Problem: Teaching in the Small

* How important is the role of examples & associated models
in such a course? How important is it to use models of real

problems?

— Even in coding, examples that students see in an undergrad curricula
are often tied to small examples that do not highlight the challenges of

real development that has different scale

Need for deeper scale examples that show
challenges of engineering changes in the
presence of complex underlying heterogeneous
platforms; students may gain appreciation of
challenges they were unaware

Example contexts
- Cloud variations, mobile computing platforms,
different robot vendors
Challenge is implementing this scale in presence of
single assignment; perhaps benefits more in case of
individual research experience rather than course-based




Highlighting Modeling Benefits




Problem: Teaching Syntax

 How to overcome the bias some students have against
using modeling in software?

— Many current courses focus on teaching syntactic issues of UML

— Missing: Topics of creativity, social impact, general abstraction,
broader issues of modeling benefit

— Comparison to new effort in USA for K-12 CS Education

Current focus on teaching syntax of Java

Introduction of new “CS Principles” course with broader application and
understanding of computing cs

Concentrates on “Big Ideas” of Computer Science PRINCIPLES

What are the “Big Ideas” of modeling that motivate its usage in a way
that is more appealing than learning about the specific semantics of
state diagrams



Modeling for Non-Majors

 Most CS departments teach general CS literacy
courses to non-majors
— Does a similar modeling course also make sense?

* What would a modeling course for non-majors
look like?

— Perhaps not UML; screams for DSMLs

e Similarities and differences:

— What are the things taught in this class that would not
be taught in a similar course for CS majors?

— What things would be taught in this class that would
also be taught in a similar course for CS majors?



