
Traffic is a problem in many urban areas worldwide.
Traffic flow is dictated by certain devices such as traffic
lights. These traffic lights signal when each lane is able to
pass through the intersection. Often, static schedules
interfere with ideal traffic flow. The purpose of this project
was to find a way to make intersections controlled with
traffic lights more efficient. This goal was accomplished
through the creation of a genetic algorithm, which
enhances an input algorithm through genetic principles to
produce the “fittest” algorithm. The program was
comprised of two major elements: coding in Java and
coding in Simulation of Urban Mobility (SUMO), which is an
environment that simulates real traffic. The Java code
called upon the SUMO simulation via a command prompt
which ran the simulation, received the output, altered the
algorithm, and looped. The SUMO component initialized a
simulation in which a 1 x 1 street layout was created, each
intersection with its own traffic light. Each loop enhanced
the input algorithm by altering the scheduling string
(dictates the light changes). After the looped simulations
were executed, the data was then analyzed. This was
accomplished by creating an algorithm based upon
"regular" practice – timed traffic lights – and comparing the
output which was comprised of the total time it took for all
vehicles to exit the system and the average time it took each
individual vehicle to exit the system. These different
variables: the time it took the average vehicle to exit the
system and total time for all vehicles to exit the system,
where then graphed together to provide a visual aid. The
genetic algorithm did improve traffic light and traffic flow
efficiency in comparison to traditional scheduling methods.

• Create a genetic algorithm in Java
• Create a SUMO simulation environment that contained a

traffic light and vehicles
• Combine the two aforementioned components into a

program that allows the genetic algorithm to function by
running multiple times

• Utilize this genetic algorithm to create a more efficient
algorithm based upon the original schedule

Program Overview

SUMO Code

Program Limitations and Assumptions

Results

Future Work / Work Cited

Genetic Algorithm Abstract

Introduction

Engineering Goals

• Traffic light scheduling is inflexible and produces traffic
problems as a result

• Therefore, a flexible algorithm must be utilized to adapt
to a changing environment; an algorithm which is
efficient in most any situation

• A traffic light scheduling algorithm that takes a certain
set of given parameters (number of cars, speed,
acceleration. Etc.) and creates an efficient schedule
would yield the best results

• As such, a genetic algorithm was created in an attempt
to solve all of these complexities and issues in Java code

• A simulation portion was needed to yield data for the
genetic algorithm

• Simulation of Urban Mobility (SUMO) was used for the
purpose of traffic simulation

• An algorithm which uses the tenets of heredity to create
the “best” algorithm given a certain set of parameters

• Two main components
1. “Fitness” Calculator – assesses the relative efficiency of

the individual
2. Pool of Individuals – The set of individuals which

“breed”
• Creates a pool with individuals that have random values

• The randomness allows for mutations
• “Breeds” these different individuals to create a

generation
• Calculates the fitness level of each individual
• Selects the most fit to selectively breed
• Process repeated thousands of times to “evolve”

• SUMO modeled traffic accurately in relation to the real-
world

• Allowing for the data to apply to real-world applications
• Genetic Algorithm was not given full array of parameters

to change, limiting the results
• SUMO was found to be sensitive in that a single change

in the traffic light string could cause a dramatic shift in
traffic time

• Two main portions
1. Java code – Genetic Algorithm
2. SUMO code – Simulation Environment

• SUMO
• Created using .xml files
• Nodes – represent a point in the simulation; create

edges
• Edges – represent the edge of the road; create routes
• Routes – represent the road; also contain the

creation of vehicles within the simulation
• TLS – contains the schedule for the traffic light, each

set of four dictates one of the four lights
 Ex. “GGggrrGrGGggrrrr”
• NETCONVERT – creates a .net file which compiles the

prior .xml files
• SUMO – allows for the TLS file to be implemented

within the simulation

• Java
• Light – the individual that adapts and is created

randomly
• Population – the combination of all Lights from a

certain generation
• Algorithm – uses the math and allows the population

to adapt
• Tester – summated all aforementioned classes and

allowed the output to be written as a file and read
incoming data from past iterations

Simulation of Genetic Algorithms :
Traffic Light Efficiency

• Expand setting to include multiple traffic lights to allow
the development of an algorithm which makes the lights
function together

• Implement a real-time data collecting device to allow
the algorithm to function real-time and adapt to
changing conditions

• Collect real life data to eliminate confounding factors

Java Call

Command
Prompt

SUMO
Instantiation

Simulation
Execution

Data Feedback

Parameters
Optimized

Node

Edge

Route

.net

Place
Holder

Traffic
Light

Vehicles

Light

Population Algorithm

Tester

Output.txt

Data.txt

• The genetic algorithm was found to increase efficiency
by 92.1% after 2000 iterations.

• This shows the potential for the genetic algorithm to
improve the efficiency even though the function was
oscillating, suggesting that the genetic algorithm
parameters were too constrictive

Screenshot of SUMO GUI

• Al-Khateeb, Khalid. "Dynamic Traffic Light Sequence Algorithm Using RFID." Dynamic Traffic
Light Sequence Algorithm Using RFID. N.p., n.d. Web. 27 Feb. 2014.“

• Java Platform SE 6." Oracle Documentation. Web. 12 Dec. 2013.
• Hardesty, Larry. "Eliminating Unexplained Traffic Jams." MIT's News Office. MIT, 27 Oct. 2013.

Web. 27 Feb. 2014.

r
G
r
G

0

50

100

150

200

250

300

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Ti
m

e

Number of Iterations

Genetic Algorithm vs. Standard Algorithm

Genetic
Algorithm

Standard
Algorithm

	Slide Number 1

