Graph Grammars Applied to Metamodels and Flowcharts

Luka Fürst¹, Marjan Mernik², Viljan Mahnič¹, Barrett R. Bryant³, Jeff Gray³ ¹University of Ljubljana, Slovenia; ²University of Maribor, Slovenia; ³University of Alabama at Birmingham, USA

Graph grammars (as defined by Rekers & Schürr)

Introduction

- Source: J. Rekers, A. Schürr: Defining and parsing visual languages with Layered Graph Grammars. Journal of Visual Languages and Computing, 1997.
- Rekers & Schürr defined graph grammars as a generalization of context-sensitive string grammars.
- Primary use: Defining the syntax of visual languages.
- A graph grammar consists of rules (productions) for replacing subgraphs in an arbitrary graph.
- Every production takes the form L := R, where L, R, and $L \cap R$ (the context) are proper graphs.

Converting a metamodel into an equivalent graph grammar

Introduction

- Problem statement: For a given metamodel, construct a graph grammar that generates precisely the graphs of those models that conform to the metamodel.
- Motivation:

R

- A metamodel does not provide a means to generate its models.
- Graph grammars can be augmented with semantic information.
- Related work: K. Ehrig et al., Softw. & System Modeling, 2009.

Properties of the grammar construction process

- The output grammar consists of both terminal and nonterminal symbols.
- ullet A nonterminal $V_{l(1)\,A(1),\,...,\,l(k)\,A(k)}$ represents a vertex V that still has to be connected with l(1) vertices A(1), l(2) vertices A(2), ..., and l(k) vertices A(k).
- A terminal V represents a vertex V for which all connection requirements are satisfied.
- For each nonterminal, the grammar contains a set of productions that (immediately or gradually) convert it to a terminal.
- Every sentential form that the grammar can generate represents a (potentially) valid model graph:
- If a sentential form contains only terminals, then it is a valid model graph.
- Otherwise, the nonterminals in a sentential form determine how the sentential form can be completed to a valid model graph.

R

R

R ::= R

- J_{1P}

A simple solution: The terminal P is re-interpreted as a wildcard that can be replaced either with LP or with SP.

LongPaper ShortPaper

Translating flowcharts into Java programs using graph grammar parsing

 $P_{1A,3R}$

A P ::= A

int a;

int b;

a = sc.nextInt();

b = sc.nextInt();

while (a != b) {

if (a > b) {

a = a-b;

b = b-a;

System.out.print(a);

else {

a != b

(a > b)

WRITE a

STOP

a = a - b

b = b-a

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

