
import java.util.Scanner;

public class Program {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 int a;
 int b;
 a = sc.nextInt();
 b = sc.nextInt();
 while (a != b) {
 if (a > b) {
 a = a−b;
 } else {
 b = b−a;
 }
 }
 System.out.print(a);
 }
}

Graph Grammars Applied to Metamodels and Flowcharts

Luka Fürst1, Marjan Mernik2, Viljan Mahnič1, Barrett R. Bryant3, Jeff Gray3
1University of Ljubljana, Slovenia; 2University of Maribor, Slovenia; 3University of Alabama at Birmingham, USA

Graph grammars (as defined by Rekers & Schürr)

Converting a metamodel into an equivalent graph grammar

Translating flowcharts into Java programs using graph grammar parsing

Source: J. Rekers, A. Schürr: Defining and parsing
visual languages with Layered Graph Grammars.
Journal of Visual Languages and Computing, 1997.

Rekers & Schürr defined graph grammars as a
generalization of context-sensitive string grammars.

Primary use: Defining the syntax of visual languages.

A graph grammar consists of rules (productions) for
replacing subgraphs in an arbitrary graph.

Every production takes the form L ::= R, where L, R,
and L ∩ R (the context) are proper graphs.

Introduction

65

321

4

321
A B C

D

A B C

P Q

::=

A production and its application

2
3

1
6

5

4

23

1
D A E

C B F

P

A E

C B F

Q

B B

Application of p to a graph

A sample production p

Example: a grammar of hydrocarbon graphs

λ H C H

H

H

::=

p1

H C H

H

H

C ::= C

p2

C C

HH

C C::=

p3 This simple grammar
can generate any
hydrocarbon graph,
acyclic or cyclic.

λ H C H

H

H

H C H

H

H

H C

H

H

C H

H

H
H

C C
H

C
HH

H H

H H
C C

"Sythesis" of cyclopropene

p1 p2 p3 p3 p2 p3 p3

STOP

START

int a; int b

READ a; b

a != b

b = b−a a = a−b

WRITE a

a > b TF

T

F

Problem statement: Convert a given flowchart into an equivalent Java program.

Motivation: This is a simple example, but a similar approach could be used for
parsing and translating real-world visual languages.

Implementation:
Define a flowchart graph grammar and a translation scheme.
Parse a given flowchart against this grammar using the Rekers-Schürr parser.
Build a syntax graph from the derivation produced by the parser.
Recursively execute the translation scheme on the syntax graph.

Introduction

Sample input and output

String cond = #Cond.data#;
out("while ("+cond+") {", ind);
translate(#[Stats]#, ind+1);
out("}", ind);

Stat ::= Cond

StatsStats

TF

String cond = #Cond.data#;
out("if (" + cond + ") {", ind);
translate(#[StatsT]#, ind+1);
out("} else {", ind);
translate(#[StatsF]#, ind+1);
out("}", ind);

START

Stats

STOP

λ ::=

out("import java.util.Scanner;", ind);
out("", 0);
out("public class Program {", ind);
out("... main(...) {", ind+1);
out("... = new Scanner(...);", ind+2);
translate(#[Stats]#, ind+2);
out("}", ind+1);
out("}", ind);

Stat ::= Asgn Read Write

We maintain a global hashtable for storing and retrieving types of variables.

Cond

Stats

F T

Stat ::=

START

Stats

STOP

Stats

λ

Stat

int a; int b

READ a; b

a != b

WRITE a

Stats

Stat

Stats

Stats

Stat

Stat

Stat Stats

Stats

a > b

Stat

Stat

a = a−b

b = b−a

p1

p3

p6

p3

p2 p4

p5

p7
p8 p2

p2

p4

p4

The simplified syntax graph for the sample input

1

4

2

3

Graph grammar with a translation scheme

Problem statement: For a given metamodel, construct a graph
grammar that generates precisely the graphs of those models
that conform to the metamodel.

Motivation:
A metamodel does not provide a means to generate its models.
Graph grammars can be augmented with semantic information.

Related work: K. Ehrig et al., Softw. & System Modeling, 2009.

Introduction

In any valid model graph:

every Author vertex
has to be connected with
at least one Paper vertex;

every Paper vertex has to be connected with
at least one Author vertex, exactly one Journal
vertex, and exactly three Reviewer vertices;

...

Reviewer

Journal
1..* 1

(co)author of

written by

1..*1..*
Author Paper

submitted to

receives

review
s

review
ed

 by em
p
lo

ys

em
p
lo

ye
d
 b

y

0..*

3 0..*

0..*

R A J

R

P

R R

R R

A A

R P

RJ

P

R R

P

A

A

A

R

J

R R

P

A

Sample metamodel and some of its models

The output grammar consists of both terminal and
nonterminal symbols.

A nonterminal Vl(1) A(1), ..., l(k) A(k) represents a vertex V that still
has to be connected with l(1) vertices A(1), l(2) vertices A(2),
..., and l(k) vertices A(k).

A terminal V represents a vertex V for which all connection
requirements are satisfied.

For each nonterminal, the grammar contains a set of productions
that (immediately or gradually) convert it to a terminal.

Every sentential form that the grammar can generate represents a
(potentially) valid model graph:

If a sentential form contains only terminals, then it is a valid model graph.

Otherwise, the nonterminals in a sentential form determine how the
sentential form can be completed to a valid model graph.

Properties of the grammar construction process

A ::= A P1J ,3R

A ::= AP P

::= PP A

::= JJ R

::= JJ RR

J ::= J P1A,3R

R ::= R J1P

R ::= R P1A,1J ,2R

Initial productions1

Productions for unbounded multiplicities2

For each class C, add a production
λ ::= C − {Required connections of C}.

λ ::= A P1J ,3R

λ ::= PA J

R R R

λ ::= J P1A,3R

λ ::= R

For each unbounded X-to-Y multiplicity,
add a production X ::= X − YReq(Y)

For each two-way unbounded multiplicity,
also add a production X Y ::= X − Y

Expanding nonterminal forms3

P is already connected to one A,
but it still has to be connected
with one J and three Rs.

Nonterminal form: A sentential form composed of a nonterminal vertex and all vertices
connected to it.
Expansion: VReq1, Req2, . . . , ReqN

Every nonterminal form has to be eventually expanded.
Expansion may create new nonterminal forms, but the process is guaranteed to terminate.

Selected productions that create new vertices

::=P1J ,3R A P3R AJ

::=RJ1P P1A,3R RJ

P3R AJ AJ P

R R R

::=

::=P1J ,3R AJ P3R AJ

AJ P

R R R

::=P3R AJ

RR

Selected productions that reuse existing vertices

Complementary nonterminal form pairs4

In some cases, two nonterminal forms may
mutually satisfy their connection requirements.
Example: P needs a connection with one J,
and J needs a connection with one P.

A P1J ,3R

R J1P

::=
A P3R

R J

Dealing with inheritance5

Paper

LongPaper ShortPaper

A simple solution: The terminal P is
re-interpreted as a wildcard that can
be replaced either with LP or with SP.

private void translate(#root#, int indent)
translate(#[lambda]#, 0);
private static void out(String str, int indent) {...}

Translation method header:
Invocation of the translate method on the λ node:
An auxiliary method for producing indented output:

The translate method is
invoked on the root (λ) node.

After the initial invocation,
the translation is guided only
by the syntax graph and by
the translation rules for
individual productions.

p1

Stats Stat::=

translate(#[Stat]#, ind);

p2

translate(#[Stats']#, ind);
translate(#[Stat]#, ind);

Stats Stats

Stat

::=

p3

p4, p5, p6

p7 p8

− {Conns} ::= VReq2, . . . , ReqN − {Conns, Connections from Req1}

Output:

Input:

p2

p3

	Slide 1

