Graph Grammars Applied to Metamodels and Flowcharts

Luka Furstl, Marjan Mernik?, Viljan Mahnic?l, Barrett R. Bryant3, Jeff Gray3

lUniversity of Ljubljana, Slovenia; 2University of Maribor, Slovenia; 3University of Alabama at Birmingham, USA

Graph grammars (as defined by Rekers & Schurr)

Introduction A production and its application Example: a grammar of hydrocarbon graphs

¢ Source: J. Rekers, A. Schurr: Defining and parsing A sample production p D1
visual languages with Layered Graph Grammars. 5

Journal of Visual Languages and Computing, 1997. 1 = 1 2 @ A =
¢ Rekers & Schurr defined graph grammars as a 4 5 6
generalization of context-sensitive string grammars.

¢ Primary use: Defining the syntax of visual languages. Application of p to a graph "Sythesis" of cyclopropene

H H
m p3 m m D3 m m P2 P3 D3 @.G
HeomSwoeocon™ ce AN
H H
H H H HH)

b2 p3 This simple grammar

cn— m can generate any
% % . hydrocarbon graph,

acyclic or cyclic.

¢ A graph grammar consists of rules (productions) for

replacing subgraphs in an arbitrary graph. P11 P2

A== HOCH

¢ Every production takes the form L ::= R, where L, R,
and L n R (the context) are proper graphs.

Converting a metamodel into an equivalent graph grammar

Introduction Properties of the grammar construction process
¢ Problem statement: For a given metamodel, construct a graph ¢ The output grammar consists of both terminal and ¢ For each nonterminal, the grammar contains a set of productions
grammar that generates precisely the graphs of those models nonterminal symbols. that (immediately or gradually) convert it to a terminal.
that conform to the metam
at conto o0 the metamode ¢ A nonterminal Viq)aq),....ix) A represents a vertex Vthat still ¢ Every sentential form that the grammar can generate represents a
¢ Motivation: has to be connected with (1) vertices A(1), [(2) vertices A(2), (potentially) valid model graph:
» A metamodel does not provide a means to generate its models. ., and [(k) vertices A(k). + If a sentential form contains only terminals, then it is a valid model graph.
+ Graph grammars can be augmented with semantic information. ¢ A terminal Vrepresents a vertex V' for which all connection + Otherwise, the nonterminals in a sentential form determine how the
¢ Related work: K. Ehrig et al., Softw. & System Modeling, 20009. requirements are satisfied. sentential form can be completed to a valid model graph.
Sample metamodel and some of its models Initial productions Expanding nonterminal forms
(co)author of cubmitted to For each class C, add a production ¢ Nonterminal form: A sentential form composed of a nonterminal vertex and all vertices
1*?;* 1T>1 A ::= C — {Required connections of C}. connected to it.
Author — Paper — | Journal ¢ Expansion: Veeqi, Req2, ..., Reqn — {€0NNS} ii= Vg2, ... reqn — {CoNNs, Connections from Reql}
written by g._x receives 0.* A=A P1,3r . A=) P1a,3r ¢ Every nonterminal form has to be eventually expanded.
®
% , $ N A= A p | x = R ¢ Expansion may create new nonterminal forms, but the process is guaranteed to terminate.
< S S T T
T 3 \
: . & P is already connected to one A, Selected productions that create new vertices Selected productions that reuse existing vertices
In any valid model graph: v R R R but it still has to be connected
¢ every Author vertex : with one J and three Rs. P Al = P A
has to be connected with Reviewer 1J.3R : 3R J Plj,3R A =} P3r A
at least one Paper vertex; . . T _
R o i o o 2 ez P21 Productions for unbounded multiplicities J Psr A = I\D A :
at least one Author vertex, exactly one Journal T 3R A = P A
vertex, and exactly three Reviewer vertices; ¢ For each unbounded X-to-Y multiplicity, R 'R R J J |
. add a production X :i= X — Ygeq(y) | ~ | . R R R Rl R
¢ For each two-way unbounded multiplicity, 1P — [T1A3R
R A P J also add a production XY :=X-Y
n Complementary nonterminal form pairs Dealing with inheritance
R R RIIR A = A Py3r) =1 R .
¢ In some cases, two nonterminal forms may
R R P .= P A R = R J1p mutually satisfy their connection requirements.
A P R R a ¢« Example: P needs a connection with one |, T F=———
and | needs a connection with one P. ongrap P
A P :=1A P J R ;= |} R
R—P A R R P
* A P1) 3R A P3r ¢ A simple solution: The terminal P is
' _ re-interpreted as a wildcard that can
A A A P R A] =1 P1a 3R R ::= R P1a1),2R R o R be replaced either with LP or with SP.

Translating flowcharts into Java programs using graph grammar parsing

Introduction Graph grammar with a translation scheme

Problem statement: Convert a given flowchart into an equivalent Java program.

Translation method header: private void translate(#root#, int indent)

Motivation: This is a simple example, but a similar approach could be used for Invocation of the translate method on the A node: translate(#[lambdal#, ©):

parsing and translating real-world visual languages.

An auxiliary method for producing indented output: private static void out(String str, int indent) {...}

Implementation:
. . p1 pr <« | Ds

Define a flowchart graph grammar and a translation scheme. @ ? ? ? ?
Paljse a given flowchart against th_is grammar using the Rekers-Schurr parser. out("import java.util.Scanner;", ind); _ F T
Build a syntax graph from the derivation produced by the parser. O out("", 0); Stat Stat = O O
Kl Recursively execute the translation scheme on the syntax graph. out("public class Program {", ind); é é

L out("... main(...) {", ind+1l);

A 1= Stats out("... = new Scanner(...);", 1ind+2); Stats Stats
: translate(#[Stats]#, ind+2);
Sample input and output UL (1" indel) B D E——

out("}", ind); String cond = #Cond.data#;

Input: W . out("if (" + cond + ") {", ind);
- ? String cond = #Cond.data#; translate(#[StatsT1#, ind+1);

out("while ("+cond+")_{", ind) ; out("} else {", ind);
D2 D3 translate(#[Stats]#, ind+l); translate(#[StatsFl#, ind+1);

. out("}", ind); out("}", ind);
int a; intb QL ? ?
% 3 P4, P5, P6
? import java.util.Scanner; Stats = | Stat otats | ::= | >tats 4? ? ? ? ?
Stat = | Asgn Read Write

READ a: b public class Program { é é é O=— Stat B
public static void main(String[] args) { . late(#[Stats' 1#. ind) é é é é
_ L t late(#[Stat]#, ind): | translate ats'l#, ind);
Scanner sc = new Scanner(System.in); ranslate(#[Stat]#, ind) tranclate(#[otatl#, ind):

int a; We maintain a global hashtable for storing and retrieving types of variables.
int b;
a = sc.nextInt();
b = sc.nextInt();
while (a '= b) { The simplified syntax graph for the sample input
if (? > E) { D2 D4
al_ a—-b, ¢ The translate method is Stats Stat int a; int b
} else { invoked on the root (A) node. Stats < P3
b = b-a; T : Stat P READ a: b
m — } ¢ After the initial invocation, ’
} the translation is guided only START Stats | P3
System.out.print(a); by the syntax graph and by p1 a'=b a>b
WRITE a } the translation rules for A Stats < P3 Stat < p7 Do - - Dy
} individual productions. Stat Stats Stat Stats Stat a=a-b
STOP P . ”
2
WRITE a Stats Stat b=Db-a

	Slide 1

