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Abstract. Domain-specific languages (DSLs) offer several advantages by providing idioms 
that are similar to the abstractions found in a specific problem domain. However, a 
challenge is that tool support for DSLs is lacking when compared to the capabilities offered 
in general-purpose languages (GPLs), such as Java and C++. For example, support for unit 
testing a DSL program is absent and debuggers for DSLs are rare. This limits the ability of 
a developer to discover the existence of software errors and to locate them in a DSL 
program. Currently, software developers using a DSL are generally forced to test and debug 
their DSL programs using available GPL tools, rather than tools that are informed by the 
domain abstractions at the DSL level. This reduces the utility of DSL adoption and 
minimizes the benefits of working with higher abstractions, which can bring into question 
the suitability of using DSLs in the development process. This paper introduces our initial 
investigation into a unit testing framework that can be customized for specific DSLs 
through a reusable mapping of GPL testing tool functionality. We provide examples from 
two different DSL categories that serve as case studies demonstrating the possibilities of a 
unit testing engine for DSLs. 
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1. Introduction 

Tool support is an important factor toward determining the success and adoption of any 
software development paradigm. Software development using domain-specific languages 
(DSLs) is no exception. This paper discusses the current lack of basic tool support for 
common tasks that a DSL programmer may expect to perform. The paper motivates the 
need for DSL testing tools and introduces an initial prototype framework that supports 
unit testing of DSL programs. 

The need to test DSL programs is motivated by the recent trend in end-user 
programming. Scaffidi et al estimate that there are several million end-user programmers 



[29]. End-user programmers are more likely to introduce software errors than professional 
programmers because they lack software development training and proper tool support 
[16]. As observed in several industry studies, individual examples of software errors have 
been very costly [18], [30]. For instance, it has been estimated that software failures 
collectively contribute to over $60 billion in unreported losses per year [32]. Likewise, 
without the availability of software development tools, the final products of end-user 
programming can also be dangerous [16]. The proper programming tools (e.g., editor, 
compiler, test engine, and debugger) are needed for end-users to improve the integrity of 
the products they develop. With a large pool of end-user developers, and the rising cost of 
software failures, it is imperative that end-users be provided with tools that allow them to 
detect and find software errors at an abstraction level that is familiar to them. 

1.1 Benefits of DSL Adoption 

Despite advances in programming languages and run-time platforms, most software is 
developed at a low-level of abstraction relative to the concepts and concerns within the 
problem space of an application domain. DSLs assist end-users in describing solutions in 
their work domains [41]. A DSL is a programming language targeted toward a particular 
problem domain rather than providing general solutions for many domains [23], [38]. 
DSLs have also been shown to assist in software maintenance whereby end-users can 
directly use the DSLs to make required routine modifications [4], [36]. DSLs can help 
end-users and professional programmers write a software solution in a more concise, 
descriptive, and platform-independent way. It is often the case that domain experts are not 
familiar with general-purpose languages (GPLs) [31] in order to solve their domain 
problems; however, they may be more comfortable with addressing their domain 
problems through a DSL that is closer to the abstractions of their own domain knowledge. 
A language that closely represents key domain abstractions may also permit the 
construction of a more concise program that is also easier to test for correctness compared 
to the same intention expressed in a GPL. This paper demonstrates the idea of DSL 
testing using two small DSLs that could be adopted by end-users with little programming 
experience. 

In addition to the benefits offered to end-user programmers, there are also advantages 
of DSL usage by professionally trained developers. The benefits of using DSLs within a 
software development project are increased flexibility, productivity, reliability, and 
usability, which have been shown through empirical evaluation on numerous case studies 
[9], [21], [23], [40]. Popular examples of DSLs include the languages used to specify 
grammars in parser generators like CUP [8] or ANTLR (ANother Tool for Language 
Recognition) [1]. Other examples include the Swing User-interface Language (SWUL), 
which is a DSL to construct a Java Swing user interface [6]; Structured Query Language 
(SQL) is a DSL to access and manipulate databases; HTML is a DSL that serves as a 
markup language for creating web pages. 



1.2 Challenges of DSL Tool Implementation 

A common practice for DSL implementation is to translate a single DSL construct into 
several GPL constructs [23], and then reuse the associated GPL tools to provide the 
infrastructure for interpreting or executing a DSL program. In the research described in 
this paper, we adopt this popular practice of source-to-source transformation to translate a 
DSL to an existing GPL, such as Java or C++, which have well-developed programming 
tools. Translating a DSL to an existing GPL is a popular implementation approach 
because the underlying tools of the converted GPL can be reused (e.g., compiler, profiler, 
testing engine and debugger). Although direct reuse of the existing GPL tools offers 
several benefits, a GPL tool does not provide the proper abstractions that are needed by 
DSL programmers. An approach that hides the underlying use of the GPL tools and 
removes the accidental complexities that cause the abstraction mismatch between the DSL 
and GPL is needed. The goal of DSL tool implementation is to allow users of a language 
to work only at the abstraction level of the DSL semantics, while not being concerned 
about the complexities of the solution as realized in the tools of a supporting GPL. The 
situation is similar to the desire to have tools for a GPL at the level of the programming 
language, rather than underlying machine code (e.g., a debugger that is at the machine 
code level is useless to most GPL programmers). A goal is complete tool support at the 
proper abstraction level, regardless of how the tool’s execution semantics are eventually 
realized. 

The construction of a DSL compiler or interpreter is only the first piece of the needed 
toolchain. A DSL programmer also needs tools to discover the existence of software 
errors and locate them in a DSL program. The paucity of such tools can be one of the 
major factors that may prevent wider acceptance of DSLs in the software industry. Our 
previous work [43] focused on the generation of debuggers for DSLs through adaptations 
to the DSL grammar. This paper follows a similar path that considers the generation of 
unit testing engines for DSLs. 

1.3 Tool Support for Testing DSL Programs 

The research described in this paper focuses on a framework that assists in customizing a 
tool that tests a DSL program’s behavior. In order to assess the benefits of our approach, 
we define a unit test script that is customized to consider the domain-specific 
characteristics for different types of DSLs. To guide developers in testing their DSL 
programs, we adopt the traditional unit testing concepts such as defining the expected 
value of a test case, test assertions, and test result reports. 

Building DSL testing tools from scratch for each new DSL is time consuming, error 
prone, and costly. In this paper, we show that such tools can be implemented by a 
generalization of a testing tools framework implemented within Eclipse (Figure 1) 
through reuse of existing GPL tool functionality. Figure 1 highlights the architecture of a 



DSL unit testing framework; we have previously developed a similar framework for DSL 
debuggers [43]. A key technique of the framework is a mapping process that records the 
correspondence between the DSL code and the generated GPL code. The translator that 
defines the mapping between the DSL and GPL levels is written in ANTLR, which is a 
lexer and parser generator [1]. This translator generates GPL code and source code 
mapping information that can be used to determine which line of the DSL code is mapped 
to the corresponding segment of generated GPL code. 

The correspondence between DSL testing actions and GPL testing actions are given 
by pre-defined mapping algorithms that also can be specialized to deal with specific 
domain features. Through the explicit mapping of source code and test case mappings, the 
GPL testing tool responds to the testing commands sent from the re-interpreter component 
(bottom-left of Figure 1). The test result at the GPL level is later sent back to the DSL 
testing perspective by the testing results mapping component, which is a wrapper 
interface to convert the GPL testing result messages back into a form to be displayed at 
the DSL level (i.e., rephrasing the GPL test results into the testing or debugging 
perspective within Eclipse that is tailored for a specific DSL). As a result, the framework 
enables a DSL programmer to interact directly with the testing perspectives at the DSL 
level. More details about our framework, including video demonstrations and complete 
examples, can be found at the project website [11]. 

The remainder of this paper is organized as follows: Section 2 introduces the 
necessary background information to provide the reader with a better understanding of 
other sections of the paper; Section 3 describes an overview of the issues concerning DSL 
unit testing; Section 4 presents two case studies that illustrate our ideas; Section 5 shares a 
few lessons learned and describes several existing limitations that point toward future 
work; Section 6 discusses related work; Section 7 offers a summary of the paper. 

 

 
Figure 1. Separation of DSL Perspective and GPL Tools 



2. Background 

Our approach exploits a technique to build DSL tools from existing GPL tools available 
for debugging, unit testing, and profiling (e.g., jdb, JUnit, NetBeans Profiler) with 
interoperability among the tools provided by plug-in mechanisms offered by most IDEs. 
The Eclipse plug-in development environment [14] was selected due to its ability to serve 
as a tool integration platform that offers numerous extension points for customization 
through an extensible architecture. As an example, Eclipse provides a reusable debugging 
interface (e.g., buttons for common debugging commands and variable watch lists) and 
integration with JUnit through extension mechanisms. 

To provide tool support consistent with accepted software engineering practice, a DSL 
unit test engine should offer developers the ability to discover the existence of software 
errors within the DSL program. After identifying the presence of an error through testing, 
DSL debuggers can further help end-users to locate the errors in the DSL code. This 
section introduces the necessary background of the basic tools and techniques mentioned 
throughout the paper, and provides a brief description of the JUnit test platform and DSL 
Debugging Framework (DDF). This section also introduces two sample DSLs that serve 
as case studies in later sections of the paper. 

2.1 Eclipse JUnit Test Platform 

A unit test engine is a development tool used to determine the correctness of a set of 
modules (e.g., classes, methods, or functions) by executing source code against specified 
test cases. Each unit test case is tested separately in an automated fashion using a test 
engine. The test results help a programmer identify the errors in their program. 

JUnit is a popular unit testing tool for constructing automated Java test cases that are 
composable, easy to write, and independent [20]. A JUnit plug-in for Eclipse [12] 
provides a framework for automating functional unit testing [46] on Java programs. JUnit 
generates a skeleton of unit test code according to the tester’s specification. The software 
developer needs to specify the expected value, the tested variable, the tested module of 
the source code, and the test method of the test cases. JUnit provides a set of rich testing 
methods (e.g., assertEquals, assertNotNull, assertFalse, and 
assertSame) and reports the results (shown in Figure 2) as: the total number of passed 
or failed test cases; the true expected value and current value of the failed test cases; the 
name and location of the passed and failed test cases; and the total execution time of all 
the test cases. The test results can be traced back to the source code locations of the tested 
program. The test cases are displayed in a hierarchical tree structure that defines the 
relationship among test cases. In its current form, JUnit is focused solely on Java and is 
not applicable to general testing of DSL programs. Testing frameworks similar to JUnit, 
such as NUnit [26], also focus at the GPL level and do not provide opportunities for unit  



 

Figure 2. Screenshot of the JUnit Eclipse Plug-in 

 
testing DSL programs. In Section 3, we describe how our mapping framework enables 
unit testing of DSL programs using JUnit as the underlying unit test engine. 

2.2 DSL Debugging Framework (DDF) 

DDF represents our prior work [43] that was developed as a set of Eclipse plug-ins 
providing core support for DSL debugging. In the DDF, a DSL is specified using ANTLR, 
which can be used to construct recognizers, compilers, and translators from grammatical 
descriptions containing Java, C++, or C# actions. A DSL is usually translated into a GPL 
that can be compiled and executed [23]. From a DSL grammar, the DDF generates GPL 
code representing the intention of the DSL program (i.e., the DSL is translated to a GPL 
and the GPL tools are used to generate an executable program) and the mapping 
information that integrates with the host GPL debugger (e.g., the stand-alone command 
line Java debugger – jdb [19]). The generated mapping code and pre-defined debugging 
method mapping knowledge re-interpret the DSL program and DSL debugging states into 
a sequence of commands that query the GPL debugger. The debugging result responses 
from the GPL debugger are mapped back into the DSL debugger perspective. Thus, the 
end-user performs debugging actions at the level of abstraction specified by the DSL, not 
at the lower level abstraction provided by the GPL. The DDF was developed using 
architecture similar to Figure 1, but with mappings to different GPL tools (in the DDF 
case, a debugger rather than a unit test engine). 



2.3 Sample DSLs: The Robot and Feature Description Languages 

DSLs can be categorized as imperative or declarative [23]. An imperative DSL follows a 
similar definition used for imperative programming languages, which assumes a control 
flow that is centered on the importance of state changes of variables. A declarative DSL is 
a language that declares the relationships among input and output values, with little 
concern over specific control flow. This paper uses an example from both the imperative 
and declarative categories to illustrate the concept of unit testing of DSLs. A third 
category, called embedded DSLs, is discussed in Section 5 as a topic of future work for 
DSL unit testing. 

The top of Figure 5 illustrates a very simple imperative DSL that we have used in 
various aspects of our work on DSL testing engines. This simple language moves a toy 
robot in various directions (e.g., up, down, left, right) and provides a mechanism for users 
to write their own navigation methods (e.g., a knight method that moves according to 
the rules of a knight in chess). An implicit position variable keeps track of the position 
of the robot as the control flow of the program modifies the robot location. 

The Feature Description Language (FDL) [37] is a declarative DSL for describing 
feature models in software product lines. The upper part of Figure 3 (adapted from [37] 
and previously presented in [43] within the context of DSL debugging) is an example 
written in FDL to describe car features. The lower part of Figure 3 enumerates all of the 
possible legal configurations that result from the features defined on the upper part of the 
figure. In feature 1 of Figure 3, a Car is made of four mandatory parts: carbody, 
Transmission, Engine, and Horsepower. As shown at the end of feature 1, a Car 
has an optional feature called pullsTrailer. Features starting with a lowercase letter 
are primitive features that are atomic and cannot be expanded further (e.g., the carbody 
feature). Features that start with an uppercase character are composite features, which 
may consist of other composite or primitive features (e.g., the Transmission feature 
consists of two primitive features, automatic and manual). There are several 
composition logic operators to help describe more complex situations. In feature 2 of 
Figure 3, the oneof composition logic operator states that Transmission can be 
either automatic or manual, but not both. In feature 3, the moreof composition 
logic operator specifies that the Engine can be either electric or gasoline, or 
both. FDL also provides constraint keywords to describe a condition that a legal 
composition must satisfy. In constraint 1, all cars are required to have a pullsTrailer. 
In constraint 2, only highPower cars are associated with the pullsTrailer feature. 
The combination of constraints 1 and 2 imply that all cars in this product line must be 
highPower. 
 



Car Features in FDL 
 

feature 1: Car: all (carbody, Transmission, Engine, Horsepower, 

             opt(pullsTrailer)) 

feature 2: Transmission: oneof (automatic, manual) 

feature 3: Engine: moreof (electric, gasoline) 

feature 4: Horsepower: oneof (lowPower, mediumPower, highPower)  

constraint 1: include pullsTrailer 

constraint 2: pullsTrailer requires highPower 

All Possible Car Configurations 
 

1:(carbody, pullsTrailer, manual, highPower, gasoline, electric) 

2:(carbody, pullsTrailer, manual, highPower, electric) 

3:(carbody, pullsTrailer, manual, highPower, gasoline) 

4:(carbody, pullsTrailer, automatic, highPower, gasoline, electric) 

5:(carbody, pullsTrailer, automatic, highPower, electric) 

6:(carbody, pullsTrailer, automatic, highPower, gasoline) 

 
Figure 3. Car Features Specified in FDL and List of Possible Car Configurations 

(adapted from [37]) 

3. DSL Unit Testing Framework 

As observed from traditional software development, unit testing supports early detection 
of program errors, and the complementary process of debugging helps to identify the 
specific location of the program fault [27] to reduce the cost of software failures. To 
complement the DDF, the DSL Unit Testing Framework (DUTF) assists in the 
construction of test cases for DSL programs, much in the sense that JUnit is used in 
automated unit testing of Java programs. After identifying the existence of an error using 
DUTF, the DDF (Section 2.2) can then be used to identify the fault location within the 
DSL program. The DUTF framework invokes the underlying GPL unit test engine (e.g., 
JUnit) to obtain unit test results that are remapped onto the abstractions representing the 
DSL. The key mapping activity in DUTF translates the DSL unit test script into GPL unit 
test cases that are executed at the GPL tool level. In the DUTF, the reports of passed and 
failed test cases appear at the DSL level instead of the underlying GPL level. A failed test 
case reported within the DUTF reveals the presence of a potential error in the DSL 
program. 



An illustrative overview of the DUTF is shown in Figure 4. With the mapping 
generator embedded inside the grammar of the Robot language, the lexer and parser 
generated by ANTLR (step 1) takes the Robot DSL program as input. ANTLR not only 
translates the Robot DSL into the corresponding Robot.java representation, but also 
generates the Mapping.java file (step 2). At the same time, another translator generates 
the JUnit test case (e.g., TestRobot.java) from the Robot DSL unit test script and another 
mapping file. The mapping file represents a data structure that records all of the 
information about which line of a Robot DSL unit test case is mapped to the 
corresponding JUnit test case in the generated code. A DSL unit test case is interpreted 
into a JUnit test case against the generated Robot.java code. At the GPL level, the 
generated JUnit test cases represent the unit testing intention of Robot unit test cases. The 
mapping component interacts and bridges the differences between the Eclipse DSL unit 
test perspective and the JUnit test engine (step 3). 

There are two round-trip mapping processes involved (step 4 and step 5) between the 
Robot DSL unit test perspective in Eclipse and JUnit. The results from the mapping 
components are reinterpreted into the GPL unit test engine as unit test cases that are 
executed against the translated GPL code. The source code mapping component (Section 
3.1) uses the generated mapping information to determine which DSL test case is mapped 
to the corresponding GPL unit test case. The mapping indicates the location of the GPL 
test case corresponding to a single test case defined in a test script at the DSL level. The 
test cases mapping component (Section 3.2) considers the user’s test cases at the DSL 
level to determine what test cases need to be created and executed by the underlying GPL 
unit test engine. 
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...
21 Init position(0,0);
22  down;
23  knight;
24  Set position(5,6);
25  right;
26  Print position;
 ...

public class Robot
{
public static void main(String[] args) {
… …
//move left
x=x-1;
time=time+1;

//move down
y=y-1;
time=time+1;
… …

    }
}

import java.util.ArrayList;

public class Mapping {
ArrayList mapping;
public Mapping(){
mapping=new ArrayList();

  mapping.add(new Map(1, "Robot.java",2,8));
mapping.add(new Map(2, "Robot.java",10,14));  
… …

    }
}

Test Results 
Mapping

Robot DSL Grammar 
Source Code Mapping

Robot DSL 

Generated Lexer, and Parser 
by ANTLR

Robot.java and Mapping.java

Robot DSL Unit Test Perspective in Eclipse

Robot DSL Unit Test Script Grammar
Test Case Mapping

...
2  Init position(0,0);
3 Expectedposition (1,2);
4  knight;
5  AssertEqual(Expectedposition,

position);
...

Robot DSL Unit Test Script 
public class TestRobot extends 
TestCase
{ ...
public void testknight()
 {

          i=1; j=2;          
          robot.knight();

assertEquals(i, robot.x);
assertEquals(j, robot.y);

}
  ...
}

TestRobot.java

Test Results 
View

Unit Test 
Script Editor

1 2

3

4

Figure 4. DSL Unit Testing Framework (DUTF) 



The GPL unit test engine (in this example, JUnit) executes the test cases generated from 
DSL test scripts. Because the messages from the GPL unit test engine are still in the GPL 
format, the test result at the GPL level is sent back to the Eclipse DSL test result view by 
the test results mapping component (Section 3.3), which is a wrapper interface to remap 
the test results back into the DSL perspective. The domain experts only see the DSL test 
result view at the DSL level. The following sub-sections describe the various mappings 
that are needed to reuse a GPL testing tool at the DSL abstraction level. 

3.1 Source Code Mapping 

Along with the basic functionalities translated from a DSL to its equivalent GPL 
representation, the syntax-directed translation process also can produce the mapping 
information augmented with additional semantic actions embedded in the DSL base 
grammar. ANTLR is used to translate the DSL to a GPL (e.g., Java) and also to generate 
the mapping hooks that interface with the DUTF infrastructure. The base grammar of the 
DSL is modified with additional semantic actions that generate the source code mapping 
needed to create the DSL unit test engine. The mapping consists of the line number of the 
DSL statement, the translated GPL file name, the line number of the first line of the 
mapped code segment in the GPL, the line number of the last line of the corresponding 
code segment in the GPL, the name of the function at the current DSL line number, and 
the statement type (e.g., functiondefinition, functioncall, or none) at the current DSL 
line number. 

A functiondefinition contains functionhead, functionbody, and functionend, where: 
functionhead marks the start of a function (line 3 on the top of Figure 5 is the 
functionhead of knight); functionbody is the actual definition of a function (lines 4 to 6 
on the top of Figure 5 represent the functionbody of knight); functionend indicates the 
end of a function (line 7 on the top of Figure 5 is the functionend of knight). A 
functioncall is the marker for a function that is being called from another program 
location. The statement type for a built-in method or statement of a GPL program is set to 
none. For example, the mapping information at Robot DSL line 13 in the top of Figure 5 
is {13, "Robot.java", 20, 21, "main", "none"}. This vector indicates that line 13 of the 
Robot DSL is translated into lines 20 to 21 in Robot.java, designating the “Set 
position()” method call inside of the main function. For each line of the Robot DSL 
code, there is corresponding mapping information defined in the same format. Although 
the examples presented in this section are tied to Java and the simple Robot DSL, the 
source code mapping and interaction with the GPL unit test engine and unit test platform 
can be separated from different DSLs and GPLs. 



 

Program Written in Robot DSL 
… 
3   begin knight:   
4     position(+0,+1); 
5     position(+0,+1); 
6     position(+1,+0); 
7   end knight:   
8   … 
9    Init position(0,0); 
10   left; 
11   down; 
12   knight; 
13   Set position(5,6); 
14   up; 
15   right; 
16   Print position; 
… 

Generated Java Code 
… 
6   public static void move_knight(){ 
7 x=x+0; 
8 y=y+1; 
9 x=x+0; 
10 y=y+1; 
11 x=x+1; 
12 y=y+0;} 
13   public static void main(String[] args) { 
14 x=0; 
15 y=0; 
… 
18 move_knight(); 
… 
20 x = 5; 
21 y = 6; 
… 
26 System.out.println("x coord="+x+""+ 
27                    "y coord= " + y);} 
… 

 

Figure 5. Robot DSL Source Code Mapping 

 
Variable mapping implicitly exists within the DSL compiler specified during the syntax-
directed translation in the semantics specification. Figure 6 describes a part of the Robot 
DSL grammar specification that specifies the semantic actions taken on the implicit 
position variable. This part of the grammar translates line 4 of the Robot DSL in the 
top of Figure 5 into lines 7 and 8 of the generated Robot.java in the bottom of Figure 5. 
The Robot DSL variable position is mapped to x and y variables in Robot.java. The  
 



 
Functionbody 
:(VARS LPAREN op1:OP func_n1 :NUMBER COMMA op2:OP func_n2:NUMBER RPAREN 
    {   funcall="functionbody"; 
 dsllinenumber=dsllinenumber+1; 
 fileio.print(" x=x"+op1.getText()+func_num1.getText()+";"); 
 gplbeginline=fileio.getLinenumber(); 
 fileio.print(" y=y"+op2.getText()+func_num2.getText()+";"); 
 fileio.print(" time=time+1;"); 
 gplendline=fileio.getLinenumber(); 
 filemap.print("mapping.add(new 
    Map("+dsllinenumber+",\"Robot.java\","+ gplbeginline+","+gplendline+","+"\""+ 
        funcname+"\""+","+"\""+funcall+"\""+"));"); 
 } 
); 

 
Figure 6. Part of Robot DSL Grammar Specification 

 
translation of the position variable represents a one-to-many variable mapping, where one 
DSL variable is mapped to two or more GPL variables. These forward (i.e., from DSL to 
GPL) variable mappings are used implicitly by the DUTF for generating the DSL unit test 
engines. 

The source code mapping shown in Figure 5 is the same mapping that is also used in 
the DDF for DSL debuggers [43]. In previous work, we showed how the adaptations to 
the grammar that support DSL tools represent a crosscutting concern. The grammar 
concerns can be specified using an aspect language that is specific to language grammars 
[42]; however, this topic is out of scope for the discussion in this paper. 

3.2 Test Cases Mapping 

The abstraction mismatch between DSLs and GPLs also contributes to the mismatch in 
test cases. When writing a unit test case at the DSL level, one variable in a DSL program 
may not be equivalent to one variable in the corresponding GPL representation (i.e., a 
DSL variable may be translated into several variables or objects in the generated GPL). 
The presentation format of the DSL variable may also differ from the GPL representation. 
In the case of DUTF, the DSL unit test script is mapped to the corresponding GPL unit 
test cases by a test case translator written in ANTLR. In the DUTF, the generated GPL 
test cases are exercised by the underlying GPL unit test engine (e.g., JUnit). The main 
task of a unit test is to assert an expected variable value against the actual variable value 
when the program is executed. The variable mapping from a DSL program to the 
corresponding GPL program is used to construct the mapping of test cases at the GPL 
source code level. The base grammar of the unit test script is augmented with additional 
semantic actions that generate the variable mapping and test case line number mapping. 

Figure 7 shows the mapping from a Robot DSL unit test case (called testknight) 
to a corresponding JUnit test case of the same name. In the Robot DSL unit test script, 
line 2 on the left side is mapped to lines 2 and 3 on the right side; line 3 on the left side is 



mapped to lines 4 and 5 on the right side. One assertion statement in the Robot DSL unit 
test script may be translated into multiple separate assertion statements in JUnit due to the 
mismatch of variables between the DSL and GPL. For example, the variable called 
position in the Robot DSL is translated into two variables (x and y) in the Java 
translation; line 5 (left side of Figure 7) is mapped to lines 7 and 8 (right side of Figure 7). 
This one-to-many test case assertion mapping must be re-mapped back into the DSL view. 
The Car example, specified in the declarative FDL of Section 2.3, is used as another 
target DSL case study. Figure 8 shows the mapping from a Car FDL unit test case (called 
testFeatures) to a corresponding JUnit test case of the same name. In the Car FDL 
unit test script, line 2 on the top of Figure 8 is mapped to the JUnit test case at the bottom. 
In this figure, the expected car features are from lines 12 to 14, where three specific 
features (e.g., carbody, manual, highPower) are desired features. Line 3 invokes a 
unit of the original Car FDL program that executes all four features defined in the Car 
FDL program; line 4 invokes a constraint that requires every car feature combination list 
to include a pullsTrailer. The result of lines 3 and 4 is the creation of an explicit 
variable called feature, which keeps track of the list of features that are included in the 
actual features generated by the given FDL specification. 

The parse function used in line 27 of the JUnit test case is a helper function that stores 
the output of the generated Java program into a unified data structure, and then converts it 
to the same class type as the current tested car’s feature called testFeatures. The 
compareFeatures function used in line 27 of the JUnit test case is another helper 
function that compares the two parameters. The traditional JUnit built-in assertion 
functions (e.g., assertEquals) are not applicable and not capable of handling the 
particular scenarios in FDL that compare car feature test assertions. This limitation is due 
to the fact that the order of the car’s features written in the FDL test case script is 
irrelevant. However, the assertEquals assertion in JUnit will report an error if two 
objects are not exactly equal. In other words, the order of the features of the current car 
and expected car may not be equal. Even if the contents of these two objects are equal the 
result is still false when compared with assertEquals at the JUnit level. However, at 

Robot DSL Unit Test Case 
 

1  testcase testknight { 
2    Init position(0,0); 
3    Expectedposition(1,2); 
4    knight; 
5    AssertEqual(Expectedposition, 
                 position); 
6  } 
… 

GPL Unit (JUnit) Test Case 
 

1  public void testknight() { 
2 robot.x = 0; 
3 robot.y = 0; 
4 int x= 1; 
5 int y= 2; 
6 robot.move_knight(); 
7 assertEquals(x, robot.x); 
8 assertEquals(y, robot.y);} 
… 

Figure 7. Test Case Mapping Between Robot Test Case and JUnit Test Case 



the Car FDL abstraction level, they are equal. To address this issue, an external function 
called compareFeatures has been written to handle this situation where only the 
contents matter and the ordering issue can be ignored. 

Line 6 of the Car FDL unit test case is mapped to line 28 of the JUnit test case. It is an 
assertion to assess the number of possible valid feature combinations. The external 
getFeatureListNumber function retrieves the number of the feature combinations 
from the parsed data structure. It is not possible to get the size of a feature list because the 
existing FDL compiler does not provide such a method, so a helper method was needed. 
The assertEquals statement is used to compare the actual feature list size with the 
expected feature combination number. 

In this example, one assertion statement in the Car FDL unit test script is translated 
into one assertion statement in JUnit. This one-to-one test case assertion mapping is 
simpler than the one described in the Robot unit test engine case but the comparison 
function is more complicated than the Robot example. JUnit does not support the 
sophisticated assertion functionality that is needed for FDL unit testing. Thus, helper and 
comparison functions were needed to realize the unit test intention for FDL programs. 
The provision of such helper functions for the specific use of FDL unit testing represents 
additions that were needed to customize the DUTF for FDL. 
 

Car FDL Unit Test Case 
 

1  TestCase testFeatures { 

2    Expectedfeature:(carbody, manual, highPower); 

3    use Car.FDL(All); 

4    Constraint C1: include pullsTrailer; 

5    AssertTrue(contain(Expectedfeature, feature)); 

6    AssertEqual(6, numberof feature); 

7  } 

GPL Unit Test Case (JUnit) 
 

11  public void testFeatures () { 

12    testFeatures.add("carbody"); 

13    testFeatures.add("manual"); 

14    testFeatures.add("highPower"); 

… 

27    assertTrue(compareFeatures(testFeatures,parse(fc,root,cons))); 

28    assertEquals(6,getFeatureListNumber(parse(fc,root,cons))); 
… 

 
Figure 8. FDL Test Cases Mapping 



3.3 Unit Test Result Mapping 

JUnit reports the total number of test cases, total number of failed test cases, and total 
number of error test cases (i.e., those representing run-time exception errors during test 
executions). If one test case in a DSL is translated into multiple test cases at the GPL 
level, the result mapping can become challenging (i.e., rephrasing the results at the JUnit 
level back into the DSL perspective). One test case’s failure result should not affect other 
test cases. In order to get the final test result of one test case in the DSL, all corresponding 
GPL test cases have to be tested. The approach adopted in DUTF is to use one-to-one 
mapping at the test case level (i.e., each test case specified at the DSL level is translated 
into one test case at the GPL level). Within each test case, one assertion in a DSL test case 
may be translated into one or many assertions in a GPL test case. The one-to-many 
mapping that is encapsulated inside the individual test case makes the test result easier to 
interpret across the abstraction layers. 

One failed assertion at the GPL level should result in an entire test case failure. Only 
those GPL test cases that have passed all assertions should result in a successful test case 
at the DSL level. Such a simple mapping also helps to determine the location of a failing 
DSL test case without considering the many-to-one consequence from the line number 
mapping. The test result from JUnit indicates the location of the failed test case in the 
JUnit code space, which is not helpful for end-users to locate the position of the specific 
failed test cases in their DSL unit test script. For simplicity, we keep the test case name 
the same during the translation process. By matching the test case name through the test 
case mapping information, we can obtain the corresponding line number of the DSL unit 
test script from the JUnit test case line number in the test result report. This is illustrated 
in more detail in the concrete examples presented in Section 4 (e.g., Figures 12 and 13). 
 
1  protected void handleDoubleClick(DoubleClickEvent dce) { 
2    IStructuredSelection selection = (IStructuredSelection) dce.getSelection(); 
3    Object domain = (TestResultElement) selection.getFirstElement(); 
4    String casename = ((TestResultElement) domain).getFunctionName(); 
5    int linenumber = 0; 
6    for (int i = 0; i < mapping.size(); i++) { 
7 Map map = (Map) mapping.get(i); 
8 if (map.getTestcasename().equals(casename)) { 
9  linenumber = map.getDslnumber(); 
10 } 
11    } 
12    OpenDSLTestEditorAction action = null; 
13    action = new OpenDSLTestEditorAction(this, testFileName, linenumber); 
14    action.run(); 
15  } 

 
Figure 9. handleDoubleClick function in TestResultView Class 



The DUTF provides a capability that allows the DSL end-user to double-click on the test 
cases listed in the Test Result View, which will then highlight the specific test case 
in the editor view. Figure 9 is an example of the plug-in code that was written to interact 
with JUnit to handle the end-users double-clicking on the failed test case. The method 
searches through the source code mapping to find the selected test case name (line 8) and 
then obtains the line number (line 9) of the test case. This information is then used to 
display the test script editor and highlight the clicked test case in the test script (line 13). 

4. Example DSL Test Engines 

This section illustrates the application of the DUTF on two different types of DSLs (e.g., 
imperative DSLs and Declarative DSLs). We have implemented unit test engines for 
various DSLs (e.g., the toy Robot language and the FDL, both described in Section 2.3) 
using our approach. 

4.1 Generation of Imperative DSL Test Engine 

This sub-section describes the generation of a unit test engine for the imperative Robot 
DSL. The DUTF adapts the JUnit graphical user interface in Eclipse by adding a new 
view called the DSL Test Result View, which is similar to the underlying JUnit 
Test Result View, but mapped to the DSL abstraction. Figure 10 shows a 
screenshot of a Robot DSL unit test session. A DSL test case is composed of a test case 
name (e.g., testknight) and test body. The test body defines the expected value of a 
certain variable, the module to be tested, as well as the criteria for asserting a successful 
pass (e.g., assertEqual). The Robot DSL unit test cases are specified in a unit test 
script, which itself is a DSL. We have implemented the Robot DSL unit test script 
translator in ANTLR to generate JUnit test cases from the DSL test script. The source 
code mapping for the Robot DSL unit test script can also be generated by adding 
additional semantics to the base DSL grammar (in this case, the grammar of the Robot 
language). The base grammar generates the equivalent Java code for the Robot DSL (see 
Section 3.1) and the additional semantics generate the Java unit test cases for the Robot 
DSL unit test script (see Section 3.2). 

The right side of Figure 10 is the DSL unit test script editor, which shows an actual 
Robot DSL unit test script called TestRobot. The highlighted test case called 
testknight has an expected value that is set as position(1, 2). The function unit 
to be tested is the knight move and the assertion criteria determine whether there is a 
distinction between the expected position and the actual position after knight is 
executed. An incorrect implementation of the knight method is shown in the right side of 



Figure 11 (i.e., line 3 incorrectly updates the robot to position (+1, +1)). When 
the testknight test case is executed on the incorrect knight implementation, the 
expected position value (e.g., <1, 2>) is not equal to the actual position (e.g., <2, 
2>). In this testknight example, the assertion on the x coordinate will fail on the 
incorrect knight implementation, but the assertion to test y will succeed. Consequently, 
the testknight test case is reported as a failure in the Test Result View on the 
left side of Figure 10. The AssertEqual assertion in this DSL unit test script tests 
whether its two parameters are equal. The Test Result View also indicates the total 
number of test cases (in this case 1), the total number of failures (in this case, there was 1 
failure), and the number of run-time error test cases (in this case, there were 0 errors 
causing run-time exceptions). The progress bar that appears in the Test Result 
View indicates there is at least one test case that failed (the bar actually appears red in 
failure or error cases, and green when all test cases are successful). The list of test cases 
underneath the progress bar indicates all the names of the test cases that failed to pass the 
test case (e.g., testknight). 
 

 

Figure 10. Screenshot of Unit Testing Session on Robot Language 

 

Correct knight method 
 

1  begin knight: 
2    position (+0,+1); 
3    position (+0,+1); 
4    position (+1,+0); 
5  end knight: 
 

Incorrect knight method 
 

1  begin knight: 
2    position (+0,+1); 
3    position (+1,+1); 
4    position (+1,+0); 
5  end knight: 
 

Figure 11. Correct and Incorrect Knight Methods 



4.2 Generation of Declarative DSL Test Engine 

In addition to generating a unit test engine for an imperative DSL like the Robot language, 
we also used the DUTF to generate a declarative DSL unit test engine for the FDL. The 
declarative DSL test engine translates the unit test script into unit test cases in JUnit, 
which are specified in the script grammar. Because of the domain-specific syntax of the 
FDL, the DUTF unit test script translator required modification so that it can generate the 
correct unit test cases for FDL in Java. Also in the declarative DSL case, the variable 
mapping from the GPL to DSL is different from the imperative DSL case. In the Robot 
language, a commonly referenced abstraction is the position variable and in the FDL 
an important abstraction is the feature variable, which contains the list of possible 
features up to the current line of execution in the DSL. 

A developer or end-user who uses the FDL often tries to narrow down a design space 
amid a large range of possible configurations. Manually analyzing a large design space 
can be challenging and even infeasible; an automated testing tool that assists in 
determining the correct configuration specification can be very helpful to a developer. A 
screenshot of the unit testing session on a Car FDL program is shown in Figure 12. The 
right side of Figure 12 is the FDL unit test script editor, which shows an FDL unit test 
script called TestCar. The test case called testfeatures has an expected value 
called Expectedfeature that is set as (carbody, manual, highPower, 
electric, pullsTrailer). The expected value has the legitimate car feature 
configuration according to the Car FDL program. The target unit to be tested is all the 
features (from feature 1 to feature 4 in Figure 3) plus one constraint (constraint 1 in 
Figure 3). We introduce another assertion called AssertTrue to assess whether the 
tested unit will return true or false. If it returns true, the AssertTrue assertion will pass, 
otherwise it will fail. An assertion is set to test whether the Expectedfeature is 
contained in the set of possible features after executing all the features and one constraint. 
In the left side of Figure 12, the Test Result View indicates this assertion succeeds, 
so Expectedfeature is one of the possible features. 

 

 

Figure 12. Screenshot of Unit Testing Session on Car FDL 



Figure 13 is another test case called testNumberofFeatures, which is highlighted 
in the Test Result View. The expected number of possible features is 6. The 
targeted testing unit consists of three features (from feature 1 to feature 3 in Figure 3). 
The numberof operator returns the size of a set. An AssertEqual assertion tests 
whether the number of possible features after executing all these three features is 6. In the 
left side of Figure 13, the test result view indicates this assertion fails. The only features 
executed are Car, Transmission, and Engine. There are two options for 
Transmission (automatic and manual), three options for Engine (electric, 
gasoline, and electric/gasoline), and two options for pullsTrailer (with 
or without). The total number of features is actually 12 (2*3*2) rather than the expected 
6, which causes the test case to fail as indicated in the DSL unit Test Result View 
of Figure 13. 

 

 

Figure 13. Screenshot of Unit Testing Session on Car FDL 

5. Lessons Learned, Limitations, and Future Work 

One of the most challenging tasks in creating the DUTF was identifying the differences 
among unit testing between the GPL and DSL levels for each particular mapping. The 
main task of a unit test is to assert an expected variable value against the actual variable 
value when the program is executed. The abstraction mismatch between DSLs and GPLs 
also contributes to the mismatch in test cases. When writing a unit test case at the DSL 
level, one variable in a DSL program may not be equivalent to one variable in a GPL (i.e., 
a DSL variable may be translated into several variables or objects in the generated GPL). 
Moreover, the concept of comparing raw values may not be relevant at the DSL level. For 
example, in the case of the FDL, a software developer may be interested in testing the 
number of all possible configurations, or testing if a particular configuration is present in 



the specified program. In the latter case, the order of particular features in a configuration 
is irrelevant. Hence, a unit test engine should not report a failure if only the order of 
features is different (i.e., the equality assertion at the FDL level is about set equality of 
feature lists). 

By using the DUTF, the development effort to build DSL unit testing tools was 
significantly reduced compared to developing a testing tool for each DSL from scratch. 
DUTF consists of 22 reusable software components implemented in over 3k lines of code. 
The amount of code that was written for each new unit test engine can be used to quantify 
the level of effort required to adapt a unit test engine. Based on the two example DSL unit 
test engines described in this paper for the Robot and FDL languages, on average, less 
than 360 additional lines of code were needed for each new DSL unit test engine (e.g., the 
Robot DSL required two additional classes representing 239 lines of code, and the FDL 
DSL required four additional classes representing 482 lines of code). Most of the 
customized code handles the different scripting languages that were needed for each type 
of DSL (e.g., imperative or declarative). Of course, more complex and feature-rich DSLs 
will likely require additional customization, but the infrastructure of DUTF provides a 
basis for general unit testing concepts that can be reused by different DSL tooling efforts. 

There are opportunities for applying the ideas of this paper to other contexts and 
testing tools: 
 

 Software developers may also be interested in the performance of their DSL 
applications during the execution of their program (e.g., CPU performance 
profiling, memory profiling, thread profiling). A DSL profiler would be helpful 
to determine performance bottlenecks and hotspots during execution. The same 
approach as depicted in Figure 1 can be applied to generate a DSL profiler (i.e., 
the framework’s GPL unit test engine can be replaced by a GPL profiler, which 
monitors the run-time characteristics of the execution environment). The 
framework can use the NetBeans Profiler as the underlying GPL profile server in 
the case when a DSL is generated to Java. The NetBeans Profiler provides basic 
profiling functionalities including CPU, memory and threads profiling, as well as 
basic JVM monitoring. The GPL profile engine could execute the profiling 
commands generated from the re-interpreter inside the framework. The domain 
experts will only see the DSL profiling result view and interact at the DSL level. 
We are currently in the process of completing the DSL profiler architecture. An 
alternative to the NetBeans Profiler is JFluid [10], which could also be integrated 
into the general testing tool framework. 

 Even though our framework implementation is integrated within Eclipse using 
Java-based tools (e.g., jdb and JUnit), we believe the concepts of the framework 
can be generalized and applied to other IDEs (e.g., Microsoft Visual Studio [33]) 
such that other testing tools (e.g., Cordbg or NUnit) can be leveraged for reuse 
when the underlying generated GPL (e.g., C++ or C#) changes. 

 



There remain several open issues that need to be investigated further, such as: 
 
 Embedded DSLs are becoming more popular and represent the case when DSL 

statements are embedded inline within the code of a GPL. From our previous 
experience with generating embedded DSL debuggers [43], we believe the same 
approach described in this paper can apply to unit test engines for embedded 
DSLs. DSL segments mapping to a GPL represent the same situation discussed 
in this paper. GPL segments surrounding embedded DSL statements are already 
in the GPL format and do not require further mapping. The interesting question 
for unit testing embedded DSLs concerns the interaction between the DSL and 
GPL boundaries (e.g., when data defined by a DSL is processed by GPL code). 

 The two DSLs introduced in this chapter were rather simple to implement in 
terms of the source-to-source translation from the DSL program to GPL code. 
These two examples represented a direct translation where text in the DSL had a 
linear correspondence to the generated GPL. However, some source-to-source 
translations of a DSL may have a single DSL construct spread across multiple 
places in the generated GPL code. The challenge is that a more complex 
mapping is needed to track the line numbers between the two abstractions and 
how the test results map back into the DSL perspective. 

6. Related Work in DSL Tool Support 

The End-Users Shaping Effective Software (EUSES) Consortium [13] represents 
collaboration among several dozen researchers who aim to improve the software 
development capabilities provided to end-users. A contribution of EUSES is an 
investigation into the idea of “What You See Is What You Test” (WYSIWT) to help 
isolate faults in spreadsheets created by end-users [7]. More specific to the focus of our 
research, this section provides an overview of related work in the areas of language 
definition framework tools (e.g., ASF+SDF, JTS, LISA, and SmartTools). The following 
related work represents frameworks that can generate many useful language tools, 
however, none of them addresses unit testing for DSLs. 

ASF+SDF is the meta-language of the ASF+SDF Meta-Environment [35], which is an 
interactive language environment to define and implement DSLs, generate program 
analysis and transformation tools, and produce software renovation tools. ASF+SDF is a 
modular specification formalism based on the Algebraic Specification Formalism (ASF) 
and the Syntax Definition Formalism (SDF). ASF+SDF has produced many language 
tools including a debugger. 

The Jakarta Tool Suite (JTS) [3] is a set of tools for extending a programming 
language with domain-specific constructs. JTS consists of Jak (a meta-programming 



language that extends a Java superset) and Bali (a tool to compose grammars). The focus 
of JTS is DSL construction using language extensions that realize a product line of DSLs.  

The Language Implementation System based on Attribute grammars (LISA) [24], [25] 
is a grammar-based system to generate a compiler, interpreter, and other language-based 
tools (e.g., finite state automata, visualization editor). To specify the semantic definition 
of a language, LISA uses an attribute grammar, which is a generalization of context-free 
grammars where each symbol has an associated set of attributes that carry semantic 
information. With each grammar production, a set of semantic rules is associated with an 
attribute computation. LISA provides an opportunity to perform incremental language 
development of an IDE such that users can specify, generate, compile-on-the-fly, and 
execute programs in a newly specified language [17]. 

Another language extension environment for Java is the Java Language Extender (JLE) 
framework [39], which is also based on attribute grammars written in a specification 
language called Silver. The JLE permits extensions to a host language (e.g., Java) to 
incorporate domain-specific extensions. 

SmartTools is a language environment generator based on Java and XML [2]. 
Internally, SmartTools uses the AST definition of a language to perform transformation. 
The principal goal of SmartTools is to produce open and adaptable applications more 
quickly than existing classical development methods. SmartTools can generate a 
structured editor, UML model, pretty-printer, and parser specification. 

These language definition framework tools help domain experts to develop their own 
programming languages and also generate useful language tools for the new languages 
(e.g., language-sensitive editor and compiler). Other researchers are more interested in 
testing methods and the efficient way to generate the unit test cases such as parameterized 
unit testing [34], testing grammar-driven functionality [22], generating unit tests using 
symbolic execution [44], generating test inputs of AspectJ programs [45]. The idea of 
applying formal methods to determine the correctness of DSL programs was discussed in 
[5]. However, there does not appear to be any literature or relevant discussion related to 
unit testing of DSL programs. 

7. Conclusion 

As the cost of software failures rise substantially each year and the number of end-user 
programmers involved in the software development process increases, there is an urgent 
need for a full suite of development tools appropriate for the end-user’s domain. Software 
failures pose an increasing economic risk [15] as end-user programmers become more 
deeply involved in software development without the proper unit test capabilities for their 
DSL applications. The utility of a new DSL is seriously diminished if supporting tools 
needed by a software developer are not available. 



To initiate discussion of testing DSL programs, this paper introduced DUTF, which is 
a novel framework for generating unit test engines for DSLs. The technique is centered on 
a mapping process that associates DSL line numbers with their corresponding 
representation in the generated GPL line numbers. The Eclipse plug-in architecture and 
the JUnit test engine provide the infrastructure and unit testing support needed to layer the 
concept of DSL unit testing on top of pre-existing GPL tools. Although the contribution 
described in this paper is only a first effort with an associated prototype [11], we believe 
that the issue of testing DSL programs and the necessary tool support will become 
increasingly important as a push is made to adopt DSLs in general practice. 
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