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Abstract
The emergence of crosscutting concerns can be observed in various
representations of software artifacts (e.g., source code, models, re-
quirements, and language grammars). Although much of the focus
of AOP has been on aspect languages that augment the descriptive
power of general purpose programming languages, there is also a
need for domain-specific aspect languages that address particular
crosscutting concerns found in software representations other than
traditional source code. This paper discusses the issues involved
in the design and implementation of domain-specific aspect lan-
guages that are focused within the domain of language specifica-
tion. Specifically, the paper outlines the challenges and issues that
we faced while designing two separate aspect languages that assist
in modularizing crosscutting concerns in grammars.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—semantics, syntax; D.3.3
[Programming Languages]: Language Constructs and Features—
classes and objects, data type and structures, frameworks, inher-
itance patterns; D.3.4 [Programming Languages]: Processors—
compilers, debuggers, interpreters, parsing, preprocessors, com-
piler generators

General Terms Algorithms, Design, Languages.

Keywords Aspect-Oriented Programming, Domain-Specific Lan-
guages, grammars, language specification, join point models

1. Introduction
Over the past decade, many aspect-oriented languages have been
proposed, designed and implemented (e.g., AspectC [2], AspectC#
[3], and AspectJ [4]). However, the majority of these efforts are
devoted to general-purpose aspect languages (GPALs), despite the
fact that preliminary work in AOP had its genesis with domain-
specific aspect languages (DSALs) [23]. A DSAL is focused on
the description of specific crosscutting concerns (e.g., concurrency
and distribution) that provide language constructs tailored to the
particular representation of such concerns. Examples of DSALs in-
clude [9, 12, 30, 32]. In comparison, a GPAL is an aspect language
that is not coupled to any specific crosscutting concern and pro-
vides general language constructs that permit modularization of a
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broad range of crosscutting concerns. The majority of DSALs have
been developed for languages that are general-purpose program-
ming languages (GPLs) [30]; i.e., the aspect-language is focused
on a specific concern, but it is applied to a GPL such as Java or
C++. The scope of this paper is focused on the concept of a DSAL
that is applied to a domain-specific language (DSL) [24]; i.e., the
aspect language is focused on a specific concern and applied to a
DSL that also captures the intentions of an expert in a particular do-
main. The distinction is highlighted by the partitioning of the aspect
language (which can be either a GPAL or a DSAL) from the asso-
ciated component language (which can be either a GPL or DSL).
In the DSAL/DSL combination explored in this paper, a different
join point model was needed. This paper discusses several issues
associated with DSALs applied to DSLs, rather than GPLs.

The focus of this paper is in the well-established domain of
programming language definition and compiler generation. His-
torically, the development of the first compilers in the late-fifties
were implemented without adequate tools, resulting in a very com-
plicated and time consuming task. To assist in compiler and lan-
guage tool construction, formal methods were developed that made
the implementation of programming languages easier. Such for-
mal methods contributed to the automatic generation of compil-
ers/interpreters. Several concepts from general programming lan-
guages have been adopted into the formalisms used to specify lan-
guages, such as object-oriented techniques [27]. To achieve mod-
ularity, extensibility and reusability to the fullest extent, new tech-
niques such as aspect-orientation are being used to assist in mod-
ularizing the semantic concerns that crosscut many language com-
ponents described in a grammar [15, 20, 21, 28, 36].

Within a language specification, modularization is typically
based on language syntax constructs (e.g., declarations, expres-
sions, and commands). Adding new functionality to an existing
language sometimes can be done in a modular way by providing
separate grammar productions associated with the extension. For
example, additions made to specific types of expressions within a
language can be made by changing only those syntax and seman-
tic productions associated with expressions. In such cases, a new
feature does not crosscut other productions within the language
specification. However, there are certain types of language exten-
sions (e.g., type checking and code generation) that may require
changes in many (if not in all) of the language productions rep-
resented in the grammar. Because language specifications are also
used to generate language-based tools automatically (e.g., editors,
type checkers, and debuggers) [16], the various concerns associ-
ated with each language tool are often scattered throughout the
core language specification. Such language extensions to support
tool generation emerge as aspects that crosscut language compo-
nents [36]. As such, these concerns often represent refinements
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over the structure of the grammar [5]. This paper shows how appli-
cation of aspect-oriented principles toward language specification
can assist in modularizing the concerns that crosscut the language
grammar.

This paper describes two approaches to integrate AOP with
specifications that describe language grammars. Although the ap-
proaches are both focused on the common domain of language
specification, the two resulting aspect languages apply to different
compiler generators; namely, LISA [26] and ANTLR [1]. LISA re-
lies on attribute grammars and ANTLR uses syntax-directed trans-
lation. Furthermore, LISA specifications enable higher modularity,
extensibility, and reusability through concepts such as multiple at-
tribute grammar inheritance and templates [25]. These differences
among LISA and ANTLR contribute to proposing two DSALs that
are quite different.

The organization of the paper is as follows. Challenges associ-
ated with the design and usage of GPALs and DSALs are discussed
in Section 2. The various issues that are encountered when devel-
oping domain-specific join point models are presented in Section
3. In Sections 4 and 5, two separate DSALs for language definition
(namely, AspectLISA and AspectG) are described. Related work is
summarized in Section 6 followed by concluding remarks in Sec-
tion 7.

2. Challenges Facing General-Purpose and
Domain-Specific Aspect Languages

A DSL is a programming language for solving problems in a par-
ticular domain that provides built-in abstractions and notations for
that domain. DSLs are usually small, more declarative than imper-
ative, and more aligned to the needs of an end-user than general-
purpose languages. Use of DSLs has been adopted for a variety
of applications because of opportunities for systematic reuse and
easier verification [24]. Because of these benefits, DSLs have be-
come more important in software engineering [10, 14]. Moreover,
DSLs offer possibilities for analysis, verification, optimization, par-
allelization, and transformation of DSL code, at a level of special-
ization not available with general-purpose code.

Similar conclusions can be drawn among GPALs and DSALs.
Although GPALs are useful, certain crosscutting concerns are sim-
ply best described using DSALs [9, 30]. More importantly, domain-
specific analysis and verification can be described by DSALs to
prevent the occurence of subtle errors [31]. Yet in other cases,
adding new aspects might produce inefficient code and domain-
specific optimization is needed [19]. Furthermore, current GPALs
(e.g., AspectJ) are not expressive enough to separate all concerns
(e.g., structure-shy concerns [30]).

Clearly, in order to address fully the problem of separation of
concerns, domain-specific solutions are needed. This has been ob-
served also by other researchers. Gray recognized that specific do-
mains will have numerous dominant decompositions and hence dif-
ferent crosscutting concerns [13]. Consequently, different aspect
weavers will be required, even at various levels of abstraction (e.g.,
models). Hugunin defined four key areas of research that can im-
prove the power and usability of AOP [18]: 1) improved separate
compilation and static checking, 2) increased expressiveness for
pointcuts, 3) simpler use of aspects in specialized domains, and
4) enhanced usability and extensibility of AOP development tools.
Currently, AspectJ has initial support, but not completely sufficient,
for particular domains by use of abstract aspect libraries. Not sur-
prisingly, domain-specific aspects are one of the key future research
areas in AOSD.

Several of the challenges of using GPALs can be overcome
by DSALs. However, DSALs also have their own drawbacks. The
most notable challenges of DSALs are: the cost of DSAL develop-

ment and maintenance, inter-operability with other tools, and user
training. One of the most formidable challenges is the extra effort
required to design and implement a DSAL. Without an appropri-
ate methodology and tools, the associated costs of introducing a
new DSAL can be higher than the savings obtained through us-
age. With respect to DSLs, there are several techniques available
to assist in implementation [24], such as: compiler/interpreter, em-
bedding, preprocessing, and extensible compiler/interpreter. In ad-
dition, several tools [22, 26] exist to facilitate the DSL implemen-
tation process. We believe that such tools can also assist in DSAL
design and implementation.

Another disadvantage of DSALs is that some domains have con-
cerns that require several different DSALs to be developed. In such
cases, several DSALs have to coordinate with each other and also
interact with a component language. This imposes additional chal-
lenges in the design and implementation of DSALs, as well as in
user training. It could be argued that it is not feasible to introduce
many DSALs because it could overload the ability of the program-
mers to learn many different languages. However, conscious lan-
guage design enables programmers to program at much higher ab-
straction levels and with less code. Conversely, programmers need
to write more low-level code without DSALs [30].

3. Domain-Specific Join Point Models
When designing a new DSAL, a completely different join point
model (JPM) might be needed as an alternative to the JPM used
by a GPAL like AspectJ. The main issues in designing a JPM for a
DSAL include:

• What are the join points that will be captured in the DSAL?

• Are the DSAL join points static or dynamic?

• What granularity is required for these join points?

• What is an appropriate pointcut language to describe these
joinpoints?

• What are advice in this domain?

• Is extension/refinement only about behavior, or also structure?

• How is information exchanged between join points and associ-
ated advice (context exchange)? Is parameterization of advice
needed?

In specific domains such as context-dependent computing (e.g.,
service-oriented and ubiquitous computing), AOP needs to address
context passing concerns. Several specific approaches have been
proposed such as: contextual pointcut expressions [8], temporal-
based context aware pointcuts [17], and context-aware aspects [33].
Such concerns are more easily addressed through DSALs than
GPALs [7]. A DSAL designer must also consider the issue of
aspect ordering (i.e., how inter-aspect dependencies are handled)
and if there is a need to dynamically add/remove aspects during the
execution.

Another issue to be considered in the design of a DSAL is
the degree that abstraction, reusability, modularity, and extensibil-
ity are needed to specify a crosscutting concern that is domain-
specific. An abstraction is an entity that embodies a computation
[35]. The abstraction principle shows that it is possible to construct
abstractions over any syntactic class, provided the phrases of that
class specify some kind of computation (e.g., function abstraction,
procedure abstraction, and generic abstraction). A GPL provides
a large set of powerful abstraction mechanisms, whereas a DSL
strives to offer the correct set of predefined abstractions. This is
reasonable because a GPL cannot possibly provide the right ab-
stractions needed for all possible applications. Because a DSL has
a restricted domain, it is possible to provide some, if not all, of the
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desired abstractions. Many DSLs do not provide general-purpose
abstraction mechanisms because it is often possible to define a fixed
set of abstractions that are sufficient for all the applications in a do-
main. Hence, we can expect that some DSALs will use fixed and
predefined pointcuts and advice with limited possibility for general
abstraction. On the other hand, a DSAL that is applied to a general-
purpose component language should have more sophisticated con-
structs for pointcuts and advice. For example, pointcuts should be
generic, reusable, comprehensible and not tightly coupled to an ap-
plication’s structure. Tourwe et al. proposed an annotation of in-
ductively generated pointcuts as a solution to this problem [34].

4. AspectLISA
This section describes our investigation into applying aspects to our
own language definition tool called LISA. The first subsection in-
troduces LISA and is followed by a discussion of how AspectLISA
extends a LISA language specification through aspects that cross-
cut the language definition.

4.1 LISA: A Domain-Specific Component Language

LISA [22] is a tool that automatically generates a compiler and
other language related tools from formal language specifications.
The LISA specification notation that is used to define a new lan-
guage is based on multiple attribute grammar inheritance [25],
which enables incremental language development and reusability
of specifications. The LISA specification language consists of reg-
ular definitions, attribute definitions, rules (which are generalized
syntax rules that encapsulate semantic rules), and methods on se-
mantic domains.

The lexical part of a new language definition is denoted by the
reserved wordlexicon. From this part, LISA generates Java source
code that implements a scanner for the defined lexicon. Tokens are
defined using named regular expressions. Each regular expression
has a unique name and can be extended or redefined in a derived
language. In the example below, we have two regular definitions:
Commands andReservedWord. Reserved wordignore is used to
define characters and tokens that are ignored by the scanner (i.e.,
not included in the token list). The syntax and semantic parts of
a language specification are encapsulated into generalized LISA
rules (denoted by the reserved wordrule). LISA follows the well-
known standard BNF notation for defining the syntax of a program-
ming language. Context-free productions are specified in the rule
part of a language definition (e.g.,START ::= begin commands
end). Generalized LISA rules serve as an interface for language
specifications and may be extended through inheritance. A new
language specification inherits the properties of its ancestors and
may introduce new properties that extend, modify or override its
inherited properties. The semantic part of a language specification
is defined by an attribute grammar. Semantic actions must be pro-
vided for every production in thecompute part of a context-free
production. To pass values in the syntax tree, non-terminals have
attributes. Semantic rules (i.e., attribute calculations) are defined in
Java (i.e., the right-hand side of the semantic equation).

In order to illustrate the LISA specification language, the def-
inition of a toy language for robotic control is given below. The
robot can move in different directions (left, right, down, up) and
the task is to compute its final position. An example of the program
is begin down right down end with the meaning{outp.x=1,
outp.y=2}.

language Robot {
lexicon {
Commands left | right | up | down
ReservedWord begin | end
ignore [\0x0D\0x0A\ ] // skip whitespaces

}

attributes Point *.inp, *.outp;

rule start {
START ::= begin COMMANDS end compute {

START.outp = COMMANDS.outp;
// robot position in the beginning
COMMANDS.inp = new Point(0, 0); };

}

rule moves {
COMMANDS ::= COMMAND COMMANDS compute {

COMMANDS[0].outp = COMMANDS[1].outp; // propagation of position
COMMAND.inp = COMMANDS[0].inp; // to sub-commands
COMMANDS[1].inp = COMMAND.outp; }

| epsilon compute { // epsilon (empty) production
COMMANDS.outp = COMMANDS.inp; };

}

rule move {
// each command changes one coordinate
COMMAND ::= left compute {

COMMAND.outp = new Point((COMMAND.inp).x-1,(COMMAND.inp).y); };
COMMAND ::= right compute {

COMMAND.outp = new Point((COMMAND.inp).x+1,(COMMAND.inp).y); };
COMMAND ::= up compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y+1); };
COMMAND ::= down compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y-1); };
}

}

From this language specification, LISA generates highly effi-
cient Java source code that represents the scanner/parser/compiler
of the defined language. Additional information about LISA (in-
cluding software, tutorial, and examples), can be found on LISA’s
web page [22] and in [25, 26].

4.2 AspectLISA: A Domain-Specific Aspect Language

In language specification there are situations when new semantic
aspects crosscut basic modular structure. For example, some se-
mantic rules have to be repeated in different productions; i.e., the
introduction of an assignment statement requires variables, which
imply definition of the environment and its propagation in all the
defined productions. We also identified some other crosscuting con-
cerns, as described in Section 1.

In consideration of the questions stated in Section 3 regard-
ing the JPM for specific domains, join points in AspectLISA are
static points in a language specification where additional seman-
tic rules can be attached. These points can be syntactic production
rules or generalized LISA rules. A set of join points in AspectLISA
is described by a pointcut that matches rules/productions in the
language specification. To define a pointcut in AspectLISA, two
different wildcards are available. The wildcard ‘..’ matches zero or
more terminal or non-terminal symbols and can be used to spec-
ify right-hand side matching rules. The wildcard ‘∗’ is used to
match parts or whole literals representing a symbol (terminal or
non-terminal symbol). Some examples of pointcut specifications
are shown below:

*.* : * ::= .. ;
matches any production in any rule in all languages across the current lan-
guage hierarchy

Robot.m* : * ::= .. ;
matches any production in all rules which start withm in theRobot lan-
guage

Robot.move : COMMAND ::= left ;
matches only a productionCOMMAND ::= left in the rule move of the
Robot language
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Pointcuts in AspectLISA are defined using the reserved word
pointcut. Each pointcut has a unique name and a list of actual
parameters (terminals and non-terminals) that denote the public
interface for advice. An example of a pointcut that identifies all
productions withCOMMAND as the left-hand non-terminal is:

pointcut Time<COMMAND> *.move : COMMAND ::= * ;

In AspectLISA, advice are parameterized semantic rules writ-
ten as native Java assignment statements that can be applied at
join points specified by a pointcut. Advice defines additional se-
mantics (extension/refinement) and does not impact the structural
(syntax) level of a language specification. In AspectLISA, there is
only one way to apply advice on a specific join point due to the
fact that attribute grammars are declarative. The order of semantic
rules is calculated during compilation/evaluation time when depen-
dencies among attributtes are identified. Therefore, applying advice
before/after a join point is not applicable. For the same reason or-
dering of different aspects is not necessary.

Suppose that the Robot language needs to be extended to incor-
porate the concept of time. An example advice for time calculation
that is applied on join points specified by pointcutTime is:

adviceTimeSemantics<C> on Time { C.time=1; }

After weaving takes place, the semantic functionCOMMAND.time=1;
is added to all productions within rulemove. In addition, advice in
AspectLISA can have anapply part for applying predefined se-
mantic patterns such as: value distribution, list distribution, value
construction, list construction, bucket brigade, and propagate value.
These semantic patterns are common in attribute grammars and
represent fixed abstractions. For example, to propagate environ-
ment attributes over an entire evaluation tree, the semantic pattern
bucketBrigadeLeft should be used (inEnv andoutEnv are at-
tributes used to store and propagate the environment).

pointcut All<> *.* : * ::= .. ;

adviceEnvProp<> on All apply bucketBrigadeLeft(inEnv, outEnv) { }

Modularity, reusability and extensibility of language specifica-
tion have been much improved in LISA using multiple attribute
grammar inheritance [25]. In AspectLISA, pointcuts and advice are
also subjects of inheritance. All pointcuts of predecessors can be
used in all ancestors. Pointcuts with the same signature (name and
parameters) as in ancestors can be used but cannot be extended in
inherited languages. Such pointcuts are overriden by default. Ad-
vice inherited from ancestors using theextendskeyword must be
merged with the advice in the specific language. If advice exists in
the inherited parent language, then the semantic functions of the ad-
vice must be merged; otherwise, advice are simply copied from the
inherited language to the current language. Advice can also over-
ride the semantics of its parent using the keywordoverride.

An example of inheritance on advice is shown below. Note that
the pointcut on which this advice is applied is inherited.

advice extendsTimeSemantics<C> {
C.time=1.0 / C.inspeed; C.outSpeed = C.inspeed; }

4.2.1 Aspect Weaving in AspectLISA

The crucial part of every aspect-oriented compiler is an aspect
weaver that is responsible for appending advice code into appro-
priate places described by pointcuts.

Weaving takes place after the initial phase of LISA’s compiler,
which is responsible for parsing the LISA source and generating

the necessary data structures for pointcuts and advice. The main
weaving algorithm is described by Algorithm 1.

Algorithm 1 Main weaving algorithm
methodweaveAll(lastLanguage)
// lastLanguage is last language in hierarchy
Languagelist← allDefinedLanguages
for all L ∈ Languagelist do

L← nextElement(Languagelist)
// if L is not part of language hierarchy the weaving
// in that Language is not necessary
if L is reachable from lastLanguagethen

weave(L)
end if

end for

Weaving starts at the first (parent) language (component) de-
fined by the developer and follows its hierarchy. The same algo-
rithm is applied to each language specification over the entire hier-
archy of languages. The weaving procedure for each user-defined
language is described by Algorithm 2. Note that the lookup method
(pointcutLookup(A, L)) works the same as in most compilers for
object-oriented languages.

Algorithm 2 Weaving algorithm for one Language
methodweave(L)
Adviceset← getAllAdvice(L)
for all A ∈ Adviceset do

A← nextElement(Adviceset)
// advice must not be overriden by none of its successors
if A is not overridenthen

// find appropriate pointcut in current or parrent languages
pointcut← pointcutLookup(A, L);
// find all production rules that match pointcut
productionRules← findProductions(pointcut, L);
for all prodRule∈ productionRulesdo

prodRule← nextElement(productionRules)
// substitute formal parameters of advice with actual
// parameters of pointcut and apply semantic functions
// to the production
addSemanticsToRule(prodRule, A, L)

end for
end if

end for

5. AspectG
This section describes our second investigation into a DSAL for
language specification. The first subsection introduces ANTLR as
the DSL representing the component language. The second sub-
section provides a discussion of AspectG, which is our DSAL that
weaves crosscutting concerns into ANTLR grammars.

5.1 ANTLR: A Domain-Specific Component Language

ANTLR (ANother Tool for Language Recognition) is a parser gen-
erator that provides a framework for constructing various program-
ming language related tools (e.g., recognizers, compilers, and trans-
lators) from grammatical specifications [1]. The ANTLR specifi-
cation language is based on EBNF notation and enables syntax-
directed generation of a compiler. The tokens comprising the lex-
ical part of the grammar for the new language are defined using
named regular expressions. The parser representing the semantic
part of the language specification is defined as a subclass of the
grammar specification and encapsulates semantic rules within each
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grammar production. The semantic actions within each produc-
tion rule are written in a GPL (e.g., Java, C#, C++, or Python).
The Robot language described in Section 4 has been rewritten in
ANTLR and partially provided below. This simple example illus-
trates the ANTLR specification language with semantic rules de-
fined in Java. AspectG follows the DSL implementation pattern us-
ing a pre-processor that serves as a compiler and application gen-
erator to perform a source-to-source transformation (i.e., the DSL
source code is translated into the source code of an existing GPL).
The ANTLR specification of the Robot language translates Robot
code into the equivalent Java code (e.g., Robot.java) that can be
compiled and executed on the Java Virtual Machine.

// The following class represents the Robot parser in ANTLR
class P extends Parser; {FileIO fileio=new FileIO();}
root:(

BEGIN
{
fileio.print("public class Robot");
fileio.print("{");
fileio.print("public static void main(String[] args) {");
fileio.print("int x = 0;");
fileio.print("int y = 0;");
}

commands
END EOF!
{
fileio.print("System.out.println(\"x coord= \" + x +

\" \" + \"y coordinator= \" + y);");
fileio.print(" }");
fileio.print("}");
fileio.end();
}

);
commands:( command commands

|
);

command :(
LEFT {fileio.print("x=x-1;");

fileio.print("time=time+1;");}
|RIGHT {fileio.print("x=x+1;");

fileio.print("time=time+1;");}
|UP {fileio.print("y=y+1;");

fileio.print("time=time+1;");}
|DOWN {fileio.print("y=y-1;");

fileio.print("time=time+1;");});

// The following class represents the Robot lexer in ANTLR
class L extends Lexer;
BEGIN : "begin";
END : "end";
LEFT : "left";
RIGHT : "right";
UP : "up";
DOWN : "down";
// whitespace
WS : ( ’ ’

| ’\t’
| ’\r’ ’\n’ { newline(); }
| ’\n’ { newline(); }
) {$setType(Token.SKIP);} ;

From the above language specification, ANTLR generates Java
source code representing the scanner and parser for the Robot
language. Additional information about ANTLR can be found on
the ANTLR web page [1].

5.2 AspectG: A Domain-Specific Aspect Language

In our past work [36], we noticed that crosscutting concerns
emerged within the grammar of the language specification. In par-
ticular, the implementation hooks for various language tools (e.g.,
debugger and testing engine) required modification to be made to
every production in the grammar. Manually changing the grammar
through invasive modifications proved to be a very time consuming
and error prone task. It is difficult to build new testing tools for each

new language of interest and for each supported platform because
each language tool depends heavily on the underlying operating
system’s capabilities and lower-level native code functionality [29].

We developed a general framework called the DSL Testing Tool
Studio (DTTS), which assists in debugging, testing, and profiling a
program written in a DSL. Using the DTTS, a DSL debugger and
unit test engine can be generated automatically from the DSL gram-
mar provided that an explicit mapping is specified between the DSL
and the translated GPL. To specify this mapping, additional seman-
tic actions inside each grammar production are defined. A crosscut-
ting concern emerges from the addition of the explicit mapping in
each of the grammar productions. The manual addition of the same
mapping code in each grammar production results in much redun-
dancy that can be better modularized using an aspect-oriented ap-
proach applied to grammars. In the case of generating a debugger
for the Robot language, the debug mapping for the Robot DSL de-
bugger was originally specified manually at the Robot DSL gram-
mar level shown below. For example, line 12 to line 18 represents
the semantic rule of the LEFT command. Line 12 keeps track of the
Robot DSL line number; line 14 records the first line of the trans-
lated GPL code segment; line 16 marks the last line of the translated
GPL code segment; line 17 and line 18 generate the mapping code
statement used by the DTTS. These semantic actions are repeated
in every terminal production of the Robot grammar.

10 command
11 :( LEFT {
12 dsllinenumber=dsllinenumber+1;
13 fileio.print(" x=x-1;");
14 gplbeginline=fileio.getLinenumber();
15 fileio.print(" time=time+1;");
16 gplendline=fileio.getLinenumber();
17 filemap.print("mapping.add(newMap(" + dsllinenumber +

",\"Robot.java\"," +
18 gplbeginline + "," + gplendline + "));");}
19 |RIGHT {
20 dsllinenumber=dsllinenumber+1;
21 fileio.print(" x=x+1;");
22 gplbeginline=fileio.getLinenumber();
23 fileio.print(" time=time+1;");
24 gplendline=fileio.getLinenumber();
25 filemap.print("mapping.add(newMap(" + dsllinenumber +

",\"Robot.java\"," +
26 gplbeginline + "," + gplendline + "));");}

The same mapping statements for the RIGHT command appear
in lines 20, 22, and 24 to 26. Although the Robot DSL is simple,
it is not uncommon to have grammars with hundreds of production
rules. In such cases, much redundancy will exist because the debug
mapping code is replicated across each production. Of course,
because the debug mapping concern is not properly modularized,
changing any part of the debug mapping has a rippling effect across
the entire grammar. An aspect-oriented approach can offer much
benefit in such a case. We have created AspectG as a tool to help us
manage crosscutting concerns in ANTLR language specifications.

The AspectG pointcut model can match on both the syntax of
the grammar and the semantic rule within each production (written
in Java). Join points in ANTLR are static points in the language
specifications where additional semantic rules can be attached. A
set of join points in AspectG is described with pointcuts that de-
fine the location where the advice is to apply. A wildcard can be
used within the signature of a pointcut. The wildcard ‘∗’ matches
zero or more terminal or non-terminal symbols to represent a set of
qualified join points. Some examples of pointcut specifications are
shown below:

*.*; matches any production in the entire Robot language

command.*; matches any production in a command production in the Robot language
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Pointcuts in AspectG are defined using the reserved wordpoint-
cut and two keywords (e.g.,within andmatch). Thewithin pred-
icate is used to locate grammar productions at the syntax level and
match is used to define the location of a GPL statement within a
semantic rule. Each pointcut has a unique name and a list of actual
parameter signatures (terminals and non-terminals) and semantic
rules. Considering the following pointcut:

pointcut productions(): within (command.*);

The pointcut calledproductions is defined with the wild card
command.* and matches each join point that is a command pro-
duction in a grammar (e.g., RIGHT). As an example of a pointcut
that combines both predicate types, consider the following:

pointcut count gpllinenumber(): within(command.*) &&

match(fileio.print("time=time+1;"));

The pointcutcount gpllinenumber is a pattern specification
corresponding to command productions having a semantic action
with a statement matching the signaturefileio.print("time=
time+1;"). The advice in AspectG is defined in a similar man-
ner to AspectJ, which brings together a pointcut that selects join
points and a body of code representing the effect of the advice [4].
The advice are semantic rules written as native Java statements that
can be applied at join points specified by pointcuts. Unlike LISA,
in ANTLR the order of GPL statements in semantic rules is very
important. Therefore, in AspectG the ability to apply advice be-
fore/after a join point is necessary, as shown in the example below.

before(): productions() { dsllinenumber=dsllinenumber+1;}
after(): count gpllinenumber() {
gplbeginline=fileio.getLinenumber();}

The before advice defined on theproductions pointcut
means that before the parser proceeds with execution of each
command production, the DSL line number is incremented (i.e.,
dsllinumber=dsllinenumber+1;). Theafter advice associated
with thecount gpllinenumber means that line numbers for the
GPL are updated (i.e.,gplbeginline=fileio.getLinenumber
();) after the parser matches a timer increment (i.e.,fileio.print
("time=time+1;"); ).

The changes in terms of aspects automatically propagate into
the generated parser through the modified grammar productions.
After weaving a grammar aspect and parsing the Robot DSL code,
the new ANTLR grammar can generate the mapping information
that contains the information needed by the DTTS (i.e., each Robot
DSL code statement line number along with its corresponding
generated Java statement line numbers is recorded in the grammar).

5.2.1 Aspect Weaving in AspectG

Unlike AspectLISA’s compiler approach, AspectG uses a program
transformation system (specifically, we use DMS - the Design
Maintenance System [6]) to perform the underlying weaving on the
language specification. The AspectG abstraction hides the details
of the accidental complexities of using the transformation system
from the users; i.e., a user of AspectG focuses on describing the
crosscutting grammar concerns at a higher level of abstraction
using an aspect language, rather than writing lower level program
transformation rules [36]. In AspectG, each of the crosscutting
concerns is modularized as an aspect that is weaved into an ANTLR
grammar using parameterized low-level transformation functions.

We have developed four weaving functions to handle four dif-
ferent types of join points that may occur within a grammar. The
four possible join points provided by AspectG are: before a seman-

tic action; after a semantic action; before a specific statement that
is inside a semantic action; and, after a specific statement that is
inside a semantic action. These joint points are represented in As-
pectG bybeforeandafter keywords within the context of a seman-
tic action or specific statement. Weaving takes place after the initial
phase of AspectG’s compiler, which is responsible for parsing the
AspectG specification and generating the program transformation
rules. The generated program transformation rules provide bind-
ings to the appropriate weaving function parameters corresponding
to the pointcut and advice defined in the aspect language. Algo-
rithm 3 describes the weaving procedure for AspectG. Note that
the algorithm requires two parameters (advice and a join point)
and weaves the advice parameter into the join points designated
by the pointcut predicate. Additional technical details are provided
in [11].

Algorithm 3 AspectG weaving
for all jp ∈ pointcutslist do

for all a∈ adviceslist do
if jp’s name equals a’s pointcut namethen

weave(jp, a)
end if

end for
end for

The actual weaving of the language specification is done by
the DMS program transformation engine according to the different
program transformation rules generated by the AspectG compiler.
The weave method first looks for all potential pointcut positions in
the semantic sections of a grammar. The weaver then back tracks
to the pointcut’s ancestor node type and value in the syntax level
to filter out the unqualified pointcut positions. Finally, the advice is
inserted in the correct position of the grammar specification using
the ASTInterface API provided by DMS, which provides methods
for modifying a given syntax tree to regenerate a new tree structure.

6. Related work
AspectASF [21] is a simple DSAL for language specifications writ-
ten in the ASF+SDF formalism. Only rewrite rules are supported.
Therefore, join points in AspectASF are static points in equation
rules describing semantics of the language. The pointcut pattern
language in AspectASF is a simple pattern matching language on
the structure of equations where only labels and left-hand sides of
equations can be matched. Pointcuts can be of two types: entering
an equation (after a successful match of left-hand side) and exit-
ing an equation (just before returning the right-hand side). Advice
specify additional equations that are written in the ASF formalism.
The AspectASF weaver transforms the original language specifica-
tions by augmenting the base grammar with new concerns (i.e., ad-
ditional equations are appended to appropriate places in the gram-
mar).

An early approach of aspect-orientation in language specifica-
tions is presented in the compiler generator system JastAdd [15].
The JastAdd system is a class weaver: it reads all the JastAdd mod-
ules (aspects) and weaves the fields and methods into the appropri-
ate classes during the generation of the AST classes. This approach
does not follow the conventional join point model where join points
are specified using a pointcut pattern language. However, it can be
seen as inter-type declarations in AspectJ where join points are all
non-anonymous types in the program and pointcuts are the names
of classes or interfaces. Hence, JastAdd uses implicit joint points
while AspectLISA and AspectG use explict joint points described
by pointcuts. Moreover, JastAdd does not enable inheritance on ad-
vice and pointcuts as AspectLISA does.
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7. Conclusion
Domain-specific aspect languages (DSALs) represent a focused
approach toward providing a language that allows a programmer
or end-user to define a specific type of concern. DSALs can be
contrasted with general-purpose aspect languages (GPALs) that
provide a more general language for capturing a broader range of
crosscutting concerns. Within the research on DSALs, much of the
application is centered on specific concerns for a language like Java
or C++. This paper differs from the scope of general research by
describing our investigation into DSALs for DSLs such as language
specification.

The paper summarized the challenges of DSAL development
and presented two separate case studies of different DSALs applied
to two different languages. Future work includes new pointcut pred-
icates that assist in specifying the control flow within a grammar.
Such a predicate would allow aspects associated with various forms
of run-time analysis to be specified and captured.
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