
Is My DSL a Modeling or Programming Language?

Yu Sun1, Zekai Demirezen1, Marjan Mernik2, 1, Jeff Gray1, Barrett Bryant1

1University of Alabama at Birmingham, USA
Department of Computer and Information Sciences

{yusun, zekzek, gray, bryant}@cis.uab.edu

2 University of Maribor, Slovenia
Faculty of Electrical Engineering and Computer Science

marjan.mernik@uni-mb.si

Abstract
It is often difficult to discern the differences between
programming and modeling languages. As an example,
the term “domain-specific language” has been used
almost interchangeably in academia and industry to
represent both programming and modeling languages,
which has caused subtle misconceptions. The borders
between a modeling and programming language are
somewhat vague and not defined crisply. This paper
discusses the similarities and differences between
modeling and programming languages, and offers some
suggestions on how to better differentiate such languages.
A list of criteria is presented for language classification,
but it is suggested that a set of the criteria be used, rather
than a single criterion. Several example domain-specific
languages are used as case studies to motivate the
discussion.

1. Introduction
This paper focuses on the differences and similarities
between programming and modeling languages and
provides some criteria for classifying a language. The
lack of a well-established definition of the terms
“programming” and “modeling” has fostered some widely
held misconceptions (e.g., the idea that textual languages
are always programming languages and that graphical
languages are always modeling languages). This is a
difficult question that others have also identified. For
example, Greenfield et al. [9] noticed this distinction, but
did not provide any criteria for classifying a language.
They concluded that the differences between
programming and modeling languages are rather
insignificant. However, we believe that the differences
may have some consequences that are worth considering.
The implementation of a language can be better informed
by understanding the differences, available tools and
implementation strategies for each type of language.

There are many different views and opinions on
whether a particular language is a programming or
modeling language. The distinction becomes more
challenging when domain-specific languages (DSLs) [20]
are considered. The aim of this paper is to discuss criteria
for classification and apply the criteria to several DSLs to
determine if the DSL represents a modeling language or
programming language. Several existing criteria for
classifying a DSL include: 1) whether the language is

expressed in a visual or textual notation, 2) how the
language syntax and semantics are defined, 3) issues of
language executability, 4) level of abstraction, 5)
underlying fundamental concepts of the language, 6) how
the language is used in a specific development phase, and
7) multiple views. However, from our experience many of
these criteria can lead to false classification. Hence,
relying on just one criterion to classify a language is often
not sufficient; applying several criteria together may give
a more accurate classification. We understand that some
of the criteria may be objectionable to some readers, but
offer this collection to stimulate discussion on this topic.

The structure of the paper is organized as follows.
Section 2 presents the initial context for discussing the
differences between programming and modeling
languages. A set of suggested criteria are enumerated in
Section 3, which are then used in Section 4 to classify
several example DSLs. Concluding comments are offered
in Section 5.

2. On Programming and Modeling Languages
Programming languages play a central role in computer
science. Not surprisingly, it has been observed that
programming languages are a programmer’s most basic
tools [11]. Several informal definitions of a programming
language are offered as follows:

• A programming language provides notations that are
used to describe a computation in a human-readable
form that can be translated into a machine-readable
representation [18].

• A programming language is a formal notation that
can be used to describe problem solutions in a precise
manner [10].

• A programming language is a notation that can be
used to write programs [25].

• A programming language is a notation for expressing
computation [25].

• A programming language is a standardized
communication technique for expressing instructions
to a computer. It is a set of syntactic and semantic
rules used to define computer programs [29].

However, some of these definitions are too vague to
differentiate between programming and modeling
languages because some modeling languages may also fit
some of these definitions. Modeling is a well-accepted

engineering technique [24], where models are used to
understand and comprehend the parts of a complex
system under development. The confusion among
modeling and programming languages comes from the
perception of what constitutes the essential properties of a
model. Despite the fact that models are the core of Model
Driven Engineering (MDE) [24], there is still not a widely
accepted consensus on the definition of a model.
Researchers use either too narrow (e.g., a model is an
artifact of a modeling language, such as UML [2],
describing a system) or too broad definitions (e.g.,
everything is a model).

Recent attempts to unify various views are described
in [17], where a model is an abstraction of a system
allowing predictions or inferences to be made. The
intention of a model is to represent or describe the system,
where the model elements correspond to a concept in the
system’s domain. An important feature of a model is the
reduction principle [17], which states that a model only
reflects some of the system’s properties. Hence, some
models can capture only particular aspects of the system,
while other models might be more detailed. In this view, a
program is also a model, albeit a very detailed model.
Hence, the distinction between modeling languages and
programming languages can be blurry.

In this paper, we assume that a model must exhibit the
reduction principle and be free of full details. But, this
also offers a challenge to the ability to distinguish
programming and modeling languages. There are domain-
specific models that are not detailed, but are still complete
and executable (i.e., it might be that in a narrow domain
these details are fixed and should not be represented in a
model). Below are some standard definitions for modeling
languages:
• “A modeling language is an organized collection of

model unit kinds that focus on a particular modeling
perspective. A model unit kind is a specific kind of
model unit, characterized by the nature of the
information that it represents and the intention of
using such a representation” [7].

• A modeling language is a language used to specify,
visualize, construct, and document a software system
[2].

• A modeling language is a language used to present a
high-level architectural view of a system [2].

3. Criteria for Language Classification
This section introduces criteria that could be used to
classify a language as a programming or modeling
language. The thesis of this paper is that no single
criterion can classify a language reliably, but that a profile
of several criteria may suggest whether a language is a
programming or modeling language. The criteria are as
follows:

• Concrete Notation: Most programming languages
use textual notations, but many modeling languages
use a graphical notation. Hence, it is often assumed
incorrectly that a programming language must be
textual, and that a modeling language must be
graphical. In some books (e.g., Greenfield et al. [9]),
the authors are aware of this misconception, but
occasionally their definitions are not precise enough
(e.g., “A modeling language is a visual type system
for specifying model-based programs” [9]). In others
(e.g., Gray et al. [8]), the authors acknowledged that
graphical notation is not a key criterion, but do not
provide a clear classification. However, the criterion
of the concrete notation used by a language is not
reliable because there are programming languages
that are visual [3], and modeling languages that are
textual [4].

• Language Definition: Computer languages are
defined by their syntax, semantics and pragmatics. A
standard and well-established formal method for
programming language syntax definition is a context-
free grammar (CFG). As an alternative to informal
semantics, several formal methods for programming
language semantic definition are well-known, such
as: attribute grammars, axiomatic semantics,
operational semantics, denotational semantics,
abstract state machines, or algebraic specifications
[22]. Comparatively, modeling languages are often
specified using different (semi-)formal methods. The
syntax of a modeling language is typically specified
using a metamodel in some semi-formal notation
(e.g., UML class diagrams adorned with OCL
constraints). The semantics of a modeling language is
more problematic and often defined through a model
compiler or interpreter that translates a model into a
program (translational semantics). Actually, both a
CFG and a metamodel can be used to describe the
syntax of programming and modeling languages.
Hence, the criterion pertaining to the method used for
language definition is not reliable because there are
modeling languages that are not defined by
metamodels [4]. Furthermore, the syntax of a
graphical language could also be described with a
CFG [3].

• Language Executability: Paige et al. [23] stated that
the primary difference among programming and
modeling languages is in their intended domain of
use. Programming languages describe executable
systems, but modeling languages may not be
concerned with executability. However, the issue of
executability should not be used as a sole criterion for
distinguishing programming and modeling languages.
A common misconception is that an executable
language must necessarily be a programming
language. With a model interpreter or model
compiler, a modeling language also can be executed

[19]. In addition, it is not always possible to reach a
consensus about the executability of a certain
modeling language, so depending on this criterion
alone is not reliable for language classification.

• Level of Abstraction: The style of specification,
which may range from imperative to declarative, is
also used informally to distinguish programming and
modeling languages. Some argue that both
programming and modeling languages are used to
describe software systems, albeit at different levels of
abstraction [16]. However, abstraction level is
difficult to measure and hence hard to use as a
criterion (e.g., some languages are both declarative
and imperative). Furthermore, domain-specific
languages also raise the abstraction level, but may be
programming languages. A more intuitive criterion is
whether the language addresses concerns of the
problem space (more closely aligned to modeling) or
the technical solution space (typically associated with
programming).

• Fundamental Concepts: Most programming
languages are based on a few concepts [28], such as:
values, storage, bindings, abstractions,
encapsulations, type systems, and sequencers.
Among these, the most basic concepts are: values,
storage, and bindings, which are less likely to appear
in modeling languages. The common constructs in
modeling languages are entities (e.g., atoms that are
primitive constructs and models that can contain
atoms and other submodels) and connections between
those entities through ports [24].

• Development Phase: A simple criterion for
classifying a language is to consider the particular
development phase of the software lifecycle where
the language is used. For example, modeling
languages are used often during the early phases of
development to specify the system behavior, structure
and requirements so that designers, programmers,
and end users can understand the system being
modeled, while programming languages are used
more frequently in the implementation stages to
control the behavior of a computer, express
algorithms, and implement systems. However, by
raising the abstraction level of software development,
domain-specific programming languages have the
tendency to move implementation closer to design;
on the other hand, with rich semantics and powerful
tool support, some modeling languages can be
interpreted or compiled to executable entities or
codes, which actually play the role of implementation
as well. It is possible though rare that languages can
be used for different purposes. For instance, Prolog,
is a logical programming language that can serve as a
formal definition of a metamodel [14], which is
actually applied for modeling purposes. The potential
dual nature of a language makes classification even

more different. Hence, the criterion of development
phase needs deep consideration when serving as a
classification criterion.

• Multiple Views: In contrast with programming
languages, MDE makes the assumption that a single
model can have different views and that the target
system is described by many different models,
possibly using different metamodels. As an example,
the design of the UML was based on the principle of
multiple views, “No single model is sufficient. Every
nontrivial system is best approached through a small
set of nearly independent models” [2]. Again, this
criterion might be useless in isolation because some
domains may be narrow enough that just one view is
sufficient.

The next section considers these criteria to classify
several different types of DSLs.

4. Classifying Different DSLs using the Criteria
We have selected a few DSLs and applied the criteria
from Section 3 to determine if a language is a
programming or a modeling language. The goal is to
check if these criteria are indeed adequate for making
such a determination. In Table 1, we use the notation “⇒
P” to denote if the particular criterion suggests a
programming language, otherwise we write “⇒ M.” The
following DSLs were included in our study:
• VHSIC Hardware Description Language (VHDL)

[1] is a standard DSL for describing digital circuit
designs. By offering an appropriate hardware-
oriented vocabulary and constructs for using standard
libraries and predefined packages, the language
yields a substantial reduction in circuit design effort.
Widely used in industry and academia, it is among
the most successful DSLs.

• Extended Backus Naur Form (EBNF) [12] is a
DSL for specifying the syntax of computer
languages. An EBNF syntax for a language is a set of
production rules that generate the sentences of the
language and no others.

• Atlas Transformation Language (ATL) [13] is a
DSL for specifying model transformations. It is a
hybrid transformation language, containing both
declarative and imperative constructs. Generally, an
ATL transformation definition consists of a header
section (some basic description about the
transformation), an import section (declare imported
ATL libraries), a number of helpers (behave like
functions to provide navigations over source models)
and transformation rules (the basic construct to
express the transformation details).

• Kernel Meta Meta Model (KM3) [14] is a DSL to
define metamodels (i.e., the definition of KM3 is a
meta-metamodel). KM3 is intended to be a

lightweight metamodel definition language allowing
easy creation and modification of metamodels.

• Embedded Systems Language (ESML) [15] is a
DSL developed for modeling real-time mission
computing embedded avionics applications. It
describes a system from such aspects as interfaces,
events, components, interactions, and configurations.
The ESML is defined within the Generic Modeling
Environment (GME) [6], with several interpreters
available to generate different artifacts.

• Structured Query Language (SQL) [5] is a DSL
that provides retrieval and management of data
facilities in relational database management systems.
SQL enables a programmer to operate on data
without needing to know about various aspects of the
database internals. Standard SQL is a declarative
language; however, imperative constructs have been
included in various extensions.

• XML Transformation Language (XSLT) [26] is a
declarative DSL that is designed to transform XML
documents into other XML or human-readable
documents. However, it has been extended to include
string and date manipulation, as well as data typing
capabilities.

Although only a limited number of sample DSLs are
listed in the table as test cases, it is obvious that no single
criterion can precisely determine the type of the language.
For instance, the textual language KM3 has a syntax
defined by BNF and an operational semantics, but is
really a modeling language, which shows that textual
languages based on CFG are not necessarily a
programming language. In addition, SQL and ATL are
declarative and at a high level of abstraction, but they are
programming languages, indicating that both modeling
and programming languages can be raised to a high level
of abstraction. Furthermore, having multiple views is not
enough to confirm a modeling language, because some of
the modeling languages like KM3 and EBNF do not
support this feature. With the development of MDE,
modeling languages will not only serve in requirements
and design analysis, but also be able to play an
increasingly important role in the implementation phase
or even become executable directly. Thus, the particular
development stages when a DSL is used, as well as the
issue of executability, are not a sole criterion for
determining if a language is a modeling or programming
language.

A more effective and accurate approach to determine
the type of a language is to use multiple criteria in making
the classification. From the three sample modeling
languages of Table 1 (i.e., EBNF, KM3, ESML), it can be
observed that they are all in a medium or higher level of
abstraction and can be applied in the design phase. When
meeting these criteria simultaneously, the language is
more likely to be a modeling language. If additional

properties like multiple views, metamodel syntax
definition are also qualified, the conclusion is even more
precise. Programming languages share the same
characteristics such as being executable, applied during
the implementation phase, having the same fundamental
concepts. Using these criteria together can help toward
classifying a language as a programming language. If the
criterion of lower level abstraction is applicable, the result
further leans toward a programming language.

Some obvious questions arise from this discussion,
such as: How complete is this criteria list? What other
criteria could be added? During our experimentation, the
proposed criteria were very beneficial for classification of
each language. Inevitably, there may be some criteria that
can be added. As an example, the concept of Turing
completeness could be used to differentiate among
general-purpose languages (GPLs) and DSLs. GPLs are
Turing complete, but there is no such requirement for
DSLs. However, this criterion alone is not sufficient since
some DSLs may also be Turing complete (e.g., XSLT).
5. Conclusion
The recent popularity of DSLs has created some
confusion and misconceptions regarding the specific
classification of each language. This paper has suggested
several criteria that can be used to assist in classifying a
DSL as a programming or modeling language. However,
each criterion alone is not sufficient to classify a language
– we suggest that a set of criteria together can better
inform the determination of the language type.

There are some tangible benefits to providing such a
classification. There are several thousand computer
languages that have been developed over the history of
computing. It is quite natural to classify these languages
into different classes or groups instead of remembering
the features and characteristics of each language. If the
group to which a particular language belongs is known,
then some general knowledge about that particular
language is immediately available. Such a taxonomy
would also help to organize existing knowledge about
computer languages into hierarchical rankings in order to
have improved understanding and better communication
among researchers. Hence, an effective and correct
classification about the type of languages enables
developers to have a more precise understanding about
the properties of a language so that a wise choice of using
a language can be made for a certain problem domain. In
addition, when extending a language to build a software
engineering tool, knowing its type and essential
characteristics is very important.

Acknowledgements
This work supported by NSF CAREER award CCF-0643725
and NSF award CCF-0811630.

Table 1: Summary of classification of various DSLs according to suggested criteria
 VHDL EBNF ATL KM3 ESML SQL XSLT
Graphical
Notation

textual ⇒ P textual ⇒ P textual ⇒ P textual ⇒ P graphical ⇒ M textual => P textual => P

Language
Definition

BNF, informal
semantics ⇒ P

BNF, informal
semantics ⇒ P

BNF, informal
semantics ⇒ P

BNF, operational
semantics ⇒ P

metamodel,
model interpreter
⇒ M

BNF, formal
semantics [21]
⇒ P

XML schema,
formal [27]
semantics ⇒ P

Language
Executability

executable ⇒ P not directly
executable ⇒ M

executable ⇒ P not executable ⇒
M

not directly
executable ⇒ M

executable ⇒ P executable ⇒ P

Level of
Abstractions

low ⇒ P high ⇒ M high/medium
(both declarative
and imperative)
⇒ M

high ⇒ M high ⇒ M medium (both
declarative and
imperative) ⇒
M

medium ⇒ M

Fundamental
Concepts

values, storage,
bindings,
abstract ⇒ P

entities,
connections ⇒ M

values, storage,
bindings,
abstract ⇒ P

entities,
connections ⇒
M

entities,
connections,
ports ⇒ M

values, storage,
bindings ⇒ P

values, storage,
bindings ⇒ P

Development
Phase

implementation
phase ⇒ P

requirement/
design phase ⇒
M

implementation
phase ⇒ P

requirement/
design phase ⇒
M

design /
 implementation
⇒ M

implementation
phase ⇒ P

implementation
phase ⇒ P

Multiple
Views

no ⇒ P no ⇒ P no ⇒ P no ⇒ P yes ⇒ M no ⇒ P no ⇒ P

Conclusion programming
language

modeling
language

programming
language

modeling
language

modeling
language

programming
language

programming
language

References
[1] P. J. Ashenden. The Designer's Guide to VHDL. 2nd Edition,

Morgan Kaufmann, 2002.
[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modeling Language User Guide. Addison-Wesley, 1999.
[3] M. Burnett and M. Baker. A classification system for visual

programming languages. Journal of Visual Languages and
Computing, 5(3):287-300, 1994.

[4] J. Cuadrado and J. Molina. Building domain-specific
languages for model driven development. IEEE Software,
24(5):48-55, 2007.

[5] C. J. Date and H. Darwen. A Guide to SQL Standard, 4th
Edition, Addison-Wesley, 1997.

[6] GME. http://www.isis.vanderbilt.edu/projects/gme/
[7] C. Gonzalez-Perez and B. Henderson-Sellers. Modelling

software development methodologies: A conceptual
foundation. Journal of Systems and Software, 80(11):1778-
1796, 2007.

[8] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J.
Sprinkle. Domain-specific modeling. In P. A. Fishwick, editor,
CRC Handbook of Dynamic System Modeling. CRC Press,
2007. pp. 7-1 through 7-20.

[9] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, 2004.

[10] G. Gupta. CS6371 Lecture Notes: Advanced Programming
Languages.
http://www.utdallas.edu/~gupta/courses/apl/lec1.html

[11] C. A. R. Hoare. Hints on programming language design.
Stanford Artificial Intelligence Laboratory Memo AIM-224 /
STAN-CS-73-403, 1973.

[12] ISO/IEC 14977:1996(e) International Standard EBNF Syntax
Notation.

[13] F. Jouault, F., F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A
model transformation tool. Science of Computer Programming,
72(1-2):31-39, 2008.

[14] F. Jouault, and J. Bézivin. KM3: A DSL for Metamodel
Specification. International Conference on Formal Methods
for Open Object-Based Distributed Systems, Bologna, Italy,
pp. 171-185, 2006.

[15] G. Karsai, S. Neema, and D. Sharp. Model-driven architecture
for embedded software: A synopsis and an example. Science of
Computer Programming, 73(1): 26-38, 2008.

[16] J. Kramer. Is abstraction the key to computing?
Communications of the ACM, 50(4): 36-42, 2007.

[17] T. Kühne. Matters of (meta-) modeling. Software and Systems
Modeling, 5(4):369-385, 2006.

[18] K. C. Louden. Programming Languages: Principles and
Practice. 2nd Edition, Thomson - Course Technology, 2003.

[19] S. Mellor and M. Balcer. Executable UML. Addison-Wesley,
2002.

[20] M. Mernik, J. Heering, and A. M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys,
37(4):316-344, 2005.

[21] M. Negri, G. Pelagatti, and L. Sbattela. Formal semantics of
SQL queries. ACM Transactions on Database Systems, 16
(3):513-534, 1991.

[22] F. G. Pagan. Formal Specification of Programming
Languages: A Panoramic Primer. Prentice Hall, 1981.

[23] R. Paige, J. Ostroff, and P. Brooke. Principles for modeling
language design. Information and Software Technology,
42(10):665-675, 2000.

[24] D. Schmidt. Guest editor's introduction. Model-driven
engineering. IEEE Computer, 39(2):25-31, 2006.

[25] R. Sethi. Programming Languages: Concepts and Constructs.
2nd Edition, Addison-Wesley, 1996.

[26] XSLT. http://www,w3.org/TR/xslt.html
[27] P. Wadler. A formal semantics of patterns in XSLT, Markup

Technologies, Philadelphia, USA, 1999.
[28] D. Watt. Programming Language Concepts and Paradigms.

Prentice-Hall, 1990.
[29] Wikipedia. Programming languages,
http://en.wikipedia.org/wiki/Category:Programming_languages

