
Modeling High Volume Networks With Dynamically Assigned Node Structures

Summary

Introduction

Engineering Goals

Current traffic and rail networks depend largely on pre-defined routes which are optimal for given start conditions. As networks become more

complex, and as network parameters are liable to change during runtime (rail breakdowns, wrecks, change of destination, etc.); future

networks will need flexible algorithms which can adapt to changes in network parameters. This research attempts to address the flexibility

problem of networks by demonstrating a network with dynamically routed and run packets, using a simple greedy algorithm to determine to

which nodes to travel. The algorithm demonstrates capabilities to adapt each vehicle’s route in accordance with traffic patterns, which static

algorithms are incapable of doing. The algorithm is tested using a Java program which allows for network modeling and testing. Output from

the network is represented textually and graphically, and demonstrates collision-free operation of the network.

 Current transportation networks utilize inflexible algorithms to determine

how to route vehicles

o This is why buses and trains operate on specific, rigid schedules

o This is also why red lights may halt several cars, even when no cars

are using the intersecting road

 Current algorithms cannot be used in networks such as automobile

systems because

o They fully define the path of the vehicle before runtime

o They cannot adapt to changes in the network (drivers changing

destination, or the addition or removal of roads)

 Dynamic algorithms, which route vehicles while the network is running,

are needed for automobile systems.

 Dynamic algorithms can account for vehicles changing destination and

roads being added or blocked, because they operate in runtime

 Dynamic algorithms would trade optimality of routes for computation

speed and flexibility

1. Create a model of a network in Java using paths, nodes, and vehicles

2. Create a program which accepts an initial network and outputs network

data

3. Create an algorithm which can schedule multiple vehicles to a single node

without collision

4. Create an algorithm which can route a vehicle incrementally closer to a

given node, using path weights given by the algorithm in goal 3

5. Using the algorithms created, use the program created in goal 2 to model

a small network and route vehicles, displaying network data in text format

6. Create an animated model for the program

7. Extend the routing algorithm to create a partial route of multiple nodes

8. Determine the program’s ability to respond to dynamic changes

9. Test the program’s efficiency using several randomly generated networks

Program Overview

Methods and Algorithms

• The program is written in Java

• Networks are composed of nodes, roads, and vehicles

• Nodes serve as the intersection points of roads – All vehicle routing and

scheduling is done at nodes

• Roads are unidirectional paths between two nodes

• Vehicles are points which travel on roads. They originate at a specific node

and have a destination node.

• Low-level algorithms which control the path of vehicles are schedule and

route, each of which are used when a vehicle enters a node

• The program runs each vehicle along roads and schedules vehicles at nodes

until all vehicles are at their destinations

• Schedule is used to determine how long it will take for a vehicle to traverse a

road, using the length of the road between the nodes, the maximum speed

that the vehicle can travel on the road, and times during which the output node

is occupied.

• Schedule returns the soonest time that the vehicle may reach the node

• Route determines all of the sequences of roads that consist of cstep road

traversals from the current node. It then determines how long it would take to

fully traverse each sequence, and determines the best sequence to take by

comparing the distance travelled towards (absolute geographic position) the

end destination and dividing this by the time it would take to traverse the

sequence. It ignores routes that it has already taken.

• Dynamic changes during the “run” method allow vehicle rescheduling, and

clear all pre-determined route data from nodes. This allows other vehicles to

use the time slot otherwise used by the vehicle.

Schedule

Find the maximum speed

along the road

Minimum Time = 𝐍𝐄𝐓𝐓𝐈𝐌𝐄 +

𝐑𝐨𝐚𝐝 𝐋𝐞𝐧𝐠𝐭𝐡

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐒𝐩𝐞𝐞𝐝

Is the node’s list

of scheduled

times empty?

Yes

Schedule the vehicle

at the minimum time Find the first scheduled

time less than the

minimum time

Find the first pair of

times after this time

separated by 2 x BUFF

Schedule the vehicle at

the lower of these

times + BUFF

No

Return the

scheduled time

Route

Let curdist = the current distance

to the destination

Let BRF = -1

For all new road sequences

leading out of the node

Let diff = curdist – the output

node of the road’s distance to the

destination

Let time = the amount of time it

would take to traverse the road

sequence (according to schedule)

Is BRF <

(diff/time)?

BRF = diff/time, bestroad =

this road

Done?

Return the best

road

No

No

Yes

Yes

Runstep

Output Network Data (graphic

and text)

For all vehicles

Is the vehicle at

its destination?

Done?

Route Run

Is the vehicle

on a node?

Run

Update Network Time

No

No

No

Yes

Yes

Yes

Program

Create the Network and

Network Elements

Display the Network

Runstep

Are all vehicles at

their

destinations?

Output Network Data

Yes

No

Program Limitations and

Assumptions
• Routes are often non-optimal, as vehicles follow a greedy algorithm

• Starvation (a vehicle or group of vehicles being slowed down an

unacceptable amount) may occur if a node receives a large amount of

traffic from a different input road, causing the schedule algorithm to route

these vehicles far later than their minimum time.

• The program assumes properly formatted input, and that all nodes and

roads referenced when vehicles, nodes, and roads will be created

• In rare cases (closed loops), vehicles may be incapable of escaping a

certain set of nodes. This is not a problem at higher cstep values

Results
• A program was created which can model networks with real-world constraints

and dynamically route vehicles.

• The program was demonstrated as being capable of routing and running several

large and complex networks.

• No collisions occurred on the network, as demonstrated by data from the

program.

• Random networks were used for testing. With a cstep of at least 5, almost all

networks could be routed successfully.

• The program responded successfully to dynamic changes in the destination of

vehicles

Future Work
• Implement a user interface which can accept dynamic changes to the network

• Create a random network generator which outputs more realistic networks than

the truly random networks currently generated

• Statistically determine complexity and computation time variance with respect to

each network parameter

"Java Platform SE 6." Oracle Documentation. Web. 25 Jan. 2012.

<http://docs.oracle.com/javase/6/docs/api/index.>

O'Connor, Derek. "Derek O'Connor."Derek O'Connor. Web. 25 Jan. 2012.

<http://www.derekroconnor.net/home/mms406.>

Lester, Patrick . "A* Pathfinding for Beginners." Almanac of Policy Issues. Web.

25 Jan. 2012. <http://www.policyalmanac.org/games/aStarTutorial.htm>

"Tree traversal - Rosetta Code."Rosetta Code. Web. 25 Jan. 2012.

" Tree and Graph Searches." Cross-Comp. Web. 25 Jan. 2012.

<http://www.cross-comp.com/Pages/scipro/TreeSearch.aspx>.

Works Cited

 public int route()

 {

 //Algorithm portion

 double curdist = findDist(dnode, cnode);

 int[] adjroads = nodes.get(cnode).getouts();

 int bestroad = adjroads[0];

 double brf = -1;

 for (int i : adjroads)

 {

 double nextdist = findDist(dnode, roads.get(i).getbnode());

 double diff = curdist - nextdist;

 double time = schedule(id, i, false) - NETTIME;

 if (brf < (diff/time))

 {

 brf = diff/time;

 bestroad = i;

 }

 }

 //Non-Algorithm

 reachtime = schedule(id, bestroad, true);

 road = bestroad;

 nnode = roads.get(road).getbnode();

 cnode = -1;

 rate = roads.get(road).getlength() / (reachtime - NETTIME);

 ret public int route()

 {

 //Algorithm portion

 double curdist = findDist(dnode, cnode);

 buildroutes();

 int bestroute = 0;

 double brf = -1;

 int n = 0;

 for (ArrayList<Integer> i : myroutes)

 {

 double nextdist = findDist(dnode, roads.get(i.get(i.size() -

1)).getbnode());

 double diff = curdist - nextdist;

 double time = NETTIME;

 for (int k : i)

 {

 time = schedule(k, false, time);

 }

 time -=NETTIME;

 if (brf < (diff/time))

 {

 brf = diff/time;

 bestroute = n;

 }

 n++;

 }

 //Non-Algorithm

 double time = NETTIME;

 for (int k : myroutes.get(bestroute))

 {

 time = schedule(k, true, time);

 route.add(k);

 reachtimes.add(time);

 }

 reachtime = reachtimes.get(0);

 reachtimes.remove(0);

 road = route.get(0);

 route.remove(0);

 nnode = roads.get(road).getbnode();

 cnode = -1;

 rate = roads.get(road).getlength() / (reachtime - NETTIME);

 myroutes.clear();

 return road;

 }

public double schedule(double mintime, boolean cont, int vehicle)

 {

 double addtime = 0;

 int addindex = 0;

 if (times.size() == 0)

 {

 addtime = mintime;

 addindex = 0;

 }

 else

 {

 if (times.get(0) - BUFF >= mintime)

 {

 addtime = mintime;

 addindex = 0;

 }

 else

 {

 boolean done = false;

 for (int i = 0; i < times.size(); i++)

 {

 if (!done)

 {

 if (i<(times.size()-1))

 {

 if ((times.get(i) < mintime) && ((times.get(i+1) - times.get(i))

< 2*BUFF))

 {

 addtime = Math.max(times.get(i) + BUFF, mintime);

 addindex = i+1;

 done = true;

 }

 }

 else

 {

 addtime = Math.max(times.get(i) + BUFF, mintime);

 addindex = i+1;

 done = true;

 }

 }

 }

 }

 }

 if (cont)

 {

 times.add(addindex, addtime);

 myvehicles.add(addindex, vehicle);

 }

 return addtime;

 }

1

1

1

2
2

2

2

3
3

3

3

3

How routes are calculated (number beside the road

indicates the needed cstep)

Algorithm Correctness and

Complexity
As vehicles may temporarily occupy the same space on a road in real life

applications (such as a car overtaking another car), collisions on roads were

not taken into account in the analysis of algorithm correctness. Correctness

was determined as representing no potential for collisions on nodes. The

scheduling algorithm therefore must be correct, as a collision could only

happen if two vehicles are scheduled for the same node simultaneously,

which cannot occur because schedule() separates all vehicles by a time of

BUFF, for BUFF > 0.

Complexity:

The average number of roads exiting any given node is

𝑟

𝑛

For a network with n nodes and r roads. Let c be the cstep of each car on the

network, and v be the number of vehicles on the network. Thus, each vehicle

must check an average of

(
𝑟

𝑛
)𝑐

Thus for the entire network, the amount of time, T that it takes a particular

computer to determine how to route all of the vehicles is

𝑣(
𝑟

𝑛
)𝑐

𝜕𝑇

𝜕𝑐
= 𝑣(

𝑟

𝑛
)𝑐 ∙ ln 𝑐

This shows that algorithm complexity increases exponentially with cstep.

