

SpeechClipse – An Eclipse Speech Plug-in

Shairaj Shaik, Raymond Corvin, Rajesh Sudarsan, Faizan Javed, Qasim Ijaz,
Suman Roychoudhury, Jeff Gray, Barrett Bryant

Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, Alabama 35294-1170 USA

{shaiksj, corvinr, sudarsar, javedf, ijazq, roychous, gray, bryant}@cis.uab.edu

Abstract

Much has been accomplished through the years
to enhance the capabilities of individuals that are
physically challenged. The goal of computer-
assisted adaptive technology is to support the
physically challenged in performing tasks on a
computer. In addition, adaptive technologies also
provide opportunities to enrich a programmer’s
environment and to increase productivity. It is
within these broad parameters that SpeechClipse
was developed in order to demonstrate the feasi-
bility of incorporating speech recognition into a
popular integrated development environment
(Eclipse). The preliminary work described in this
paper suggests that various categories of Eclipse
users would benefit from a speech-enabling
plug-in that uses the Java Speech API.

1. Motivation

The integration of adaptive speech technology
into a software development environment has
several advantages. The primary goal of this re-
search is to provide a tool to facilitate software
developers with physical disabilities to work in a
programming environment without the use of a
keyboard. Nielsen [5] stresses the importance of
speech technology for the physically impaired to
adapt to the real world, and cites multiple exam-
ples of such instances. It is frequently the case
that assisted technologies for the physically im-
paired drive innovation in other applications.

Our experience from this project suggests that
speech enabling technologies are beneficial to
users who need to accomplish a task in the Inte-
grated Development Environment (IDE), while
still involved in another task. We have observed
that this multi-tasking capability often improved

our own productivity while experimenting with
SpeechClipse.

2. Background

Speech technology constitutes a vocal communi-
cation channel between a human and a machine
[1]. A vision for research in this area has been
stated as, “to create state-of-the-art spoken lan-
guage components, and investigate how these
disparate components can come together with
other modes of human-computer interaction to
form a unified, consistent computing environ-
ment” [4].

Speech technology can be subdivided into
Speech Synthesis and Speech Recognition.
Speech Synthesis, also referred to as text-to-
speech or TTS, converts text into spoken lan-
guage using structure analysis and text pre-
processing. SpeechClipse is not a speech synthe-
sis tool, but rather focuses on speech recognition.
Speech recognition is the process by which spo-
ken language is converted into text or some other
form. The major steps of a speech recognizer are
grammar design, signal processing, phoneme
recognition, and word recognition and result
generation.

Recognition of the complexities of a program-
mer’s environment is essential to offering a facil-
ity to provide enhancements to productivity. Not
only is the typical programmer engrossed in the
process of coding software, but he/she is also
immersed in a selected IDE. The Eclipse IDE
was chosen as a platform for this research project
because of its robust and extensible architecture.
The research focused on providing a productive
enhancement in the form of an adaptive speech
‘plug-in’ for the Eclipse IDE. [7]

Figure 1: Control Flow Diagram of SpeechClipse

The research focus area is one that offers a siz-
able benefit in return for the potential work effort.
It also appears that little research and develop-
ment is being done on this topic within Eclipse.

This implementation of the Speech API as an
Eclipse plug-in provided the broad reach neces-
sary to offer control of almost any system facility
within the chosen environment. Also, it is rea-
sonably easy to use. A programmer’s task con-
tinuously includes the invocation of external
utilities. These utilities can now be summoned
vocally without leaving the Eclipse IDE.

3. Implementation Architecture

SpeechClipse uses the CloudGarden1 implemen-
tation of Sun’s Java Speech API [3] as the
speech recognition API, running on the Micro-
soft speech recognition engine in the Windows
environment. The plug-in is designed in a man-
ner such that the current implementation of the
speech recognition API can be replaced easily
with a new implementation to support other plat-
forms.

1 http://www.cloudgarden.com

The Java Speech Grammar Format2 , a platform-
independent vendor-independent textual repre-
sentation of grammars, was used as a standard to
specify the grammar for SpeechClipse. This
grammar was used to establish the communica-
tion path for translating commands into events.

The Java Speech API supports both rule-based
grammars and dictation grammars. The current
version of SpeechClipse uses only the rule-based
grammars to recognize the best possible word
from the spoken input. Dictation grammars are
more flexible and closest to the goal of unre-
stricted natural speech input to computers. The
implementation of the dictation grammar, along
with a rule-based grammar, is a part of our future
work. Figure 1 provides details regarding the
control flow in the SpeechClipse plug-in design
structure.

In the figure, the speech input from the micro-
phone is given to the speech recognizer in the
speech engine. The recognized word is then
checked with the grammar file to get the best
possible token recognition. The tokens are then

2 http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF

 Tokens

Speech Engine

SpeechClipse

 Recognizer

Synthesizer

Grammar

Rule -
Based
Grammar

Token

Figure 2: Control Flow within SpeechClipse

passed to SpeechClipse, which uses the tokens as
commands to invoke appropriate actions. The
recognizer then continues to listen for the next
set of tokens.

The final closure of the path between the recog-
nized word and the instantiation of the expected
action in the IDE is achieved using Java’s ‘Ro-
bot’ class [2]. This class translates the recog-
nized command words from the speech recogni-
tion process into simulated keyboard activity. If
the command requires initiating multiple actions
in the Eclipse IDE, then those corresponding
events are implicitly generated and the final ac-
tion is invoked by the plug-in. Figure 2 repre-
sents the internal implementation of the Speech-
Clipse plug-in.

The tokens received from the grammar are sent
to a single instance Mapper which generates the
corresponding key maps for action. The Event
Enumeration then generates the equivalent com-
mands. These are then checked to see if the event
is a standard keyboard event or an Eclipse com-
mand. If it is an Eclipse command then the
Navigator generates the equivalent event

sequence. In either case, the final control is
passed to the Robot Class, which produces the
final output.

In order to effectively control all the desired as-
pects of the Eclipse environment it was required
to fully understand how to navigate to all the
appropriate ‘hotkeys’ using only keyboard com-
mands. To provide this functionality, Java’s Ro-
bot class was used to interface the commands
with the IDE. This necessitated the invocation of
those functions through the buttons and drop-
down boxes available to the ordinary user. The
current design of the plug-in provides the capa-
bility for future developers to add additional
functionality to the Eclipse IDE through
SpeechClipse’s extension points.

Token recognition begins with proper definitions
in the speech grammar. At this point, most of the
driving force behind the grammar is to try to
provide enough functionality to demonstrate the
full potential of this plug-in. Other additional
work will be to refine and improve this grammar
set.

 No

Token from
Grammar

 Is
standard
k/b event

Navigator

Unique Mapper
Instance

 Singleton

SpeechClipse

 Key Maps

 Commands
Robot
Class

Generate
Event Se-

quence

Event
Enumeration

Yes

Final
Visual
Output O

U
T
P
U
T

Event
Sequence

Flexibility has been added through various utili-
ties that handle multiple editors. For instance,
‘Notepad’, ‘MS Word’, and other editors can be
started by the speech recognition capability of
the plug-in.

4. Results

The development of SpeechClipse shows the
feasibility to control the Eclipse IDE with voice
commands. Additional efforts will improve the
range of functionality with the goal of improved
usability. Through experimentation and use of
SpeechClipse, we have shown that not only is it
possible to provide an environment for a ‘physi-
cally challenged’ individual, but that it is part of
the natural evolution of programming tools in
providing incremental enhancements.

The current version of SpeechClipse can handle
various accents. Most of the individuals on this
project are not native English speakers, but the
recognition process proved to be extremely reli-
able with a wide range of speakers and dialects.
Multi-language support can be provided through
extension points for additional plug-ins.

5. Risks and Limitations

A minimum hardware configuration is required
for the proper operation of this plug-in. The
minimum requirement is a computer with at least
a P III, with 800 MHz processor and 512 MB
RAM. For best results, a P4 processor with 512
MB RAM is suggested.

The speech engine is sensitive to external noises
and extraneous tokens may be recognized incor-
rectly. Any extraneous noise through the micro-
phone causes invocation of undesirable actions
in the IDE. Possible improvements might be
achieved through the use of a noise limiting de-
vice or improvements in the grammar to help
distinguish between valid and invalid commands.

Generally speaking, spoken language has severe
limitations when applied to human-computer
interactions. Speech is inherently slow and tran-
sient, which makes it difficult to present and edit
information. However, speech has proved to be
useful as alerts in busy areas, for store-and-
forward messages, and for enhancing the user

interface of environments for the physically im-
paired. Although the SpeechClipse plug-in is far
from providing a comprehensive I/O system for
the physically impaired, we believe the system
has the potential to improve on what has already
been implemented so far.

6. Future Work

The expansion of the capability of the Speech-
Clipse plug-in tool can be made by improving
the grammar and the implementation of potential
error recognition and recovery. Currently, the
grammar doesn’t make use of recursion or
weighted-tokens, both of which can make the
recognition process faster.

Additional extension points could be added to
allow implementations for speech synthesis, and
multi-lingual support. SpeechClipse currently
supports a basic form of spoken code writing
facility called LazyTyping. Users can dictate
well known programming language keywords,
but more work is needed in making LazyTyping
flexible. Code template structures (‘for’ loops,
‘switch’ statements, etc) and the ability to cus-
tomize the grammar for user-defined words or
phrases are some additional capabilities also un-
der consideration for future implementation.

It will also be necessary to provide easy naviga-
tion through ALL system functions, such that
any system related activity can by handled with-
out the need for mouse or keyboard control.
Examples include access to ‘start’ button,
‘search’ function, and other necessary support
functions for the general programming
environment. Additional features are planned to
expand the various navigator views to include
other perspectives provided by other plug-ins.

Ambiguity in recognition (“for” or “fore”?) also
provides important issues to look into. An exam-
ple can be for the LazyTyping subsystem; if a
user wants the system to type the digit “1”, how
should the system recognize the spoken input to
print “1” instead of “one”? This issue will be
explored within the general area of speech ena-
bling technology, and Eclipse provides the per-
fect platform for conducting such research.

There are still occasions when it would be bene-
ficial to make use of the voice enabling property
of SpeechClipse in conjunction with the key-
board and/or mouse functionalities. Schneide-
man [6] mentions an interesting observation:
cognitive resources decrease significantly when a
user is restricted to speech only; multi-modal
usage often results in an increase in available
cognitive resources. Schneiderman reports that
humans find it difficult to speak and think at the
same time, yet using a keyboard in tandem with
the speech system resulted in a 15-30% increase
in speed-up. Parallelism of spoken output with
keyboard typing needs to be investigated for
SpeechClipse and the LazyTyping subsystem.

It is believed that other recognition engines
would work equally well, or perhaps even better,
than CloudGarden. A planned extension of the
work is to support IBM ViaVoice [8] in the near
term. It is expected that ViaVoice will be more
compatible with the project’s long-term goal
involving continued research on the Eclipse IDE.

7. Conclusion

This paper describes the implementation and
research effort carried out while designing a
voice-enabling plug-in for the Eclipse IDE.
SpeechClipse adds important functionality to the
Eclipse IDE and represents one of the first plug-
ins of its kind. The implications of voice-
enabling the Eclipse IDE can result in making
the programming environment available to a
wider demographic as well as providing an alter-
native to keyboard and mouse input. The paper
also describes the observations, risks and limita-
tions in the current implementation of Speech-
Clipse, along with its future directions.

As an accompaniment to the presentation of
SpeechClipse, we are prepared to demo the tech-
nology at the workshop.

About the Authors

The team responsible for this research was origi-
nally formed as a group within the Object-
Oriented Distributed Computing laboratory at
the University of Alabama at Birmingham
(UAB). The research goal was to add adap-
tive/assistive technology to the Eclipse IDE

through plug-in mechanisms. Faizan Javed,
Rajesh Sudarsan, Raymond Corvin, and Suman
Roychoudhury are Ph.D. students in computer
science at UAB. Qasim Ijaz and Shairaj Shaik
are M.S. students in Computer Science at UAB.
Jeff Gray is Assistant Professor, and Barrett
Bryant is Professor in the Computer Science
department at UAB.

References

 1. James F. Allen, Donna K. Byron, Myroslava
 Dzikovska, George Ferguson, Lucian Galescu,
 Amanda Stent, “Towards Conversational
 Human-Computer Interaction,” A.I. Magazine,
 Winter 2001, pp. 27-38.
 2. Richard Baldwin, “Introduction to the Java
 Robot Class in Java,”
 http://www.developer.com/java/other/article.php/
 2212401
 3. Java Speech API,
 http://java.sun.com/products/java-media/speech/
 4. Microsoft Corporation, “What is Speech
 Technology?” http://www.microsoft.com/speech/

 evaluation/techover/
 5. Harry Nielsen, “Speech Turns People with
 Disabilities into Technological Leaders,”
 Speech Technology Magazine, May 1997,
 http://www.speechtechmag.com/pub/2_2/cover/

 532-1.html
 6. Schneiderman B., “The Limits of Speech
 Recognition”, Communications of the ACM,
 September 2000, pp. 63–65.
 7. Sherry Shavor, Jim D’Anjou, Dan Kehn,
 Scott Fairbrother, John Kellerman, Pat
 McCarthy, The Java Developer's Guide to
 Eclipse, Addison-Wesley, 2003.
 8. Satish Swaroop, “Do you hear what I hear?”
 IBM developerWorks, November 2001,
 http://www-106.ibm.com/developerworks/ibm/library/

 i-voice

