
Debugging measurement systems using a

domain-specific modeling language

Tomaž Kosar∗, Marjan Mernik∗, Jeff Gray◦, Tomaž Kos+

∗University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17, 2000 Maribor, Slovenia

+DEWESoft d.o.o., Gabrsko 11a, 1420 Trbovlje, Slovenia
◦University of Alabama, Department of Computer Science, Tuscaloosa, AL 35487, USA

Abstract

Capturing physical data in the context of measurement systems is a demand-
ing process that often requires many repetitions with different settings. To
assist in this activity, a domain-specific modeling language (DSML) called
Sequencer has been developed to enable the improved definition of measure-
ment procedures. With Sequencer, the level of abstraction has been raised
and sophisticated changes in measurement procedures are now enabled. Al-
though there are numerous DSMLs like Sequencer in the existing literature,
there are some obstacles working against the more widespread adoption of
DSMLs in practice. One challenge is the lack of supporting tools for DSMLs,
which would improve the capabilities of end-users of such languages. For
instance, support for debugging a model expressed in a DSML is often ne-
glected. The lack of a debugger at the proper abstraction level limits the
domain experts in discovering and locating bugs in a model. In this paper,
Sequencer is presented together with debugging facilities (called Ladybird)
that are integrated in a modeling environment. Ladybird supports differ-
ent execution modes (e.g., steps, breakpoints, animations, variable views,
and stack traces) that can be helpful during the debugging of a model. La-
dybird’s primary contribution is in showing the value of error detection in
complicated industrial environments, such as data acquisition in automotive
testing. The paper contributes to a discussion of the implementation details
of DSML debugging facilities and how such a debugger can be reused to
support domains other than the measurement context of Sequencer.

Keywords: Debugging aid, domain-specific modeling languages, graphical
environments, usage experience

Preprint submitted to Computers in Industry January 29, 2014



1. Introduction

Domain-specific languages (DSLs) [1], [2], [3] allow domain experts to
play a vital role in the software development process. Empirical evidence
has shown that productivity increases with DSL adoption when compared
with the traditional code-driven software development process [4], [5] that
uses general-purpose languages (GPLs), such as Java or C++. The adoption
of a DSL raises the level of abstraction [6], [7] and connects the concepts from
the problem and solution domains [8], [9]. Domain experts, who have skills in
the problem domain, but may not have formal training in computer science,
can write their own domain-specific programs to solve a specific need in their
domain [10]. DSLs can be further sub-divided into specification, modeling,
and programming languages [11]. In this paper, we focus on domain-specific
modeling languages (DSMLs) [12], [13], which often use a visual notation
rather than textual representation and remain more expressive at a higher
abstraction level than GPLs.

In measurement systems, both mechanical equipment and measurement
settings have to be tested from various points of view. If traditional software
tools based on GPLs are used, this process can be simplified by using the
prepared test procedures to speed up the testing process and to analyze the
measurement results. However, prepared tests are often insufficient and tests
need to be changed, or even developed from scratch. Therefore, it would be a
significant contribution to support domain experts with the ability to model
measurement procedures on their own. This can be achieved by developing
an appropriate DSML, which is very suitable for the construction of measure-
ment systems [14], where physical data are captured and the conversion of
these results into a digital form is performed [15]. To improve flexibility and
productivity, DEWESoft [16] developed a DSML called Sequencer [17], which
enables domain experts to model and evolve their own measurement proce-
dures without any help from programmers. In Sequencer, the measurement
procedure can be constructed in a textual or visual manner. To the best
of our knowledge, specialized measurement systems [18], [19] do not allow
the construction of measurements to such an extent. Also, existing tools are
adjusted specifically to the type of test and are limited in their flexibility and
usefulness. These tools (when compared with Sequencer) are limited to one
type of hardware vendor, while DEWESoft supports many different types of
hardware from various vendors. Moreover, with existing tools it is impossi-
ble to hide the unimportant details of the measurements (e.g., Sequencer al-

2



lows customizations for specific tests, while specialized measurement systems
usually support limited flexibility of displayed data during measurements).
DEWESoft addresses these shortcomings in Sequencer, where end-users can
adjust the measurement and control procedures, while tailoring them to their
specific needs by writing an additional sequence (measurement procedure).

However, sequences may become complex such that domain experts face
several challenges when trying to detect bugs in the models. Bugs may
occur due to specification errors (e.g., semantic errors) or measurement er-
rors (e.g., hardware malfunction). To facilitate sequence construction, the
domain expert must be empowered with dedicated tools to improve mea-
surement procedures. Usually, DSML tools other than model compilers (i.e.,
transformations from models to some other artifact) are most often not avail-
able. However, the utility of a DSML is seriously diminished if the supporting
tools (e.g., a debugger) needed by a software developer are not available. In
this paper, we describe debugging features in a tool called Ladybird, which
is integrated in the modeling environment Sequencer [17]. The debugging
facilities of Ladybird (e.g., execution modes, steps, breakpoints, animations,
print statements, variable view, and stack traces) enable end-users to simul-
taneously watch multiple models, and during the execution, monitor and
alter the state of a running model. Sequencer, as well as features of Lady-
bird, has been applied to automotive domain1, where the quality of the car
and its parts are subjected to testing procedures.

The remainder of this paper is organized as follows. Section 2 describes
related work on DSMLs, debuggers, and measurement systems. Section 3
highlights the DEWESoft system and gives some details about specific do-
mains where the measurement system has been used. Section 4 explains the
architecture of Sequencer and introduces the details of the domain-specific
modeling language and the modeling tool. Ladybird, Sequencer’s debugger,
is discussed in Section 5 and implementation details of debugging support are
presented in Section 6. A demonstration on a real case scenario is illustrated
in Section 7. Discussion follows in Section 8. Finally, Section 9 provides con-
cluding remarks and summarizes the main features of the Ladybird model
debugger for the DEWESoft measurement system.

1Sequencer has been applied successfully in the automotive industry (e.g., General
Motors).

3



2. Related work

This section provides an overview of related work in the area of model
debuggers and measurement systems.

2.1. An Overview of Model Debuggers

The benefits of using a DSML in software engineering are still not realized
fully because the software development lifecycle using DSMLs is often not
supported by the appropriate tools. As observed in the case of functional
languages, there were several factors that led to the resistance of functional
languages in mainstream development: the lack of debuggers and profilers,
inadequate support by Integrated Development Environments (IDEs), and
poor interoperability [20]. These same factors can all be considered con-
tributing factors for the software industry’s resistance to DSMLs. Hence,
it is crucial that more work is devoted to DSML tooling [21]. In partic-
ular, we are interested in DSML debugging tools. We believe that in the
future, DSML debuggers will be generated automatically from metamodels.
However, we need to gather enough experience and knowledge from the de-
velopment of specific DSML debuggers in order to generalize the case to
support automatic generation. Our work in this paper is a step toward that
direction. Despite the fact that metamodeling tools (e.g., MetaEdit+ [12],
[22], GME [23], EMF [24]) do not automatically generate DSML debuggers,
we will briefly describe GME tool and its capabilities. The situation is bet-
ter for textual DSLs, where some tools have integrated DSL debuggers (e.g.,
MPS [25]).

The GME [23] is a metamodeling tool that is similar in purpose to
MetaEdit+ [12], [22], but differs in its specific use. The metamodel in GME
is depicted with a UML class diagram [26] showing elements of the DSML
and how they can be associated with each other. Numerous DSMLs have
been built using GME (e.g., POSAML [27], PICML, CQML, CUTS [28]).
It is important to note that while these tools (e.g., MetaEdit+, GME) are
advantageous in constructing DSMLs, they do not support model debugging
at a level of abstraction that can be used by most domain experts. Hence,
debugging can be performed at the code level only, but not at the model level.
At most, one can use the modeling tool API for viewing and manipulating a
model’s internal representation, which is not sufficient for most end-users.

Developing a DSL debugger from scratch can be very expensive. There-
fore, Wu et al. [29] proposed a grammar-driven technique to build a DSL

4



debugger, where the debugger could be generated automatically with minimal
additional effort by reusing an existing GPL debugger. However, their ap-
proach is applicable only when a DSL is implemented using source-to-source
translation of a textual language, where a line of DSL code is consecutively
translated into many lines of GPL code. By keeping track of the DSL code
to GPL code translation, a GPL debugger can be reused, but debugger ac-
tions like “step into” and “step over” have to be reimplemented. Wu et al.’s
framework has been extended to generate DSL testing tools automatically,
but with similar limitations [30].

In the case of DSML debugging, relevant works are rare. Mannadiar and
Vangheluwe proposed a conceptual mapping of debugging concepts from pro-
gramming languages to DSMLs [31]. Language primitives (e.g., print state-
ments, assertions, and exceptions) and debugger primitives (e.g., execution
modes, steps, runtime variable I/O, breakpoints, jumps, and stack traces),
which are commonly found debugging facilities in programming languages
were mapped into a DSML debugger, forming a starting point for DSML
debugger development. As a proof of concept, Mannadiar and Vangheluwe
prototyped debugging concepts into a successor of the ATOM3 tool [32].
They also pointed out two different facets of DSML debugging: the debug-
ging of model transformations, and the debugging of domain-specific models.
In our work, special attention will be given to the latter, but initial work in
the former is represented by Hibberd et al. [33]. In our work, debugging
concepts from [31] have been used in the implementation of the Ladybird
debugging tool described in this paper.

Blunk et al. [34] presented an approach for modeling debuggers for a
DSML. Their approach requires a metamodel-based description of the ab-
stract syntax of the language (e.g., defined in the Eclipse Modeling Frame-
work - EMF [35]). Debugging is then described with operational semantics
at the metamodeling level, where possible runtime states are modeled as
part of a DSL metamodel and transitions are defined as a model-to-model
transformation. Blunk et al. demonstrated their approach on breakpoints
by stepping over lines of a DSL designed for voice control. Although this
approach presents modeling of the debugger at the level of the semantic defi-
nition of the DSML, our approach is more similar to EDF (Eclipse Debugging
Framework) [36] where a DSL debugger is implemented manually. Similar to
our approach, execution semantics is transformed to the base language. How-
ever, EDF provides a more generic solution than Sequencer because it defines
a set of interfaces, which the language engineer must implement to develop

5



the debugger for an arbitrary DSL. These interfaces forward user interactions
to concrete implementations that display information in the user-interface.

2.2. Summary of Related Work in Measurement Systems

We previously published a paper about our preliminary work [37], which
provided a formulation of the challenges and an outline of a solution in the
form of the envisioned debugging facilities in Sequencer (this early paper
does not present the ideas behind debugging facilities or implementation
details). Our current work described in this paper is an extension of the
earlier conference paper, containing more in-depth discussion of debugging
functionalities. A core contribution in the current paper is the presentation of
Ladybird’s architecture and implementation details about steps, breakpoints,
animations, variable views, and stack traces as they relate to concepts of
debugging the abstractions in a model.

Sequencer was previously published in [14], which introduced the design,
implementation and usage of the DSML for a data acquisition system. De-
tails on chosen terminology and concepts from the domain of measurement
systems are given in that paper. Also, other parts of the DSML (e.g., run-
time environment and domain framework) are described in [14]. Because this
current paper highlights the debugging facilities in Sequencer, in this paper
we only introduce those details of Sequencer that are needed to understand
the implementation of Ladybird. More details about the complete DSML
can be found in [14].

National Instrument’s LabVIEW [38] is a graphical programming envi-
ronment for construction of a system for data acquisitions. Their graphical
programming language is based on the dataflow concept. The language is
called G and the written programs are called virtual instruments. The basic
building blocks in G are: a block diagram, a front panel and a connector
panel. LabVIEW’s graphical language is very flexible for defining a mea-
surement procedure, but very difficult to start with for someone without de-
velopment knowledge. Labview’s data acquisition system has matured over
the last 30 years. As claimed in [38], graphical programming languages have
evolved toward a “general-purpose programming environment.” This offers
several advantages because it allows the environment to be used in various
domains (e.g., automation environments, robotics, avionics). However, it is
consequently necessary for the user to understand the details of the whole
measurement system. The philosophy in DEWESoft’s product is a bit differ-
ent - the user focus of Sequencer is on the measurement procedure and not

6



on the construction of the measurement system. The users of Sequencer are
allowed to construct a measurement procedure without any additional effort
in a manner that is more intuitive as it relates to the users domain.

3. The DEWESoft measuring system

DEWESoft [16] is a modern measurement product that contains differ-
ent modules like counters, video, vehicle data buses (e.g., CAN - Controller
Area Network and FlexRay [39]), GPS (Global Positioning System) and dig-
ital telemetry interfaces in the aerospace industry [40]. DEWESoft has the
ability to connect the measurement modules of different vendors. Another
powerful feature of DEWESoft is that the captured data between the mea-
surement modules and the measurement client flows via Ethernet networks.
DEWESoft combines all the advantages of a desktop computer (e.g., visu-
alizations, data storage, processing) and is a significant alternative to tra-
ditional measurement instruments and specialized products. DEWESoft is
used in various industries (e.g., automotive, aviation, construction, electrical
and aerospace [41]).

3.1. Measurements in the automotive industry

Measurements in the automotive industry have different purposes, such as
satisfaction of different regulations related to testing safety of a vehicle. For
instance, with DEWESoft one can test technologies such as ABS (Anti-lock
Brake System), ESP (Electronic Stability Control), and ACC (Autonomous
Cruise Control). Those technologies require deep testing before the automo-
bile can be sent to the market. Such systems need to be tested in different
conditions (e.g., weather) and on various polygons (e.g., different ground ba-
sis). Therefore, the process of validating a vehicle is a cycle that contains
many repetitions. An analysis of measured signals with special equipment
supplies vehicle manufacturers with useful information and thereby allows
them to fine-tune their products. In addition to different vehicle manufac-
turers, measurement systems are used by certification authorities that test
the vehicles on the basis of different standards and regulations (e.g., TÜV2 –
Technischer Überwachungs-Verein – the Technical Inspection Association).

The most frequently used tests in the automotive industry are connected
with automotive safety [42]. However, safety is not the only issue that is

2http://www.tuv.com/us/en/index.html

7



tested during the development of a vehicle. There are different regulations
that the product needs to satisfy, for instance noise emissions. Community
noise regulations put stringent requirements on road vehicle noise emissions
(in the European Union, noise emissions of four-wheel vehicles are addressed
by directive 70/157/EEC [43]). Regulations cover the sound emitted by mov-
ing/stationary vehicles, engines and other vehicle parts (e.g., tires, exhaust)
and also noise inside the vehicle (e.g., air conditioning). Many different levels
of vehicle manufacturing have an interest in noise tests. Across the produc-
tion chain, noise tests are also of interest to car component manufacturers.
In a vehicle, every component is a potential source of noise.

3.1.1. “Pass-by” noise test

During presentation of Sequencer’s debugging features, we will use the
“pass-by” noise test, defined by international standards ISO362. In this test,
the vehicle being driven is tested by the noise the vehicle provides to the
environment. During the measurements with DEWESoft, the test driver can
observe velocity, revolutions per minute, temperature and the sound levels
as shown in Fig. 1. The pass-by noise test is started when certain values are
satisfied (e.g., entry speed, acceleration, gust wind speed, air temperature).
At the end of the test with DEWESoft’s measurement system, required pa-
rameters are calculated (e.g., dBA levels, FFT, histogram, order analysis)
and reports are generated as BMP or PDF files, or immediately printed on
paper.

The measurement scenario is defined with two steps. First, a measure-
ment procedure (i.e., for pass-by noise test) as well as display settings (e.g.,
position, instrument type, graph details, and notification panel) are con-
structed by Sequencer. The second step involves loading the model and
setup files when using DEWESoft’s measurement software. After compiling
the model, the generated code is executed. Then, sensors must be selected
(e.g., pressure sensors, temperature sensors, start/stop speed, temperature
limitations, sensors for measuring wheel speeds) and their parameters must
be set. The procedure continues with the entering of vehicle data, such as
the type of vehicle, construction number, and mass of the vehicle. After
entering this data, the measurement procedure is ready to start. During the
measurements, the end-user can observe the user interface as presented in
Fig. 1 with data and graphs, as defined with Sequencer’s model.

8



Figure 1: Driver perspective using DEWESoft and Sequencer

4. Sequencer: A domain-specific modeling language

Fig. 2 shows the architecture of DEWESoft, where two types of Sequencer
end-users are shown. In the first group, there are domain experts who are
engineers that deal with the construction of measurement procedures. Their
task is to model the measurement procedures in Sequencer. The second group
comprises users who are testers using prepared measurement procedures.
They do not have the ability to modify the measurement procedure. For
example, in the automotive measurements, testers are professional drivers.
Sequencer leads them through the measurements and helps to avoid any
testing errors.

The domain framework is in charge of the entire process of the measure-
ment, as it controls DEWESoft and supervises the hardware. The domain
framework is connected with the execution model, which represents an inter-
mediate step between the generation and subsequent execution of the pro-
gram. The execution model is an internal representation of the measurement
procedure. The measurement procedure may consist of three different model
types. The first type is a “main model” and is mandatory in the DSML

9



Figure 2: DEWESoft architecture

for Sequencer, because it starts the measurement procedure. Events (e.g.,
OnTrigger) are the second model type. The use of events is optional in
Sequencer. Custom models are the third model type. These models can
be called “sub-models” and are called by other models or a model of the
same type (custom model). The essence of a custom model is in dividing a
model into two or more sub-models until these become simple enough to be
understood by the domain experts.

The domain expert can choose between two different forms defining a
measurement procedure: visual and textual. In both notations, the domain
expert saves the program to an XML file. Reusability is thereby gained, as
well as the portability of measurement procedures among Sequencer’s users.
Currently, our debugging support is available only for the visual notation of
Sequencer.

10



4.1. Domain concepts

Usually, DSMLs are developed using metamodels that define the abstract
syntax of a DSML. The metamodel includes domain concepts that are used
to model a concrete problem. Further explanation of Sequencer’s metamodel,
as well as domain concepts, can be found in [14]. In this paper, those classes
from the metamodel are listed in Table 1, together with the descriptions
needed to understand the details of the Ladybird debugger implementation.

In Sequencer, there is a need to start external events at a particular
time (e.g., when the brake is pressed, certain parameters need to be cal-
culated). Events interrupt execution of the measurement procedure. As de-
picted in Fig. 2, each sequence can have four event models (OnOpenSequence,
OnTrigger, OnGetData, and OnCloseSequence). Events are modeled inde-
pendently from the main model, but models (even as well as the main model)
share the same concepts (see Table 1).

In addition to concept definition, it is necessary to establish the nota-
tion for the new language. Visual constructs (also called building blocks)
were assigned to classes, which are generally divided into shapes and con-
nections. Each shape belongs to exactly one building block. Each building
block represents an action to be executed. The execution of actions begins
in the starting building block (marked with a circle) and continues with the
connected building block. More information about Sequencer’s concepts can
be found in [14].

4.2. Execution model

The domain framework serves for communication between the hardware
and the rest of the DEWESoft product, and is also responsible for run-
ning the execution model. As described earlier, different models (i.e., main
model, events and custom models) represent the measurement procedure in
Sequencer. Those models are transformed into an execution model that is
a unique representation of the models and can be translated back to the
models at any time in any notation (e.g., textual, visual, XML). In our case,
each notation has its own transformation to an execution model, and vice
versa. But, general principles of the transformations are the same. Each
language construct (e.g., action, wait, delay) is transformed to an execution
block implemented in Object Pascal [44] (DEWESoft is developed in Delphi)
as a class with three main functions: Start(), Stop(), and Execute(). As
may be inferred, the first function starts the execution, the second function

11



Table 1: Sequencers’ classes

Class Description

TAction

Action is the basic concept of Sequencer. It can initialize hard-
ware, start and stop an acquisition, export measured data, print
reports, set different mathematical operations and start many
other settings offered by the DEWESoft product.

TFileManager

The purpose of the “File manager” is to copy, delete, and re-
name files, or to launch executable files with special parameters.
Later, for instance, it can be useful at the end of a measurement
to launch an external program to store measurement data in a
specific format.

TWait

The “wait statement” is defined with a condition and postpones
further execution of Sequencer. An example would be if we wanted
to “wait with the measurement until the car enters the measure-
ment zone.”

TDelay A “delay” causes the measurement to sleep for “n” seconds.

TDecision

A conditional statement helps to define the conditions in the mea-
surement procedure. Conditions may relate to the user’s decision
or a certain expression. Usually, the value of a certain hardware
device (sensor) is tested.

TRepetition
A “repetition statement” provides “n” repetitions of certain parts
of the model.

TCalculation

The calculation is designed to calculate and store values in local
and global variables. It is defined with an embedded DSL lan-
guage. When the formula is calculated, the variable value changes.

TAudioVideo

This feature provides audio or video content that can help during
the test. The tool supports audio files (*.wav, *.mp3), video files
(*.avi, *.mpg) or even an image slideshow presentation (*.ppt).

TMacro
This macro can be used to playback the recorded end-user inter-
actions (mouse, keyboard, touch screen).

TRemoteControl
With this concept, remote devices (e.g., function generator,
shaker) can be controlled via a UART or Ethernet interface.

TForm
The purpose of the “Form” concept is to create and display custom
windows forms.

TCustomBlock
This concept embeds functions, submodels, and subsequences in
the current model.

TConnection The concept “connects” different Sequencer concepts.

12



Figure 3: Execute() function for execution block “Wait for value”

stops the execution, whereas the third function contains the main function-
ality of the execution block (and hence functionality of a particular language
construct). To ensure a good response and synchronization between differ-
ent parts of the DEWESoft product (hardware and software), the execution
block is processed for only a limited period (5 time slices). If a certain action
is not completed within a limited period then it is suspended and goes into
“sleep” mode (for 10 time slices). It continues to execute after that. When
the whole execution block is finished, the Execute() function returns status
“es Finished”. An example of transforming the construct “Wait for value”
is given in Fig. 3, while an example for the construct “Delay” is given in Fig.
4.

The automatically generated code in the Execute() function for the ex-
ecution block “Wait for value” loops through logical expressions (lines 7-16,
variable Conditions). The result of the first logical expression is assigned
to the entire condition result (lines 10-11, variable CondResult). All other
logical expressions are first compared with the logical operators loAnd and
loOr and then combined with previous logical expressions (lines 12-15) for
the condition result. If the result of the condition is true, the function returns
“es Finished”, otherwise it returns “es Continued”.

Figure 4 shows an example for function Execute() for execution block
“Delay”. First, it checks if the delay is greater than one execution slice (line
3). If the result is true, the function waits for the whole execution slice
(line 5). The Sleep function takes an integer number; therefore, function

13



Figure 4: Execute() function for execution block “Delay”

Figure 5: Transformation of Sequencer constructs into execution model

Trunc is used to cut off the decimal part of a number. Also, the number is
multiplied by 1000 to construct the time in milliseconds. In this case, the
function returns status “es Continued”. Otherwise, if the delay is less than
one execution slice (lines 10-14), it waits for the delay time and returns status
“es Finished”.

Transformation between Sequencer’s constructs (e.g., a building block in
the visual notation or sentence in the textual notation) and execution blocks
is one-to-one, as shown in Fig. 5. On the left side of Fig. 5, part of the
event model (Event “OnTrigger”) is visible. It consists of three building
blocks: the first block checks the condition (value of variable “AI 0” must
be greater than 5 - “AI 0” is the first input analog channel, which stands for
acceleration channel), the second block delays execution for 5 seconds, and
the third building block performs the required calculations. Those building
blocks are transformed into three execution blocks (see also Figs. 3 and 4).

14



Figure 6: Sequencer’s modeling environment

4.3. Modeling with Sequencer

Fig. 6 shows the modeling tool, where the main program and events
can be modeled by domain experts. In the modeling tool, building blocks
(e.g., action, wait) are visible on the left side of the user-interface (part one).
Building blocks can be used in the modeling area (part two) using drag
and drop functionality. In part three, the default values of global and local
variables can be set. More specifically, the model in Fig. 6 shows a custom
model where a report for a test-driver is modeled. The test-driver will be
reported with different audio-video content depending on different results
obtained by data acquisition. At the beginning, the sequence waits for a
condition “Wait for value: ‘Run event’> 2” (after a certain number of event
runs, the information is presented on the end-user’s display). After that, the
measurement procedure checks the run status and notifies the testers (e.g.,
AudioVideo: “Failed Velocity”).

Additionally, a domain expert can define the static settings (e.g., compo-
nent positions on an end-user’s display) of DEWESoft in the modeling tool.
Also, custom forms for users can be designed at this level. The form con-
structs (e.g., label, text box, combo box) can be linked to the acquired values

15



Table 2: Problem scenarios suggesting the need for improved debugging support

Problem Description

P1a

During execution, the sequence can fall into an infinite loop. This prob-
lem means that the sequence cannot be stopped. Also, it is impossible
to skip the current building block and proceed with another. Moreover,
it is impossible to pause/resume the execution of the sequence.

P1b

When domain experts run very complex sequences, it is difficult to find
bugs, because bugs can occur in the model or in the measuring equip-
ment. It would be helpful if we could execute the model step-by-step
(i.e., one building block at a time) which would improve control over the
execution.

P2
For improved understanding of the sequence, the domain experts would
prefer some kind of animation at sequence runtime.

P3

In some cases, domain experts would like to stop the execution before or
after a specific building block in the model. In some cases, they would
also like to stop the sequence at a specific trigger (for example, when the
brake pedal is pressed).

P4
Some applications are time critical. One example of such an application
is testing the water heater, wherein the measurement lasts for a long
time.

P5
For faster testing, domain experts often want to have the ability to mon-
itor and alter the values of a running sequence.

from the measurement. Domain experts can use math modules, as well as
subsequent plotting graphs and drafting reports, which can be presented to
users during their execution.

5. Ladybird - debugging support in Sequencer

In Table 2, some limitations from user studies observed by the domain ex-
perts were reported before debugging support was incorporated in Sequencer.
This information was obtained through customer support service and sem-
inars that DEWESoft organizes every year (one session is also about Se-
quencer). The problems regarding realistic applications and requests have
been divided into six different categories.

Most of Ladybird’s features to solve problem scenarios from Table 2 can
be found in Fig. 7, which shows Sequencer during a debugging process. The

16



Figure 7: Debugging mode in Sequencer using Ladybird

first, second, and third parts on Fig. 7 contain various Ladybird features
(e.g., controls, steps, animation, watch list, output view, call stack, and data
breakpoints), while on the right side of the screen (part 4), the domain expert
can observe the execution of the measurement system. More specifically, in
part 4 of Fig. 7, the execution of a “pass-by” noise test is presented. On the
left side, optional parameters of a test can be set, while the right side shows
information of test competition for a specific gear.

In the next subsections we describe functionalities of the Ladybird de-
bugger (available debugging comments and actions), as well as their intended
effects. All of the problems mentioned in Table 2 have been addressed by
new functionalities offered by the Ladybird debugger. We provide examples
with a “pass-by” noise test.

5.1. Execution Modes and Steps

A sequence can be executed in release or debug mode. In release mode,
the domain expert can only play, suspend or stop the sequence. To be able to
use different debugging features, the sequence must be run in debug mode.

17



In this mode, an end-user has the ability to execute the model continuously
or step-by-step (see first part of Fig. 7).

Controls

In order to solve problem P1a, we added the controls “Stop”, “Pause/Play”,
and “Skip”. The first control allows the domain expert to terminate the se-
quence. The second one halts the execution of the sequence. When the
sequence execution is halted, the domain expert can continue execution with
the “Play” control. The “Skip” control allows skipping the current execu-
tion block. In addition, “Skip” can control execution, so that some execution
block waiting for a certain action is simply skipped. For example, in the pass-
by noise test sampling, noise emission values start from one point to another.
It might happen that from unknown reasons sampling data did not stop at
a specific polygon point. With this control, the execution block responsible
for acquiring data can be skipped.

Steps

This feature contains three types of steps: “Step Over”, “Step Into”,
and “Step Out”, which help to solve problem P1b (also in the first part of
Fig. 7). The first control enables the execution of a building block at once,
skipping the sub-model. The second control allows changing the current
scope and enables stepping into a sub-model (custom model). If the “Step
Into” is selected and the user wants to exit from the current context to
the parent model, the “Step-Out” control can be used. This control tells
the debugger to run until the end of the current model (scope) and return
one-level higher. For example, if the pass-by noise test hypothetically has
some strange behavior (e.g., when changing the speed or gear does not affect
acquired values of noise emission) and we do not know the cause, we would
step through the program. We observe the acquired values and local variables
in Sequencer for every step and try to find the problem.

5.2. Animation

Sometimes non-experienced users do not comprehend the meaning of the
returned values by Sequencer. Although they are domain experts and have
domain knowledge, they may not understand the returned values. Therefore,
a visual presentation or animation of the current model state can be a useful
aid in order to make the perception easier and clearer.

18



Even in our DSML, similar problems occurred, so that a new feature in
the form of an animation was developed that solved problem P2. Another
purpose of this feature was to help the domain expert inspect the control
flows of a given model and to understand its behavior. Visualization consists
of a static and dynamic part. The first is a model presentation like in the
modeling tool, whereas the dynamic part is an animation on that model at
runtime (see part two in Fig. 7). For example, during the pass-by noise test
the end user can observe how the measurement procedure is executed. The
user can see the crossing of different polygon points (e.g., driving past the
microphones) and detect the current location in the maneuver.

5.3. Breakpoints

Very complex and complicated sequences are almost impossible to fol-
low using step-by-step features (e.g., problem scenario P3). Therefore, it is
necessary to use other mechanisms. From the GPL languages, this feature
is known as a “breakpoint”, which temporarily suspends the execution of a
program at a certain statement in the code. In Sequencer, the same tech-
nique was used where the breakpoint can be applied to building blocks in
the modeling area of the tool. Domain experts have the ability to specify
when or where the breakpoint should interrupt a normal sequence execution.
The suspension can be considered and determined in two ways: the source
or data breakpoints.

Source breakpoint

The source breakpoint is attached to the building block contained by
the model. The feature also supports associating “pass count”, which en-
ables domain experts to specify an arbitrary number that determines how
many times the breakpoint can be executed before the debugger stops the
execution. Moreover, this breakpoint feature also supports a conditional ex-
pression that determines whether the execution should be halted. This is
useful if we want to halt the execution only in the case when the signal from
the measurement returns a certain value. For example, we would like to stop
the program when a tester enters parameters for the pass-by noise maneuver.
After that we would check if the entered values are assigned correctly in the
variables. In that case, we would add a source breakpoint in the model at the
position where the values are entered. At the stop position in the program,
the variables would be checked.

19



Data breakpoint

The second type is a data breakpoint, where the execution stops when
the value of a local or global variable is changed. For example, in the pass-
by noise test, the test should be made in the 2nd gear. A sequence can be
stopped automatically by a breakpoint when the test-driver makes a change
from one gear to another.

5.4. Print statements

In some cases, debugging in the form of steps and breakpoints is difficult.
It is thus necessary to find other solutions that have no direct impact on
the execution itself. To this end, we use a known GPL technique: “print
statements”, which are generally used to output local and global variables
and to verify that building blocks are executed at certain points of execution.
This information can be observed in the output window and can be stored
directly to the text file. After a long test, the stored values can be studied by
domain experts. For example, during a pass-by noise test we can check noise
emission of different vehicle parts. In such cases, debugging in the form of
steps and breakpoints and following all emission values is difficult (problem
scenario P4).

5.5. Variable View and Stack Traces

In order to solve problem scenario P5, Sequencer provides an option for
changing values of local and global data variables (also called channels) at
runtime. We can monitor various measured signals (e.g., analog, digital,
counter) and the signals that come from different data buses (e.g., CAN,
FlexRay, ARINC 429 and MIL-STD-1553). For example, during debugging
of the pass-by noise test the user can observe local variables from Sequencer
and specific signals that are not present in the end-user GUI (because it is
not important for a measurement test), but could be useful to locate the bug
in the measurement. In addition, this feature allows one to see the model
level of the currently executed building block. The domain expert can see
which of Sequencer’s constructs have led the execution into its current state.
The feature is called “stack traces” and becomes visible when the execution
is suspended.

6. Ladybird’s implementation details

DSLs can be divided into three categories: imperative, declarative and
hybrid [29]. An imperative DSL is centered on assignment expressions and

20



control flow statements, which allow for the changing of the content of cells in
memory at runtime. A declarative DSL is based on stating the relationship
between inputs and outputs. A hybrid DSL is a mixture of the first two.
Each DSL category requires different debugging approaches (e.g., algorithmic
debuggers, declarative debuggers, event-based debuggers, assertion checkers,
and debugging queries). A DSML debugger is situated in a similar position as
a DSL debugger - instead of checking programs, a debugger is used to debug
models. In Sequencer, we solely focus on imperative DSML debuggers. Our
debugging tool (Ladybird) can be used to find modeling bugs at runtime in
a visual manner.

6.1. Modifications of the execution model

In order to implement a debugger for Sequencer, its execution model was
slightly changed. The Ladybird architecture, as illustrated in Fig. 8, shows
how we designed the debugger to achieve our goals. In general, the Lady-
bird debugging architecture has three levels. The DEWESoft measurement
system and Sequencer are in the first level. In this level, we changed the exe-
cution model so that it calls interfaces from the communication components
(on the second level), which are responsible for building internal structures
of significant information needed by the debugger. In this way, those com-
ponents facilitate interaction between Sequencer’s execution model and the
Ladybird debugger (on the third level). For the latter, the following features
were implemented: execution modes, steps, breakpoints, print statements,
model animations, variable views, and stack traces.

6.2. Communication components

Ladybird internally communicates with Sequencer via four communica-
tion components:

1. Source Model Mapping

2. Debugging Actions

3. Execution Response, and

4. Memory Mapping.

The Source Model Mapping Component (SMMC) is a binding process
that indicates the location of the target execution framework code that cor-
responds to a single building block in the source DSML. The main purpose is
to map back from the execution block into Sequencer’s construct. The map-
ping components store the information in an internal representation that

21



Figure 8: Overview of Ladybird’s architecture

contains the model type, group model number, building block number and
current time slice in the framework. The model type can be the main model,
custom model and event model. The second element is a group model num-
ber and indicates the unique number for the custom and event model. The
main model is always unique; therefore, the group model number is always
“0”. The group model number for an event model represents OnGetData

(unique value “0”), OnTrigger (unique value “1”), OnOpenSequence (unique
value “2”) or OnCloseSequence (unique value “3”). Custom models receive
a group model number with regard to the sequence of their occurrence (the
first custom block receives unique value “0” and last custom model “n-1”).
The third element is a building block number that is a unique value for the
building block from the model. The last element presents the slice num-
ber, which is the current execution’s position in the framework, where the
programming pointer is indicated. Note that execution blocks are processed
in time slices (maximum of five time slices), then they go into sleep mode
(maximum of ten time slices), when the domain framework executes other
operations (e.g., data acquisition). If a certain execution block is not com-
pleted within a limited number of slices, it is suspended and continues to
execute later.

In such a manner, using the SMMC component, it is always possible to
map an execution block back to a Sequencer construct. Fig. 9 shows an
example of how to map the current execution block in the framework to the

22



Figure 9: Source Model Mapping in the Ladybird tool

DSML construct, and shows the same event model as Fig. 5. The model
mapping array of a current building block consists of the following values:
Event type, “1” as unique Group ID, “I+1” as current block and the slice
number “0”.

The Debugging Actions Component (DAC) consists of an interface be-
tween the domain framework and the Ladybird debugger. This mechanism
ensures the termination, suspending, skipping or resumption of the current
executable model. The DAC interface has four commands that impact the
execution of the program: SuspendNextSlice(), ResumeCurrentSlice(),
GoToNextBlock() and TerminateProgram(). The first command performs
the current slice and suspends the execution of the next slice if it exists.
The opposite of the first command is the ResumeCurrentSlice() command,
which continues the execution. The third command performs the current
slice and then jumps to the next execution block in the queue. The com-
mand TerminateProgram() stops the execution of the entire program.

The Execution Response Component (ERC) ensures that the debugging
tool knows when and how the execution of the current program was per-
formed. In general, the domain framework informs the debugging tool to
send special messages such as MSG NEXT SLICE and MSG NEXT BLOCK. The
first and second messages indicate that the previous slice/block has been
performed and that the next slice/block is ready to be performed.

In addition to the previously described components, the debugging tool
also needs to have access to the memory, which requires a Memory Mapping
Component (MMC). It allows the observation of changes to global or local
variables at runtime. Moreover, the MMC interface has been constructed in

23



such a way that the Ladybird debugger can get/set all the information of
the acquired signal (e.g., signal type, sample rate, resolution), which helps
to construct a precise debugging tool.

6.3. Debugger implementation

In this subsection, the individual implementation of several debugging
features is explained. The communication components (Section 6.2) serve to
control the execution of the specific debugging features. This is achieved us-
ing message passing between specific debugging features and communication
components.

6.3.1. Execution Modes and Steps

Controls

The fundamental functionalities in our debugging tool represent controls
such as Play/Pause, Stop and Skip. These functionalities help us to have
impact over the program execution. The algorithm for those functions is sim-
ple and all functions require communication with the DAC component. The
playing and pausing commands simply call functions ResumeNextSlice()

and SuspendNextSlice(), which suspend/resume the measurement proce-
dure. Stopping a command presents immediate termination of the program
and the function TerminateProgram() should be called. The Skip command
uses the GoToNextBlock() function.

Steps

Step algorithms in the Ladybird tool can be performed only if the execu-
tion is suspended. These algorithms first send the ResumeCurrentSlice()

command in the DAC and wait until the debugging tool gets the message
MSG NEXT BLOCK, which means that the next building block is ready to be
performed (in Fig. 5, first block called “Wait for value” would be resumed
and the next block called “Delay” would be ready to be performed). After
that message, the tool checks the condition that is different for each stepping
type (e.g., “Step Over” has to check if the building block is not in the new
sub-model via the SMMC mechanism). If the above condition passes, the
algorithm sends the command SuspendNextSlice() (in our example, the
second block would be suspended) and waits for the next end-user interac-
tion. Otherwise, the tool waits for the next ERC message. The sequence
diagram for the “Step Over” interaction is shown in Fig. 10.

24



Figure 10: Sequence diagram for “Step Over” interaction

6.3.2. Animation

Fig. 11 shows how the animation is handled by the ERC messages. On
those messages, the animation refreshes the status and repaints the preview
panel. In our case we are using MSG NEXT SLICE, which more precisely indi-
cates an animation that the domain expert can observe so that the model’s
behavior is clear. Moreover, the animation uses an SMMC component, which
helps to determine the current execution block in the framework.

6.3.3. Breakpoints

Fig. 12 shows part of the implementation of the source breakpoint, which
is written in the Delphi programming language [44]. The written function
is invoked when it receives the message (line 7) that can check whether it is
necessary to stop the implementation of the sequence. This message is ob-
tained only once before the first slice would be performed and for that reason,
the execution block cannot be interrupted during the execution. First, we go
through each breakpoint (line 9) and check if the current source point corre-
sponds to a specific breakpoint (lines 12-17), where FSMMF.CurrEx[0] rep-
resents a source point’s model type, FSMMF.CurrEx[1] represents the group
model number, etc. (see Fig. 9, again). If the condition is a success, we
increase the current pass count (line 19) and check the new pass count (20).

25



Figure 11: Sequence diagram for animation

Figure 12: Part of the source breakpoints implementation

After that we call a function (line 23) to stop the framework execution pro-
cess.

6.3.4. Print statements

This algorithm works exactly like the algorithm for source breakpoints.
The difference between the algorithms is only in the fact that, in the Print
algorithm, the condition does not suspend the execution, but logs output val-

26



Figure 13: Sequence diagram for printing trace information

ues. Fig. 13 shows the sequence diagram for the print statement algorithm.
First, this algorithm waits to receive ERC message MSG NEXT BLOCK. On
that message, the algorithm checks if the current source point corresponds
to a specific print statement through the SMMC component. After that,
a condition (e.g., expression, pass count, and expected results) needs to be
checked. If the condition status is passed, the print statement is displayed
on the screen or stored into the text file.

6.3.5. Variable View and Stack Traces

Fig. 14 shows the sequence diagram demonstrating how a variable can
be changed by a domain expert in the execution model. During refresh time,
when the variables are updated, the Variable View requires all global and
local variables (GetAllVariables()) via the MMC component. The current
acquired values from memory can be shown in the Variable View where
the domain expert can change the value of the variable. This interaction
calls function SetVariableValue(), which sets the new value in memory.
Moreover, at the same time the stack traces allow the domain expert to see
the current position in the model. This algorithm requires the execution
path (stack) from the SMMC.

27



Figure 14: Sequence diagram for Variable View

7. A demonstration of Ladybird

The debugging tools in traditional software development environments
can assist programmers and help to make them more productive [45]. We
have found the same to be true with the Ladybird debugging features. Lady-
bird can increase the quality of models by helping end-users find and correct
errors. Those errors that occur during measurement can now be minimized
during debugging. One concrete example where Ladybird was used to find
and correct an error is given further in this section.

Even before Sequencer, DEWESoft’s users could add new functionality in-
dependently (via a plug-in) and control DEWESoft itself through the DCOM
interface. However, comparing a DCOM application of pass-by noise test
with a program in Sequencer in Table 3 shows that the productivity of end-
users increased rapidly when using Sequencer. Our observations have shown
that end-users can develop applications faster, while the program length has
been reduced in some cases by a factor of 20.

We noticed that after release of DEWESoft 7.0, when Sequencer was in-
corporated in the measurement software, the number of errors decreased [17].
However, there were situations where end-users still had problems with de-
tecting errors and finding the solutions. Therefore, we decided to implement
the Ladybird debugger, which works at the level of the domain, to improve
end-user comprehension of information received through debugging facilities.
One typical example where end-users had a problem discovering an error was
the following: when some signal returned by the measurement system had a
different value than expected, users could not distinguish whether this value

28



Table 3: Comparison of Sequencer application with DCOM applications in LOC

Measurement procedures DCOM Application Sequencer program

Pass-by noise test 541 30

Double lane-change test 329 16

Functional Safety test 347 19

Lane departure test 336 17

was connected with a failure on the measured object, or with an improper
measurement equipment setting. Such a problem was solved with the use of
Ladybird. In the real case scenario, we first set the hardware and software
for the pass-by noise test, and then we tested the whole measurement sys-
tem. During the initial test, we found that some optical signal had the same
values during measurement. To discover the problem, we started debugging
when the car started moving and then in a step-by-step manner we executed
the testing procedure. However, step-by-step execution was not convenient
when we wanted to observe the speed value. Therefore, we changed the de-
bug mode from step-by-step execution to (usual) debug mode execution. In
this case, the current blocks and the values of variables were stored in a text
file.

In our case, we applied the following procedure for the detection of the
bug. We used the data breakpoint where we set the condition that the
sequence will stop when the value of the variable “velocity” was higher than
10 km/h. After that, we executed a step-by-step sequence that monitored
variables until the velocity was higher than the entered speed, when the
starting line optical signal was triggered on the raising edge. Then, we added
the print block and set it to store the result of the values of the current
variables. During debugging, we discovered that the optical sensor was not
plugged in correctly, because the values were the same even if we interrupted
the measurement of the vehicle at the start line. Fig. 7 shows the debugging
mode in Sequencer for a measurement procedure for the pass-by noise test.
The first part of the screenshot marks the step controls. The second part
in Fig. 7 shows the animation where the domain-expert can observe the
progression of the model execution. The watch list, output view, call stack,

29



and data breakpoints are shown in the third part. On the right side of
the screen, the domain-expert can observe the execution and result of the
measurement system (part four).

8. Discussion

In this section, the experience of developing a DSML and its debugger are
introduced. Firstly, several details of Sequencer DSML are discussed. Then,
Ladybird’s development effort is summarized. At the end of this section, we
discuss some ideas on how to generalize the debugging features from Ladybird
so that the implementation can be reused for other DSML debuggers.

8.1. Developing a DSML with conventional techniques

Although the use of MDE tools (e.g., MetaEdit+, GME, EMF) has been
shown to be effective in many cases [46], [27], in our case, these tools could
not be applied for the following reasons. First, the integration of Sequencer
DSML with DEWESoft (a massive product containing over 900,000 LOC,
and developed in more than 50 engineer years) was challenging. One of the
requirements was that software remains in one form – external use of a meta-
modeling environment was not an option. Therefore, connecting DEWE-
Soft’s base language (Delphi), with the language of a metamodeling environ-
ment (provided by a metamodeling tool), would be a demanding task. A
second reason is the language of the generated code by metamodeling tools –
only those metamodeling tools would be appropriate that support generation
of Delphi code (if we eliminate source-to-source transformation and similar
solutions). Most of the MDE tools mentioned previously offer support for
DSML development, but fail to provide assistance for DSML debugging.

Currently, Sequencer contains over 24,000 LOC, which provides imple-
mentation support for the debugger and other features of Sequencer DSML.
Developing a DSML with a conventional technique required additional imple-
mentation effort, because we have implemented the object-oriented structure
that represents classes in the metamodel. However, this represents just 5.9%
of Sequencer’s code, because the semantics (transformations) needed to be
written in both cases. Of course, with metamodeling tools the modeling tool
is generated automatically, but in our case we had to implement the editor
manually - this represented 24.2% of Sequencer’s code. Overall, the con-
ventional technique for implementation of a DSML required approximately
7,000 LOC which could be generated when using MDE tools. However, we

30



believe that the implementation of the runtime execution environment al-
lowed us to implement the debugger facilities more easily. Because current
metamodeling tools do not support the development of debuggers at such
a modeling level, the implementation of the debugger inside or outside of a
metamodeling tool can be a very challenging task.

8.2. Debugger development effort

The Ladybird debugger was implemented after Sequencer was deployed
to market. The customers’ need for better understanding of data acquisition
results led the DEWESoft team to the decision to develop the debugging
support. Ladybird’s implementation was done in three engineering months.
Since the first release, updates were introduced, which are not counted to-
wards the development time. Ladybird contains over 2.5 kLOC, which repre-
sents almost 10.5% of Sequencer. The Ladybird debugger was developed by
the same engineers who designed the Sequencer DSML. Those engineers had
no previous experience in implementing a debugger for a DSML. These facts
certainly have influenced the development time of these tools. The time of de-
velopment and the debugger’s size in LOC must be considered with caution.
Other domains might differ substantially, reflecting the different needs of the
domains, customers and underlying framework, resulting in quite possibly a
different implementation effort.

8.3. Generalization of debugging features

In general, debugging support was developed to help experts detect er-
rors in their measurement procedures. Because the debugger is implemented
separately from the underlying DSML, most of the concepts implemented
(execution modes, steps, controls, brakpoints, etc.) can also be generalized
to other imperative languages (except for animation, where domain-specific
constructs are animated). In that case, some minor changes have to be in-
troduced to Ladybird. Language engineers should partially re-implement
Ladybird’s communication components: DAC, ERC, MMC and SMMC,
that link a language with its debugger. For instance, in DAC functions
SuspendNextSlice(), ResumeCurrentSlice(), GoToNextBlock(), and
TerminateProgram(), the model execution should be re-implemented for the
new language domain. Component ERC should return correct messages when
the individual block or slice is performed. In SMMC, the language engineer
would have to change the linking table (that connects DSML constructs and
execution blocks). In MMC, methods Get and Set should be implemented

31



again to return values of local and global variables. Note that actions and
message sequences (function calls) inside communication components remain
almost unchanged. This high-level logic can be reused completely in the deb-
buger implementation of another DSML. However, those assumptions need
a deeper analysis and further studies to confirm our beliefs, which could be
a subject of our future research studies.

9. Conclusion

Although the domain experts we observed were able to create a measure-
ment procedure quickly and easily in Sequencer, they encountered several
problems (see Table 2). To support their development in Sequencer and fur-
ther improve user productivity, additional tool support was necessary. This
paper presents the debugging features in Sequencer. The modeling environ-
ment offers control features, such as model step-wise execution, breakpoint
functionality and model behavior animation. With the Ladybird debugger, it
is also possible to simultaneously watch multiple models and, during their op-
eration, monitor and alter local and global variables. From our observation,
debugging tools are essential for a DSML to be successful. New tools (e.g.,
debuggers) that are common in traditional IDEs need to be more present in
DSML modeling environments.

10. Acknowledgment

This work was partly sponsored by the European Social Foundation.
Moreover, we would like to thank DEWESoft co-workers who contributed
to a discussion of DSML problems. This work was also sponsored in part by
NSF CAREER grant CCF-1052616.

References

[1] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: An an-
notated bibliography, ACM SIGPLAN Notices 35 (6) (2000) 26–36.

[2] M. Mernik, J. Heering, A. Sloane, When and how to develop domain-
specific languages, ACM Computing Surveys 37 (4) (2005) 316–344.

[3] M. Fowler, Domain-Specific Languages, Addison Wesley, 2011.

32



[4] T. Kosar, N. Oliveira, M. Mernik, M. J. Varanda Pereira, M. Črepinšek,
D. da Cruz, P. R. Henriques, Comparing general-purpose and domain-
specific languages: An empirical study, Computer Science and Informa-
tion Systems 7 (2) (2010) 247–264.

[5] T. Kosar, M. Mernik, J. Carver, Program comprehension of domain-
specific and general-purpose languages: Comparison using a family of
experiments, Empirical Software Engineering 17 (3) (2012) 276–304.

[6] D. S. Wile, Supporting the DSL spectrum, Journal of Computing and
Information Technology 9 (4) (2001) 263–287.

[7] S. Mauw, W. Wiersma, T. Willemse, Language-driven system design, In-
ternational Journal of Software Engineering and Knowledge Engineering
6 (14) (2004) 625–664.

[8] C. Elliott, An embedded modeling language approach to interactive 3D
and multimedia animation, IEEE Transactions on Software Engineering
25 (3) (1999) 291–309.

[9] S. Thibault, R. Marlet, C. Consel, Domain-specific languages: From
design to implementation application to video device drivers generation,
IEEE Transactions on Software Engineering 25 (3) (1999) 363–377.

[10] S. Peyton Jones, A. Blackwell, M. Burnett, A user-centred approach
to functions in Excel, in: Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming (ICFP), 2003, pp.
165–176.

[11] B. Bryant, J. Gray, M. Mernik, Domain-specific software engineering,
in: Workshop on the Future of Software Engineering Research (FoSER),
2010, pp. 65–68.

[12] S. Kelly, K. Lyytinen, M. Rossi, MetaEdit+: A fully configurable multi-
user and multi-tool CASE and CAME environment, in: Proceedings
of the 8th International Conference on Advanced Information Systems
Engineering (CAiSE), 1996, pp. 1–21.

[13] J. Sprinkle, M. Mernik, J.-P. Tolvanen, D. Spinellis, Guest editors in-
troduction: What kinds of nails need a domain-specific hammer?, IEEE
Software 26 (4) (2009) 15–18.

33



[14] T. Kos, T. Kosar, M. Mernik, Development of data acquisition systems
by using a domain-specific modeling language, Computers in Industry
63 (3) (2012) 181–192.

[15] J. Knez, M. Tuma, G. M. Smith, A new approach to measurements -
the PC instrument, Sound and Vibration 36 (5) (2002) 16–20.

[16] Data acquisition software DEWESoft 7, available at
http://www.dewesoft.com/.

[17] T. Kos, T. Kosar, J. Knez, M. Mernik, From DCOM interfaces to
domain-specific modeling language: A case study on the Sequencer,
Computer Science and Information Systems 8 (2) (2011) 361–378.

[18] VBOXTools Software, available at http://www.racelogic.co.uk/.

[19] Corrsys-datron, available at http://www.corrsys-datron.com/.

[20] P. Wadler, Why no one uses functional languages, ACM Sigplan Notices
33 (8) (1998) 23–27.

[21] J. Gray, K. Fisher, C. Consel, G. Karsai, M. Mernik, J.-P. Tolvanen,
DSLs: The Good, the Bad, and the Ugly, in: Companion to the 23rd
ACM SIGPLAN conference on Object-oriented Programming Systems
Languages and Applications (OOPSLA), 2008, pp. 791–794.

[22] S. Kelly, J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code
Generation, John Wiley & Sons Inc., 2008.

[23] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thoma-
son, G. Nordstrom, J. Sprinkle, P. Volgyesi, The generic modeling en-
vironment, in: Proceedings of the IEEE Workshop on Intelligent Signal
Processing (WISP), 2001.

[24] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse
Modeling Framework, 2nd Edition, Addison-Wesley, 2008.

[25] MPS, available at http://www.jetbrains.com/mps/.

[26] G. Booch, J. Rumbaugh, I. Jacobson, Unified Modeling Language User
Guide, 2nd Edition, Addison-Wesley, 2005.

34



[27] A. Gokhale, D. Kaul, A. Kogekar, J. Gray, S. Gokhale, POSAML: A
visual modeling language for middleware provisioning, Journal of Visual
Languages and Computing 18 (4) (2007) 359–377.

[28] J. White, J. Hill, J. Gray, S. Tambe, A. Gokhale, D. Schmidt, Improving
domain-specific language reuse with software product line techniques,
IEEE Software 26 (4) (2009) 47–53.

[29] H. Wu, J. G. Gray, M. Mernik, Grammar-driven generation of domain-
specific language debuggers, Software Practice and Experience 38 (10)
(2008) 1073–1103.

[30] H. Wu, J. Gray, M. Mernik, Unit testing for domain-specific languages,
in: Proceedings of the International Federation for Information Pro-
cessing: Theory and Practice 2 (IFIP TC 2) Working Conference on
Domain-Specific Languages, 2009, pp. 125–147.

[31] R. Mannadiar, H. Vangheluwe, Debugging in domain-specific modeling,
in: Proceedings of the 3rd International Conference on Software Lan-
guage Engineering (SLE), 2010, pp. 276–285.

[32] J. de Lara, H. Vangheluwe, M. Alfonseca, Metamodeling and graph
grammars for multi-paradigm modelling in AToM3, Software and Sys-
tems Modeling 3 (3) (2004) 194–209.

[33] M. Hibberd, M. Lawley, K. Raymond, Forensic debugging of model
transformations, in: Proceedings of International Conference on Model
Driven Engineering Languages and Systems (MODELS), 2007, pp. 589–
604.

[34] A. Blunk, J. Fischer, D. A. Sadilek, Modelling a debugger for an im-
perative voice control language, in: Proceedings of the International
Conference on System Design Languages, 2009, pp. 149–164.

[35] Eclipse Foundation: Eclipse Modeling Framework (EMF), available at
http://www.eclipse.org/modeling/emf.

[36] Eclipse Foundation: Eclipse Debugging Framework, available at
http://help.eclipse.org/ ganymede/index.jsp?topic=

/org.eclipse.platform.doc.isv/guide/debug.htm.

35



[37] T. Kos, T. Kosar, M. Mernik, J. Knez, Ladybird: Debugging support
in the Sequencer, in: Applications of mathematics and computer engi-
neering, WSEAS Press, 2011, pp. 135–139.

[38] C. Elliott, V. Vijayakumar, W. Zink, R. Hansen, National instruments
labview: A programming environment for laboratory automation and
measurement, Journal of the Association for Laboratory Automation
12 (1) (2007) 17–24.

[39] FlexRay, available at http://www.flexray.com/.

[40] 2009 product of the year winners, NASA Tech Briefs 34 (4) (2010) 10.

[41] P. M. Pachlhofer, J. W. Panek, D. J. Dicki, B. R. Piendl, P. J. Lizanich,
G. A. Klann, Advances in engine test capabilities at the NASA Glenn
Research Center’s Propulsion Systems Laboratory, in: Proceedings of
the American Society of Mechanical Engineers (ASME), 2006, pp. 101–
108.

[42] R. Bosch, Safety, Comfort and Convenience Systems, John Wiley & Sons
Inc., 2006.

[43] Automotive Directive 70/157/EEC, available at
http://ec.europa.eu/enterprise/sectors/automotive/

documents/directives/directive-70-157-eec en.htm.

[44] W. Rachele, Object Pascal with Delphi, Wordware Publishing, Inc, 2000.

[45] S. J. Hanson, R. R. Rosinski, Programmer perceptions of productivity
and programming tools, Communications of the ACM 28 (2) (1985)
180–189.

[46] J. Luoma, S. Kelly, J.-P. Tolvanen, Defining domain-specific modeling
languages: Collected experiences, in: Proceedings of the 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM), 2004.

36


