

Programming by Voice:
A Hands-Free Approach for
Motorically Challenged Children

Abstract
This paper introduces a voice-driven tool applied to an
Initial Programming Environment (IPE), which gives
motorically challenged individuals the opportunity to
learn programming skills; in particular, our project
allows programming by voice within Scratch. Although
the native Scratch environment allows users to create a
program by arranging graphical blocks logically, such
visual languages are completely dependent on the use
of a mouse and keyboard. This modality of interaction
limits users based on physical abilities. Our solution is a
tool, called Myna, which is a voice-driven Java
application executed parallel to Scratch. Myna
processes voice commands from the user, interprets
those commands according to a pre-defined grammar,
and simulates synonymous actions of a mouse and
keyboard within Scratch. The resulting environment
assists those with a motor disability (particularly young
children) in learning the joy of programming. This
extended abstract describes the motivation behind the
project, a technical description of Myna, and defines the
current work in progress.

Author Keywords
Scratch; Accessibility; Speech; Modeling

ACM Classification Keywords
B.4.2 Input/Output Devices; H.5.2 User Interfaces

General Terms
Human Factors; Languages; Modeling

Copyright is held by the author/owner(s).

CHI 2012, May 5–10, 2012, Austin, TX, USA.

ACM 978-1-4503-1016-1/12/05.

Amber Wagner

Dept. of Computer Science

University of Alabama

ankrug@bama.ua.edu

Ramaraju Rudraraju

CIS Department

UAB

ramaraju@uab.edu

Srinivasa Datla

CIS Department

UAB
srini.datl@gmail.com

Avishek Banerjee

CIS Department

UAB

avi1986@uab.edu

Mandar Sudame

CIS Department

UAB

mandars@uab.edu

Jeff Gray

Dept. of Computer Science

University of Alabama

gray@cs.ua.edu

Introduction
This extended abstract describes our efforts to use
voice input to drive Initial Programming Environments
(IPEs) such as Scratch [7]. Scratch is a graphical
programming environment developed at MIT and used
in many outreach efforts to children [1], which allows
users to create programs by dragging and dropping
blocks of code. By using a graphical approach, Scratch
prevents users from having to concentrate on syntax;
however, the Scratch environment is based on the
WIMP metaphor (Windows, Icon, Menu and Pointing
device) [8]. The event-driven WIMP interfaces have
been a dominant input modality for desktop
applications and user interfaces for several decades.
WIMP provides ease of use, but assumes dexterity of
human hands to use a mouse and keyboard. The
dependence on a mouse and keyboard poses limitations
for those who have motor disabilities and are not able
to exhibit the level of agility needed to manipulate and
control such devices. This limitation unnecessarily
excludes a significant portion of our population (see
Table 1) from having access to many different desktop
applications, including IPEs.

In this extended abstract, we describe Myna1, which is
a tool that runs parallel to Scratch and provides a voice
interface that can be used to specify programming
tasks. In Myna, the voice-driven interface enables a
user to perform basic functionality (e.g., navigation
across the Scratch menu structure, dragging
programming blocks into the script editor), as well as
additional macro commands that can be used to
simulate all of the operations that could be performed
in Scratch with a mouse and keyboard. The project has
investigated several common interaction patterns that
can be imitated through shortcuts to minimize the
amount of speaking required (vocal strain is an
important issue in voice-driven programming
environments such that economy of expression is vital)

1 Myna is named after the species of birds that are well-known
for their imitative skills.

[3]. This project unites ideas of human-computer
interaction with Computer Science education to provide
an assistive environment that allows a new audience to
learn computational thinking.

The next section describes the support provided by
Myna to vocally navigate through Scratch and the
commands that can be used to insert blocks into a
Scratch program. The overall architecture of Myna is
then summarized along with a description of the
technique we used to build the language grammars
needed to integrate Myna with a voice recognition
engine. The Current Work section describes how the
project has progressed and an explanation of the next
phase of the project. The paper concludes with a
summary and description of remaining work.

Navigating By Voice
Wobbrock et al. [9] defined the concept of “ability-
based design.” Rather than focus on a user’s disability,
developers should focus on a user’s ability. Table 1
displays statistics regarding various diagnoses
impacting user abilities [6]. Any voice-driven user
interface faces the challenge of mimicking the actions
of keyboard input and mouse clicks without adding
significant overhead. The challenge becomes even more
obvious considering the fact that many applications are
developed with the sole intention of being used with the
WIMP metaphor. To overcome the challenges of
mapping the WIMP metaphor to a voice-driven
interface, we investigated and developed several forms
of interaction, which are described in the following
subsections.

Drag and Drop Navigation
The drag and drop navigation mimics the sequence of
click-drag-release actions of a mouse. In Myna,
whenever a user says “drag and drop” followed by the
name of a Scratch language construct, Myna clicks on
the control and drags it below the previously placed
control. If the context of the command represents the
first control to be dragged, Myna drops the control near
the top of the scripts editor.

Diagnosis Number

Impacted

Age of

Onset

Spinal Cord

Injury
250,000

56% occur

between

16-30

Muscular

Dystrophy

500-600

each year
At birth

Multiple

Sclerosis

250,000-

350,000
20-40

Cerebral

Palsy
800,000

10,000

babies

born with

CP each

year

Table 1. List of a few major diagnoses
impacting users’ abilities, particularly
children or young adults.

Continuous Navigation
Continuous navigation mimics the continuous
movements of the mouse cursor. The user can say
“keep moving” followed by the desired direction of the
cursor (e.g., “up”, “down”, “left” and “right”). The
mouse cursor continuously moves in the desired
direction until the user says the keyword “stop.” In
addition, the user can also say “move” followed by the
direction. In this mode, the cursor moves several pixels
in that direction upon each invocation of the command.
Thus, Myna provides a continuous form of navigation
and also the option of one-time movement. Such
flexibility is useful during situations where the user
needs to click on parts of the screen that are otherwise
inaccessible with the drag and drop voice commands
for individual controls.

Figure 1. Transparent frames added by Myna.

Navigation using transparent frames
Navigation using transparent frames makes use of
small labels that mark every component in the script
window (please see Figure 1). These transparent
frames allow the user to say the label number in the
sequence of commands in order to provide a context
for movement or dropping a new programming
statement. As new blocks are added to the script, Myna
updates the numbers associated with each block. The

sidebar on this page describes the macro commands
associated with the transparent frames (line numbers)
in addition to explaining the menu commands.

We created a YouTube channel that offers live video
demonstrations of Myna, which is available at:
http://www.youtube.com/user/Teammyna. Examples
from the navigation commands presented in this
section are available at this channel.

Myna Architecture
An important design consideration was the requirement
that Myna exist outside of the Scratch implementation
(i.e., Myna does not require any source code
modification to the Squeak implementation of Scratch).
This requirement posed several challenges (e.g., adding
transparent frames as visual overlays to Scratch) that
are described in this paper. The design choice to build
Myna outside of the Scratch source code was made to
provide flexibility for adapting Myna to future versions
of Scratch as well as a mechanism to apply the Myna
ideas to similar environments (e.g., Alice, AgentSheets,
App Inventor, LabView, other IPEs, or even a broader
range of applications). Myna is implemented as a Java
application using a voice recognition front-end to drive
a back-end that provides programmatic control over
the mouse and keyboard (through use of the Java
Robot class).

Another design goal was to use an architecture that is
robust enough to accommodate future changes in
Scratch’s user interface (e.g., if future versions of
Scratch move menu items and widgets to different
parts of the Scratch screen). To assist in separating the
dependencies between the user interface and the core
functionality, we applied the Model View Controller
(MVC) [5] design pattern, which is commonly used to
maintain large and complex data sets involved in
developing user interfaces. In the following
subsections, we define a ‘component’ as a clickable
area within the Scratch window, which generates an
action in Scratch.

Additional Commands

Menu Commands: There
are numerous menus within
Scratch. We refer to these as
static commands because
their screen placement is
static. The verbal commands
for these controls match the
verbiage on the control.

Macro Commands: Three
macro commands have been
added to better facilitate
block placement. These
commands take advantage of
the transparent frames (the
numeric identifiers in Figure
1). The existing macro
commands are as follows:

1. Drop After – Drops the

selected control after the
command at the user-
identified location (the
number based on the
transparent frame).

2. Drop Before – Drops the
selected control before
the command at the
user-identified location.

3. Drop In – Drops the
selected control (such as
position 5 in Figure 1)
into the user-identified
location.

Model
The model represents the category, state and low-level
behavior of the component blocks, as illustrated in
Figure 2.

COMPONENT MAPPINGS
The initial mapping-location on the screen of each
component is recorded in a configuration file.
Component Mappings is the collection of all property
files used by Myna.

COMPONENT HIERARCHY
Based on the type of action generated in the Scratch
window, each component is categorized into the
following hierarchy:

 Static Scratch Component: The components
that do not move from their current location
are categorized as Static Components (e.g.,
File, Edit, and other menu commands).

 Movable Blocks: The components that can be
dragged from their current location are
categorized as moving blocks (e.g., “when
clicked”, “wait seconds”).

 Movable Block Containers: Components that
can contain Movable Blocks are categorized as
Movable Block Containers (e.g., if, repeat,
forever).

 Sprite State Storage: The component collection
of each Sprite is stored in the Sprite State
Storage. Each Sprite (i.e., each character in
the Scratch window) has a collection of
components currently in the script editor area
of the Scratch window. Whenever a new Sprite
is created or the context is switched to a
different Sprite, the component collection of
the currently active sprite is loaded.

Controller
Processing a user’s voice command generates a request
for the model to change its state and perform the
respective action on the Scratch window. This is
handled by the Controller, which has the following
components:

SPEECH RECOGNIZER
The speech recognizer is used to recognize the voice
commands as spoken by the user. Cloud Garden, which
is a third-party implementation of JSAPI (Java Speech
API), is used in Myna to enable voice recognition.

GRAMMAR
The Myna grammar is a collection of pre-defined words
that are relevant to various activities within Scratch.
The Speech Recognizer recognizes a voice command
only if it is defined in the grammar file(s). A separate
sidebar on the next page describes the dynamic
grammars utilized in Myna.

COMMAND EXECUTOR
This component executes the input commands by
performing the appropriate mouse and keyboard
actions by calling methods in the Java Robot class.

JAVA ROBOT
This class contains methods to generate native system
mouse and keyboard events [4]. For example, there
are methods to move the mouse to a specific
coordinate on the screen, to double click a mouse
button, and the provide input as if it was coming from
the keyboard. The name “robot” for this class is
somewhat of a misnomer - the class is not focused on
robotics, per se, but rather automation of mouse and
keyboard input.

View
The view is a representation of the model that is visible
to the user. The Scratch window itself falls under the
context of the View, although no changes have been
made to the source code of Scratch.

Speech
Recognizer

Grammar

Command
Executor

Java
Robot

Component
Mappings

Sprite State
Storage

Component
Hierarchy

Scratch
UI

Trans-
parent
Frames

MYNA

Model

View Controller

Figure 2. Myna Architecture.

Myna Workflow
In this section, we demonstrate the flow of all parts of
the architecture by considering a typical workflow of
Myna. The following voice commands are mapped to
the flow illustrated on Figure 3.

1. User says a voice command.
2. The input command is identified by the speech

recognizer and checked against the grammar.
3. If the command is present in the grammar, an

appropriate action is invoked in the Command
Executor.

4. The Command Executor obtains the current
mappings of the component.

5. If necessary, the Command Executor requests
the Model to change its current state.

6. The Command executor calls into the Java
Robot to perform the corresponding
mouse/keyboard action.

Figure 3. Myna Workflow.

Current Work
The work described in previous sections represents an
existing prototype (Phase I); the final three phases are
described as follows:

Phase II: Complete Myna Implementation
During this phase, the primary goal is to create a 100%
voice-controlled application in order to present it to
users for testing. Our requirements for meeting this
goal are the following:

1. Add all static commands to the grammar.
2. Add commands for undo/redo and remove.
3. Add scroll bar navigation.
4. Create a wizard to allow for grammar

customization. Harada et al. [3] demonstrated
the use of syllables rather than a grammar,
which may be more appropriate for individuals
with Cerebral Palsy.

5. Add multi-lingual support (the wizard may
solve this issue).

6. Adapt for any screen resolution.

Items 1) and 2) have been completed. Items 3), 4),
and 5) will be completed as a next step. Item 6) will
also be completed soon as future work. We have tested
the existing application successfully on multiple
machines with varying resolution.

Phase III: Myna Evaluation
Our future work is to obtain empirical data regarding
the usability and performance of the application. We
will perform a small user study with peers to test the
application and to ensure all bugs have been removed.
We also want to ensure the voice commands are
intuitive.

We have been working with United Cerebral Palsy of
Birmingham. They have agreed to work with us by
asking their patients to evaluate the application. While

Dynamic Grammars

An important feature
implemented in Myna is that
any speech recognizer
requires a grammar that is
used to process the speech
input. The grammar(s) could
be classified into two types:
Dictionary Grammars and
Rule Grammars. They both
differ in the way the pattern
of words is defined and also
the way they are used: a
Dictionary grammar is built
into the recognizer, whereas
a Rule grammar is built into
the application.

For any speech application,
multiple grammars may be
instantiated at any time. We
instantiated grammar files
demarcated by the context
and processed on demand.
This supported a lazy loading
of the grammars within the
recognizer, which improved
accuracy and eliminated the
case of improper execution of
command sequences.

During execution, Myna only
has three grammars active in
the initial stage. They are the
grammar file with the default
commands (file, edit,
control), the grammar file
with navigation commands,
and the grammar file with the
speech pause and resume
commands.

the application is evaluated, the participants will be
learning Computer Science skills and foundational
concepts. The testing will consist of four three-hour
weekend sessions involving 6-7 children. A therapist
(with whom the student is familiar) and an instructor
will be present for each student.

Phase IV: Myna Expansion
If the evaluation of Myna is successful, we want to
expand the idea of voice-controlled programming to
other IPEs (Lego Mindstorms’s Labview, App Inventor,
Alice, AgentSheets, etc.), or even other types of
general applications. Rather than hardcode a grammar
as we have done with Scratch, we will use a model-
driven engineering (MDE) technique [2] to
programmatically create the necessary grammar and
programmatic mouse and keyboard controls. This
approach will allow the developer of an application to
integrate voice controls simply by creating a model that
mimics the application interface.

Conclusion
This extended abstract describes our approach to
formulate voice-driven programming of Initial
Programming Environments (IPEs) as an alternative to
the orthodox way of using a mouse and keyboard. With
the primary capabilities of our voice-driven application,
Scratch can be used in a manner that overcomes the
physical challenges of WIMP (window, icon, menu,
pointing device) metaphor, which provides a path for
those with disabilities to have access to Scratch as a
learning environment.

We described the three future phases of this project,
which are:

Phase II: Expand the existing implementation of Myna
to create a 100% voice-controlled application.

Phase III: Evaluate Myna with a small group of peers to
ensure the application is usable in order to minimize
frustration from our target audience. We will then work
with UCP of Birmingham to evaluate Myna.

Phase IV: Using MDE, we will create a model to simplify
the process of incorporating voice controls into
applications built with the WIMP metaphor as the core.

Acknowledgement
This project is supported by a Google Research Award
and NSF grant IIS-1117940. We thank Dr. Gary
Edwards of United Cerebral Palsy of Birmingham for
comments on earlier versions of this work.

References
[1] http://info.scratch.mit.edu/About_Scratch
[2] Gray, J., Lin, Y., and Zhang, J. Automating change

evolution in model-driven engineering. In IEEE
Computer, vol. 39, issue 2, (2006).

[3] Harada, S., Wobbrock, J., Malkin, J., Bilmes, J., and
Landay, J. Longitudinal study of people learning to
use continuous voice-based cursor control. In Proc.
Intl. Conf. on Human Factors in Computing Systems,
Boston 2009, (2009), 347-356.

[4] Java Robot Class:
http://forum.codecall.net/java-tutorials/25923-
robot-class.html

[5] Leff, A. and Rayfield, J.T. Web-application
development using the model/view/controller design
pattern. EDOC 2001: 118-127.

[6] National Institute of Neurological Disorders and
Stroke. National Institutes of Health.
http://www.ninds.nih.gov/disorders/disorder_index.
htm.

[7] Scratch. http://scratch.mit.edu.
[8] WIMP Interfaces, Ashley George Taylor, Winter ‘97

http://www.cc.gatech.edu/classes/cs6751_97_winte
r/Topics/dialog-wimp/

[9] Wobbrock, J., Kane, S., Gajos, K., Harada, S., and
Froehlich, J. Ability-based design: Concept,
principles, and examples. In ACM Trans. On
Accessible Computing, vol. 3, no. 3, article 9,
(2011).

