many
industrial sectors to achieve production improvement,
process optimization and time and cost reduction [1].
These systems are responsible for controlling a particular
industrial process (e.g., a chemical process), which
transforms the process inputs into the desired outputs.
The current state-of-the-practice for developing
industrial process control systems faces several
challenges (e.g., migration problems and the lack of
automation) [2] which are outlined in Section 2.

Some of the approaches and concepts that are used to
develop software in other domains could also be used to
address the challenges of process control systems
development. This paper discusses two such approaches.
The first concept are Domain-Specific Modeling
Languages (DSMLs) [3], which enable the modeling of
software and systems using concepts (e.g., terms,
symbols and pictures) and abstractions that are common
to a specific domain. Practitioners and researchers have

reported several advantages [4, 5] (e.g., expressing a
design intent in familiar terms) of using DSMLs instead
of General-Purpose Modeling Languages (GPMLs), such
as the Unified Modeling Language (UML) [6]. A second
promising approach that has been successfully
introduced into several organizations and domains is
Model-Driven Engineering (MDE) [7], which promotes
a systematic development process based on precise
models at different levels of abstraction from which
automated analysis and synthesis is possible. Together
these two approaches foster considerable gains in
productivity and software quality [8].

The few existing proposals (e.g., [1, 9]) for the
application of MDE to the engineering of industrial
process control systems have not received widespread
adoption by the industry [10]. The main contributions of
this paper are: an MDE approach to the engineering of
industrial process control applications (based on the
ProcGraph DSML [11]) and the tool infrastructure for
supporting such an approach. Both were developed in
consideration of the challenges that have hindered
previous adoption of MDE in the discussed domain.

In Section 2, we identify several challenges that are
not being addressed by the state-of-the-practice of
industrial process control systems development. Section
3 presents promising technologies that could be used to
overcome these challenges. Section 4 shows how our
MDE process has been made possible through the
development of the necessary infrastructure. Section 5
introduces our MDE process, which is based on the
ProcGraph DSML. This process is demonstrated through
a case study in Section 6. A discussion of our research
and its benefits is contained in Section 7. In Section 8, an
overview of the related work is provided. The paper ends
with a conclusion and consideration of future work.

2. Challenges of engineering industrial

process control applications

The current state-of-the-practice for developing
industrial process control applications is not meeting the

demands of the market (e.g., short time-to-market
periods and high reliability). It has faces several
challenges [2], which are the obstacles on the way to
meet these demands. Based on Streitferdt et al. [2] and
our experiences gained from several industrial projects
in the domain of process control, we believe that the
most important of these challenges are:

i. Lack of automation in the development process – it

is hard to transform the deliverables of the design
phase into an implementation of a process control
system [10]. Therefore, the translation between the
design and implementation is commonly performed
manually. Colla et al. [10] supported this claim with
a survey, which showed that none of the surveyed
companies in the process control industry is
employing automatic code generation. The reason
for this is either the use of too informal approaches
or the use of general-purpose approaches like UML
without profiles, where the gap between the
procedural-imperative IEC 6113-3 programming
languages and object-oriented concepts is too wide.

ii. The migration challenge – the majority of industrial
process measurement and control systems are
implemented on Programmable Logical Controllers
(PLCs) [12], which usually can only be programmed
in the development environment of their vendors.
This can be problematic because such environments
are intentionally closed and often have only a
proprietary import and export facility. Because of
that it is very challenging to migrate a system (i.e.,
its implementation) from the platform of one vendor
to the platform of another vendor. Efforts such as the
XML interchange schema proposed by the
PLCOpen worldwide association [13] have not been
able to solve this challenge.

iii. The use of improper abstractions – the developers
often use the means (e.g., valves and pumps) instead
of the goals of the system (e.g., operations and
activities) as the central abstractions in their system
analysis and design models. Such a function-centric
and low-level view, where physical devices are used
instead of high-level domain-specific abstractions,
can lead to a suboptimal decomposition of the
system, which can lead to a suboptimal system [11].
In other words, unnecessary complex models that
are too focused on implementation concerns can
arise in the early phases of the development, which
makes it hard to develop an optimal system. This
problem can quickly occur with UML and other
object-oriented approaches, because these
approaches are too general and do not constrain the
developers to the use of the right abstractions.
Failure to determine the right abstraction entities is
likely the main source of problems in the
development of process-control software [11].

iv. The lack of verification and validation – the state-of-
the-practice relies on testing instead of verification
and validation to address the need for high quality
(e.g., reliability) of process control systems. These
systems are often tested and approved on sight (e.g.,
in the factory) [14]. In this setting, errors that may
cause accidents on the plant floor and/or the
discontinuance of production can be quickly
overlooked or even introduced with the ad-hoc
corrections that are made. Downtime costs of large
industrial factories are very high and can go up to
several million dollars per day [2].

v. Specifics of the developers – the majority of the
software developers who work on process control
systems have an electrical engineering background.
They are not familiar with object-oriented concepts
and with extensive modeling languages, but are
accustomed to IEC (International Electrotechnical
Commission) languages and concepts. Therefore,
they have difficulties to learn and to use UML [15]
and UML profiles. Another challenge for these
developers with most of their experience in
programming [2] is the shift from a code-centric
way of development to a model-centric way (where
models are altered instead of the code), because the
mindset of the developers has to change.

These challenges corroborate the need for

improvements in the development process of industrial
control systems. The next section will briefly introduce a
concept that has the potential to address these challenges
if it is used and applied wisely.

3. Overview of model-driven engineering

MDE is a software development paradigm that has the
potential to sustainably raise development productivity
[16] and to reduce the complexity of software
development [7]. The adoption of MDE offers a
development environment that promotes the systematic
and disciplined use of models throughout the lifecycle of
a software system. The essential idea of MDE is to shift
the attention from program code to models, such that
models become the primary development artifacts [17].
MDE relies on DSMLs and model transformations,
which can be realized through appropriate tool support.

3.1. Domain-specific modeling languages

Some software/systems development organizations
specialize within one or only a few application domains.
With each new project, such an organization can develop
new expert knowledge about the domain of their core
competency. Such domain-specific knowledge is often
the prime intellectual property of an organization [16].
To shield the organization against losing its competitive
advantage due to personnel fluctuation, this knowledge

should be made explicit. An excellent way to preserve
the institutional knowledge of an organization is to
develop a DSML, which can formalize the application
structure, behavior, and requirements within a particular
domain [7]. This formalized knowledge is reused every
time when a model instance is created in a particular
DSML. The two common ways to define a DSML are:

− UML-based definition: This approach specializes
UML for a specific domain through the definition of a
UML profile that consists of a set of stereotypes,
tagged values and constraints.

− Metamodel definition: This approach defines the
DSML “from scratch” with the use of a metamodeling
language (e.g., Meta Object Facility [18]).

3.2. Model transformations

A model transformation generates one or more target
models from a source model, based on the defined
transformation rules. With model transformations, MDE
can automate many of the complex but routine
development tasks that are often performed manually
[21]. This is possible only when formally defined and
precise modeling languages are used. Examples of tasks
that can be automated with model transformations are
the generation of lower level models and eventually code
from higher level models [22] and model refactoring
[23]. A strong benefit of using model transformations
together with DSMLs is that a large portion of the code
(up to 100%) can be automatically generated, which is
not possible with GPMLs like UML.

3.3. Tool support

To enable MDE in practice, sophisticated tools must
be developed that support the used DSML(s) and the
defined model transformations. If the DSML is realized
through a UML profile, then tool support may be
provided with the use of existing modeling tools (e.g.,
AndroMDA [19]). If a DSML is realized through
metamodeling, then several tools that enable different
development tasks (e.g., modeling and code generation,)
must be developed. Based on the literature [20] and our
own experience, the effort needed to develop a basic set
of these tools (e.g., graphical model editor and code
generator) without the use of a specialized toolset is
measured in several person-years. Fortunately,
metamodeling environments (e.g., GME - Generic
Modeling Environment [21] and GMF - Graphical
Modeling Framework [22]) facilitate the development of
the tools needed to use the selected DSML(s). These
metamodeling environments can automatically generate
(portions of) the needed tools based on a formal
definition of the DSML and the model transformations.

3.4. Using model-driven engineering in the industrial

process control domain

Several attempts to convey the concepts of MDE

and/or DSMLs to the engineering of industrial process
control systems have already been made. However, these
have not been widely adopted into the industry, mainly
because of their immaturity [10] and inability to properly
address the challenges that were presented in Section 2.
An overview of the existing approaches can be found in
the related work section (Section 7). The following
section briefly describes the development and
introduction of our MDE approach, which is based on
the ProcGraph DSML.

4. Introducing model-driven engineering

into the process control domain

In order to realize our MDE approach we had to
develop several artifacts, which are the basis of our tool
infrastructure. The necessary parts of this infrastructure
were: a formalized version of the ProcGraph language, a
model repository, a graphical model editor and a code
generator (currently only for Mitsubishi PLCs). These
tools are realized in the form of an integrated
development environment (IDE). The components of the
IDE are shown in Figure 1. A screenshot of our IDE can
be seen in Figure 4.

Figure 1. The structure of the tool support that
enables MDE with the ProcGraph DSML.

Before we started to formally define the ProcGraph
language we had to decide which of the two approaches
mentioned in Section 3.3 (i.e., UML extension or
metamodeling) to use. We decided to adopt the
metamodeling approach, where we defined the
metamodel (i.e., a model of the modeling language) and
some additional models (e.g., the model of the notation
representing the concrete syntax), from which a partially
automatic generation of the infrastructure tools was
achieved. It is important to point out that the ProcGraph
language emerged in the 1990s, before the UML was
officially standardized; therefore, ProcGraph was
initially developed independently from any knowledge
of the UML. Even before starting the current effort, we
deliberated on whether to use UML profiles as our
implementation approach. We decided against the UML
for the following reasons: the UML is unsuitable for the
developers in this domain; the UML is complex, vast and
non-orthogonal; the UML extension mechanisms

complicate UML even more; the extension mechanisms
do not (easily) allow to delete or omit parts of the UML
metamodel; the inability to fully customize the concrete
syntax (ProcGraph’s concrete syntax should not change,
because existing developers have grown accustomed to
it); the inability to remove the UML semantics in place
of the domain semantics implied by ProcGraph.

The model repository was developed with the Eclipse
Modeling Framework (EMF) [23], which generates the
model repository based on the formal definition of the
language metamodel (i.e., its abstract syntax).

For the graphical model editor, we used the GMF
(Graphical Modeling Framework) [22] metamodeling
tool. GMF can automatically generate a generic visual
modeling editor for an arbitrary DSML, as defined by a
collection of models. These models are a domain model
(i.e., the language metamodel), a notation model (that
defines the visual part of the language), a tooling model
(that defines what can be added to a diagram), a mapping
model (that relates elements of the domain, notation and
models to each other) and a generator model (that allows
the fine tuning of the generated editor). Often the basic
generated model editor has to be extended through a
considerable amount of additional code to become
suitable for the use in industrial projects. Therefore, a lot
of custom code had to be written to implement some of
the features of the ProcGraph language.

For the code generator, we first had to select a target
programming language. PLCs can be programmed
through one of the following programming languages,
which are defined by the IEC 61131-3 standard:

- Instruction list (IL), a low-level assembler-like

textual language.
- Structured text (ST), which is a high-level textual

language similar to Pascal.
- Ladder diagram (LD), which is a graphical language

that has the same elements as electromechanical
relay systems (e.g., contacts and coils of relay).

- Function block diagram (FBD), which is a graphical
language consisting of function blocks (they can be
hierarchically arranged via decomposition) with
wire-like connections between them.

- Sequential function chart (SFC), which is a
graphical language that focuses on structuring
sequential tasks of an application through programs
and function blocks.

The most suitable target language is the one that has

the closest semantics to the ProcGraph DSML
(introduced in Section 5). In the beginning of our
project, we eliminated the most primitive languages (i.e.,
the IL and LD). Because the ProcGraph language is
based on hierarchical decomposition into more diagrams,
the target language also has to have some kind of
decomposition mechanism. Based on this requirement

we decided against SFCs, which in some development
environments cannot be structured into a hierarchy. In
the end we chose the FBD language, which has an
appropriate decomposition mechanism, with the
combination of ST, which is used to specify the detailed
processing actions. For the implementation of the code
generator, we used the openArchitectureWare tool [24],
which enables the specification of model-to-text
transformations that generate code through templates.
We decided to initially develop a generator for PLCs
from Mitsubishi, because these are the most used PLCs
of our industrial partners. Most of the development
environments have import/export capabilities, which
enable the definition of IEC 61131-3 compatible
programs with a proprietary textual format or an XML
format. With this capability it is possible to import the
generated code into a development environment and
execute it on proprietary PLC platforms. However,
achieving this goal is not easy, because the format of
these interfaces usually is not documented. This is also
the case for the Mitsubishi GX IEC Developer, which
has an undocumented and proprietary format of textual
files that can be parsed to construct FBDs.

In addition to the components, Figure 1 also shows
two interfaces. The user interface presents information
that is understandable for domain experts and application
developers. The other interface is used to output the
generated code that is imported into the development
environments of arbitrary PLC vendors, where it can be
compiled into code, uploaded onto a PLC and executed.

The next section presents our MDE process for the
development of process control software and the
ProcGraph DSML.

5. Model-driven engineering of industrial

process control applications

This section presents the activities of our MDE
process, which is based on the ProcGraph DSML and the
developed tool infrastructure. A detailed presentation of
these activities is given through a case study, which is
described in Section 6.

5.1. The ProcGraph Language

The ProcGraph language [11] is a DSML that was
developed for modeling process control systems. It
enables the conceptual modeling of such systems and
can be used to construct specifications (i.e., models) in
the early stages of the software lifecycle (i.e., in the
analysis and design phases). The language gradually
evolved from information gained in applying it to over
20 industrial projects.

The ProcGraph DSML addresses two of the key
challenges that emerge in this domain: the challenge of
using improper abstractions (iii.) and the challenge of the
specific developer profile (v.), because it has only a

small number of domain-specific and goal
abstractions, which are well-known by the developers.

The ProcGraph language was initially developed as a
notation that was defined in a semi-formal way.
used for the specification of control systems “on paper”
(i.e., specifications were drawn in a general
graphical tool, such as Visio). The idea arose to build a
tool infrastructure that would enable modeling with this
language and eventually computer-aided engineering of
process control systems. Before the existence of the
ProcGraph tool infrastructure that is described in this
paper, ProcGraph models were converted into code
manually by developers.

5.2. The Model-Driven Engineering Process

The development process and its activities are
strongly influenced by ProcGraph and the developed tool
infrastructure. This process consists of the following
activities: Requirements definition, Structural modeling,
Modeling of behavior, Modeling of interdependent
behavior, Platform selection, Software to hardware
mapping, and Testing. To demonstrate how industrial
process applications are developed with ProcGraph and
the associated tool support, a case study is presented in
the next section.

6. Case study: the control system for drying

of a TiO2 suspension

In this case study, we present a control system for an
industrial process, which is depicted through a Piping
and Instrumentation Diagram (P&ID), as shown in
Figure 2. The studied process (taken fro
continuous process of drying the titanium dioxide (TiO
suspension, which is one of the last subprocesses in TiO
pigment production. The TiO2 suspension enters the
storage vessel (A), from where it is pumped into the
rotating vacuum-dryer (B) that dries it. The dried
suspension is transported into the dispergator vessel (C)
from where it is pumped to the drying chamber (D). In
this drying chamber, the water instantly evaporates
because of the hot gasses from the thermo
The gained pigment is transported into silos H and I.
This pneumatic transport is powered by fans F and G.
Inside the silos, most of the pigment falls to the bottom
from where it is transported by the screw
transport system (M) to the next subprocess of the whole
production process. However, some pigment may remain
on the bag filter on top of the silos, where it is separated
from the wet flue gasses. The gasses proceed through the
scrubbing system, as indicated by the
(J) and water-gas separator (K) to the chimney (L).

The requirements for control applications are often
defined through a P&ID and supporting documents (e.g.,
informal operational and safety related requirements)

Structural modeling can begin after the requirements

specific and goal-oriented
the developers.

The ProcGraph language was initially developed as a
formal way. It was

used for the specification of control systems “on paper”
drawn in a general-purpose

graphical tool, such as Visio). The idea arose to build a
tool infrastructure that would enable modeling with this

aided engineering of
process control systems. Before the existence of the
ProcGraph tool infrastructure that is described in this
paper, ProcGraph models were converted into code

Process

The development process and its activities are
and the developed tool

infrastructure. This process consists of the following
activities: Requirements definition, Structural modeling,
Modeling of behavior, Modeling of interdependent
behavior, Platform selection, Software to hardware

To demonstrate how industrial
process applications are developed with ProcGraph and
the associated tool support, a case study is presented in

Case study: the control system for drying

a control system for an
industrial process, which is depicted through a Piping
and Instrumentation Diagram (P&ID), as shown in

. The studied process (taken from [11]) is the
continuous process of drying the titanium dioxide (TiO2)
suspension, which is one of the last subprocesses in TiO2

suspension enters the
rom where it is pumped into the

dryer (B) that dries it. The dried
suspension is transported into the dispergator vessel (C)
from where it is pumped to the drying chamber (D). In
this drying chamber, the water instantly evaporates

f the hot gasses from the thermo-aggregate (E).
The gained pigment is transported into silos H and I.
This pneumatic transport is powered by fans F and G.
Inside the silos, most of the pigment falls to the bottom
from where it is transported by the screw-conveyors
transport system (M) to the next subprocess of the whole
production process. However, some pigment may remain
on the bag filter on top of the silos, where it is separated
from the wet flue gasses. The gasses proceed through the

s indicated by the Venturi scrubber
gas separator (K) to the chimney (L).

for control applications are often
supporting documents (e.g.,

informal operational and safety related requirements).
can begin after the requirements

are defined. The first step of these activities is to identify
Procedural Control Entities (PCEs), which are the main
abstractions used in ProcGraph. A PCE can abstract a
process, an operation or an acti
parts of the process domain. PCEs can be identified by
the system analyst communicating with domain
(process engineers) in a relatively easy way
on high coherence and low coupling between potential
PCEs. After all the relevant PCEs of an industrial
process are found, the next step is to model a PCE
dependency diagram. This is the main domain
diagram type of ProcGraph, which shows all the PCEs
of the control system under design and a high
of the dependencies among them (these are defined on a
different diagram). Figure 3
were identified in the case study. For instance, the
“Rotating Vacuum Drying” PCE abstracts the
subprocess, which is carried out on the storage vessel
(A) and the rotating vacuum
presented P&ID.

Figure 2. Process of TiO

Figure 3. The PCE dependency diagram for the
case study shown in

The next activity is the modeling of behavior

done with PCE state transition diagrams. This diagram
type defines the behavior of a specific PCE. Each
elementary PCE (i.e., a PCE
decomposed into a state transition diagram. This diagram
type is an extended Finite State Machine (FSM), which
differs from other extended FSM variants (e.g.,
Statecharts and UML state diagram
details: a) the functionality and the behavior are not
separated – there is a single unified model with all the
processing being assigned to distinct parts of the
behavior model as its action sequences, b) the processing

are defined. The first step of these activities is to identify
Procedural Control Entities (PCEs), which are the main
abstractions used in ProcGraph. A PCE can abstract a
process, an operation or an activity, which are all central
parts of the process domain. PCEs can be identified by
the system analyst communicating with domain-experts
(process engineers) in a relatively easy way [11], based

oherence and low coupling between potential
PCEs. After all the relevant PCEs of an industrial
process are found, the next step is to model a PCE
dependency diagram. This is the main domain-specific
diagram type of ProcGraph, which shows all the PCEs

he control system under design and a high-level view
of the dependencies among them (these are defined on a

 shows all the PCEs that
identified in the case study. For instance, the

“Rotating Vacuum Drying” PCE abstracts the
subprocess, which is carried out on the storage vessel

rotating vacuum-dryer (B) parts of the

of TiO2 suspension drying.

. The PCE dependency diagram for the
case study shown in Figure 2.

modeling of behavior, which is
done with PCE state transition diagrams. This diagram
type defines the behavior of a specific PCE. Each
elementary PCE (i.e., a PCE that has no sub-PCEs) is
decomposed into a state transition diagram. This diagram
type is an extended Finite State Machine (FSM), which
differs from other extended FSM variants (e.g.,
Statecharts and UML state diagrams) in the following

ctionality and the behavior are not
there is a single unified model with all the

processing being assigned to distinct parts of the
behavior model as its action sequences, b) the processing

is organized into a richer set of action sequence types
(entry, loop, exit, always and transient action sequences
of states and one action sequence of transitions), c) all
action sequences have a duration, d) overlapping
superstates, and e) two transition types. Such a diagram
consists of states and transitions, and also allows state
hierarchies. A state transition diagram for a part of the
case study is depicted in Figure 4. The two available
types of transitions are: 1) the transition on event, which
is denoted by a filled arrowhead, is triggered when the
PCE is in the source state of the transition and the event
(either an operator command or a process equipment
signal) specified as the guard of the transition occurs; 2)
the transition on completion, which is denoted by an
empty arrowhead, is triggered when the source state of
the transition is finished with its loop processing. The
actions, which are the basis of the processing performed
in states and transitions, are defined with the structural
text language (defined in IEC 61131-3 standard).

Figure 4. The PCE state transition diagram of
the “EPT.Core” from Figure 3.

The modeling of interdependent behavior is done with
the PCE dependencies state transition diagram. Such a
diagram exactly defines the mutual behavior
dependencies between two PCEs. A dependencies state
transition diagram for a part of the case study is given in
Figure 5. This diagram type consists of the state
transition diagrams of two interdependent PCEs and
dependency relationships, which define the behavior
dependencies among them. A dependency can be either a
conditional dependency, which is denoted by a normal
line with a filled arrowhead, or a propagation
dependency, which is denoted by a dashed line with
filled arrowhead. The source state of a conditional
dependency has to be the active state of its parent PCE
so that a transition, which is at the end of this
dependency, can be fired. The transition into which a
propagation dependency sinks is fired, when the source
state of this dependency is the active state of its parent
PCE and if the other PCE is in the source state of the
target transition of this dependency. All of the behavior
interdependencies between two PCEs that are defined on

a dependency state transition diagram are summarized
on the dependency diagram as a union of the defined
dependencies. The high-level view dependency between
two PCEs on a dependency diagram is decomposed into
a dependency state transition diagram.

The platform selection follows after a complete
ProcGraph model has been constructed. A platform is
determined through the selection of a code generator. A
code generator for a specific platform should be
developed by tool developers. In our case study, we used
the code generator for Mitsubishi PLCs (i.e., for the
Mitsubishi GX IEC developer). Figure 6 shows a part of
the generated code for our case study.

Figure 5. The PCE dependencies state
transition diagram of “EPT.Core” and “Screw

Conveyer Transport”.

The next activity is the mapping of software onto the

hardware, which consists of mapping software onto
computation nodes, processors and tasks. Currently, our
MDE process based on ProcGraph does not allow the
visual modeling of this mapping. The mapping is
described in either the generator or in the development
environment of the PCE vendor.

The testing of the application can begin after the
generated code is imported into the IDE of the selected
platform vendor, compiled and uploaded on the PLC.

7. Discussion

An earlier attempt to implement a modeling
environment for ProcGraph was made (reported in [25]),
but was only partly successful and was eventually
discontinued. In that attempt the tool was built from
scratch, without the use of any metamodeling tools. That
attempt was problematic because the result was hard-
coded and not flexible enough to evolve based on
requests for new features. Also, the first attempt at
ProcGraph tool support did not provide many of the
needed features and was developed inefficiently (i.e., it
was labor intensive and challenging to develop). This
motivated us to start another attempt to provide tool
support that was based on a formal definition of
ProcGraph and the use of existing metamodeling tools.

Figure 6. The generated FBD for the state transition diagram of “Screw Conveyer Transport”, which
is a part of the whole generated code.

The adoption of MDE, which is based on the
ProcGraph DSML, has brought the following benefits:
- Increased software quality: Because the

transformations are repeated each time the code is
generated, the code does not contain human coding
errors. Because ProcGraph is used, the knowledge
about how to optimally decompose the system is
reused every time a model instance is created. Both
of these factors increase the software quality.

- Increased productivity: Because the model-to-code
transformations are formally defined the translation
into the implementation could be automated with the
code generator for Mitsubishi PLCs. This addresses
one of the identified challenges (i.) and saves
development time. Another factor that improves
productivity is the inherent reuse of knowledge that
occurs when the ProcGraph language is used.

- Platform independence and platform migration: The
developed tool infrastructure allows the migration to
a new PLC platform (it addresses challenge ii.),
which can be achieved by developing a new code
generator. This enables the platform-independent
ProcGraph models to be reused across different PLC
environments and thus offers consistent and safe
platform migration, without losing functionality.

- Improved communication and interaction between

development participants: Due to the improved
formalization of the ProcGraph language, the
communication between development participants is
improved because common misunderstandings are
reduced due to the used domain abstractions.

8. Related work

In the domain of industrial process control, MDE is
still an upcoming technology [26], although a few
approaches were already proposed. The one proposed by
Estevez et al. [27] is based on two different UML
profiles that are used to model three different views on
the system (the functional, hardware architecture and the
software-to-hardware mapping view) and to achieve
code generation. Compared to our approach, it also
allows the modeling of the software to hardware
mapping. However, our approach is on a higher level of
abstraction and is more suitable for the developers in this
domain. Another approach [28] from the same research

group, where XML is used as the modeling language.
However XML is not easily comprehensible by humans.

Thramboulidis [15] relies on the transformation of
UML models to function block models (defined with a
UML profile) and eventually to an implementation in the
C programming language. This approach does not enable
the generation of code, which is executable on PLCs. In
[9], the authors present a function block based DSML
with tool support (developed with the GME
metamodeling tool), which enables the model-to-model
transformation into CORBA (Common Object
Requesting Broker Architecture) component models.
However, they do not mention how code for PLCs can
be generated from CORBA component models.

The usage of the UML-PA profile, which is promoted
in [12], enables automatic code generation into a
combination of structured text and sequential function
charts. This approach has the same drawback as other
UML based approaches and is therefore relatively
unnatural for control system developers.

Maurmaier [29] proposes a MDE framework, which is
extended trough specific model transformations and a
project specific platform to enable the modeling of the
software to hardware mapping. However this proposal
does not mentioned, which modeling language it uses
and if automatic code generation is already achieved.

9. Conclusion and future work

This paper presents an approach to the engineering of
industrial process control systems, which is based on the
MDE paradigm and uses the ProcGraph DSML for
modeling. We identified the current challenges that
negatively influence the engineering of process control
systems, which are not covered by the state-of-the-
practice. We described the development of our MDE
approach through the important design decisions that
were made during the development of the software tool
infrastructure, which enables this approach. We
presented our MDE process through the activities of
which it consists. To demonstrate this process, we
introduced a case study where a control system from a
real industrial project was engineered. An observation
and discussion of our approach revealed several benefits,
which were experienced through its usage, and showed

that our approach addresses the identified challenges. It
is our belief from using ProcGraph and the associated
tool infrastructure that we realized improved software
quality, increased productivity, platform independence
and easier platform migration, and improved
communication between development participants.

Our plans for the future are to develop additional tools
that support new engineering tasks. More concretely, we
want to enable the verification of these systems, which is
currently not carried out in the state-of-the practice. This
will allow us to shift from a construct-by-correction way
of development, which relies on testing, to a correct-by-
construction process, which minimizes the need for
testing, since verification is employed (and it addresses
the challenge iv. that was identified in Section 2).

References

[1] M. Marcos and E. Estevez, "Model-driven design of
Industrial Control Systems," in International Conference
on Computer-Aided Control Systems (CACSD 2008),
2008, pp. 1253-1258.

[2] D. Streitferdt, G. Wendt, P. Nenninger, A. Nyβen, and L.
Horst, "Model Driven Development Challenges in the
Automation Domain," in 32nd IEEE International
Computer Software and Applications Conference, 2008,
pp. 1372-1375.

[3] J. Sprinkle, M. Mernik, J.-P. Tolvanen, and D. Spinellis,
"What Kinds of Nails Need a Domain-Specific
Hammer?," IEEE Software, vol. 26, pp. 15-18, 2009.

[4] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, and
P. Fraternali, "Web applications design and development
with WebML and WebRatio 5.0," in TOOLS Europe
2008, 2008.

[5] A. Evans, M. A. Fernández, and P. Mohagheghi,
"Experiences of Developing a Network Modeling Tool
Using the Eclipse Environment," in 5th European
Conference on Model Driven Architecture - Foundations
and Applications, 2009, pp. 301-312.

[6] The Object Management Group, Unified Modeling
Language: Superstructure, Version 2.0, 2004.

[7] D. C. Schmidt, "Model-Driven Engineering," IEEE
Computer, vol. 39, pp. 25-31, 2006.

[8] M. Volter and T. Stahl, Model-Driven Software
Development. John Wiley & Sons, 2006.

[9] K. Thramboulidis, D. Perdikis, and S. Kantas, "Model
driven development of distributed control applications,"
The International Journal of Advanced Manufacturing
Technology, vol. 33, pp. 233-242, 2007.

[10] M. Colla, T. Leidi, and M. Semo, "Design and
implementation of industrial automation control systems:
A survey," in 7th IEEE International Conference on
International Conference on Industrial Informatics, 2009,
pp. 570-575.

[11] G. Godena, "ProcGraph: a procedure-oriented graphical
notation for process-control software specification,"
Control Engineering Practice, vol. 12, pp. 99-111, 2004.

[12] B. Vogel-Heuser, D. Witsch, and U. Katzke, "Automatic
code generation from a UML model to IEC 61131-3 and
system configuration tools," in International Conference
on Control and Automation, 2005, pp. 1034-1039.

[13] PLCOpen international organization, "PLCOpen,"
http://www.plcopen.org/, accessed on 15.01.2010.

[14] K. Fischer, G. Hordys, and B. Vogel-Heuser, "Evaluation
of an UML Software Engineering Tool by Means of a
Distributed Real Time Application in Process
Automation," in Modellierung 2004, 2004.

[15] K. C. Thramboulidis, "Using UML in control and
automation: a model driven approach," in International
Conference on Industrial Informatics, 2004, pp. 587-593.

[16] B. Selic, "The pragmatics of model-driven development,"
IEEE Software, vol. 20, pp. 19-25, 2003.

[17] E. Seidewitz, "What models mean," IEEE Software, vol.
20, pp. 26-32, 2003.

[18] The Object Management Group, Meta Object Facility:
MOF Core specification, Version 2.0, 2006.

[19] J. Kozikowski, "A Bird’s Eye View of AndroMDA,"
http://docs.andromda.org/contrib/birds-eye-view.html,
accessed on 15.01.2010.

[20] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling.
John Wiley & Sons, 2007.

[21] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G.
Nordstrom, J. Sprinkle, and G. Karsai, "Composing
Domain-Specific Design Environments," IEEE Computer,
vol. 34, pp. 44-51, 2001.

[22] R. C. Gronback, Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley
Professional, 2009.

[23] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.
J. Grose, Eclipse Modeling Framework. Addison-Wesley
Professional, 2003.

[24] A. Haase, M. Volter, S. Efftinge, and B. Kolb,
"Introduction to openArchitectureWare 4.1. 2," in MDD
Tool Implementers Forum, 2007.

[25] G. Kandare, G. Godena, and S. Strmčnik, "A new
approach to PLC software design," ISA Transactions, vol.
42, pp. 279-288, 2003.

[26] D. Streitferdt, G. Wendt, P. Nenninger, A. Nyβen, and L.
Horst, "Model Driven Development Challenges in the
Automation Domain," in 32nd Annual IEEE International
Computer Software and Applications Conference, 2008,
pp. 1372-1375.

[27] E. Estevez, M. Marcos, I. Sarachaga, and D. Orive, "A
Methodology for Multidisciplinary Modeling of Industrial
Control Systems using UML," in 5th IEEE International
Conference on Industrial Informatics, 2007, pp. 171-176.

[28] E. Estévez, M. Marcos, and D. Orive, "Automatic
generation of PLC automation projects from component-
based models," The International Journal of Advanced
Manufacturing Technology, vol. 35, pp. 527-540, 2007.

[29] M. Maurmaier, "Leveraging model-driven development
for automation systems development," in International
Conference on Emerging Technologies and Factory
Automation (ETFA 2008), 2008, pp. 733-737.

