
USING A PROGRAM TRANSFORMATION ENGINE TO INFER TYPES IN A

METAMODEL RECOVERY SYSTEM

*
Faizan JAVED,

**
Marjan MERNIK,

*
Jeff GRAY,

 †
Jing ZHANG,

*
Barrett R. BRYANT,

*
Suman ROYCHOUDHURY

* Department of Computer and Information Sciences, University of Alabama at Birmingham,

115A Campbell Hall, 1300 University Boulevard, Birmingham, AL, USA, 35295-1170,

tel. (+1) 205 934 2213, E-mail: {javedf, gray, bryant, roychous}@cis.uab.edu

** Institute of Computer Science, Faculty of Electrical Engineering and Computer Science,

University of Maribor, Smetanova 17, 2000 Maribor, Slovenia, tel. (+3862) 220 7455, E-mail: marjan.mernik@uni-mb.si

†

Motorola Research Labs, NIRL Autonomics Research,

1301 Algonquin Road, Schaumburg, Illinois, USA 60196 E-mail: j.zhang@motorola.com

SUMMARY

Domain-Specific Modeling (DSM) allows domain experts to concentrate on the essential characteristics of a problem space

without being overwhelmed by the complexities that may occur in the solution space. DSM is focused on the creation of a

metamodel for a specific domain, from which instances pertaining to specific configurations of that domain can be

constructed. However, as the metamodel undergoes evolutionary changes, repositories of instance models (also called

domain models) can become orphaned from their defining metamodel. Within the context of model-driven engineering

(MDE), we have developed the Metamodel Recovery System (MARS) which addresses the problem of “metamodel drift” and

recovers the design knowledge in a repository of legacy models. MARS is a semi-automatic system that uses grammar

inference techniques to recover a metamodel by mining instance models. In addition to the instance models, there are other

artifacts that can be investigated in the modeling repository. In this paper we describe an extension to MARS in the form of a

type inference capability that is accomplished by the use of a program transformation engine that mines the model compiler

code and recovers the type information of fields (or attributes) of metamodel entities.

Keywords: Domain-specific modeling, grammar inference, program transformation.

1. INDRODUCTION

Many software artifacts created during the software

lifecycle (e.g., models and source code) may be

stored in a repository and depend on a language

schema definition that provides the context for

syntactic structure. For example, in the

programming language domain a context-free

grammar (or grammar) defines the syntactic

constructs of a programming language. Similarly in

the Domain-Specific Modeling (DSM) paradigm,

a model is defined by a metamodel. DSM allows

a higher level of abstraction than general purpose

languages (GPLs) while simultaneously narrowing

the design space to a single domain of discourse

with visual models [1]. DSM involves the

construction of a metamodel that defines the key

elements of a domain, and instances of the

metamodel, called instance models (or models),

represent specific configurations of the domain. To

address new feature requests (e.g., adaptation of

a metamodel to accomodate new stakeholder

concerns or evolution of a language to provide new

language features) the repository artifacts might

need to be transformed to the new schema definition.

If this is not done, the respository may be replete

with archaic artifacts.

In the programming languages paradigm, the

existence of over 500 general purpose and

proprietary programming languages in commercial

and public domains motivates the need to have

expeditious and reliable software renovation tools.

A strong case for applying a grammar-centric

solution to solve software renovation problems in

the programming language domain is made in [2].

These renovation tools can be used to solve re-

engineering problems like recovering source

implementations or translating them to a different

dialect.

A rise in the use of modeling tools in industry

and research [3] has resulted in an increase in the

number of renovation problems in the modeling

community. As a metamodel evolves, each new

version captures some change in the modeling

language and the instance models that are dependent

on the metamodel definition need to be updated. An

initial solution to this metamodel schema evolution

problem using graph rewriting techniques is

discussed in [4]. However, this schema evolution

approach is not applicable when both the

metamodels and the intermediate transformation

steps do not exist, or are not accessible. Two

example situations are: 1) losing a metamodel

definition due to a hard-drive crash, and 2)

encountering versioning conflicts when trying to

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

8

load instance models based on obsolete metamodels.

We use the term metamodel drift to refer to the

phenomenon of frequent metamodel evolution which

can result in previous model instances being

orphaned from the new definition. A growing

number of both commercial and research

organizations have reported occurances of lost and

evolved metamodels [5, 6]. When the metamodel is

no longer available for an instance model, the

instance model will fail to load into the modeling

tool (this is similar in concept to a change in a

language grammar that invalidates prior programs

and the associated compiler). However, if a

metamodel can be inferred from a set of instance

models the design knowledge contained in the

instance models can be recovered.

We have developed MARS [7], a semi-

automatic grammar-driven system which uses

grammar inference techniques to recover

metamodels from instance models. Grammar

inference [8] is the process of learning syntax from

examples where the examples are sets of strings

defined on a specific alphabet. MARS is able to

accurately infer metamodel elements,

generalizations, aggregations and connections.

A current limitation of MARS is its inability to infer

attribute types (or fields) of model elements from the

model instances. For example, a string value

associated with an attribute in an instance model

could correspond to a string or an enumeration

value. However, in addition to the instance models

there are other artifacts (such as model compilers)

that can be mined in the modeling repository. Model

compilers can traverse the internal representation of

a model and perform analysis and translation tasks

like generating new artifacts (e.g., source code).

A model compiler may contain type information that

cannot be inferred from the instance models. The

key challenge with mining information from a model

compiler is the difficulty of parsing the model

compiler source (e.g., a complex C++ program) and

performing the appropriate analysis to determine the

type information.

In this paper we demonstrate the use of a

program transformation engine to parse the model

compiler code and recover the type information of

metamodel entities. We illustrate the technique on

domain models from [7], where the focus was on

inferring metamodels from models, and show how

this new extension enables MARS to correctly infer

attribute types of model elements. The rest of the

paper is organized as follows: Section 2 gives an

overview of MARS and applies the technique on an

example domain. Section 3 elaborates on the

program transformation technique for data type

inference, and Section 4 is an experimental study of

the new technique. Related work is covered in

Section 5 and the paper concludes with a summary

discussion and future work in Section 6.

2. THE METAMODEL RECOVERY SYSTEM

Figure 1 shows a metamodel for a Finite State

Machine (FSM), originally presented in [7], which

also will be the example used in this section. The

metamodel specifies FSM concepts (e.g., start state,

end state, and state) as well as the valid connections

among all entities. An instance of this metamodel

that shows a simple FSM composed of a start state,

an end state and a connection between them is

shown in Figure 2. The metamodel also contains two

First Class Objects (FCOs). An FCO element

facilitates better inheritance relationship design

amongst model entities by providing an intermediate

level of generalization. There are no fields

(attributes) in this metamodel.

Although MARS uses the Generic Modeling

Environment (GME) [9], its underlying principles

can be applied to other modeling tools such as

MetaCase’s metaEdit+ (http://www.metacase.com)

and Microsoft’s DSL tools
(http://msdn.microsoft.com/vstudio/dsltools/),

amongst others. In the GME, a metamodel is

described with UML class diagrams and constraints

are specified in the Object Constraint Language

(OCL) [10]. GME also provides an API for

traversing a model and from the API its possible to

create model compilers.

Fig. 1 A metamodel for creating finite state

machines.

Fig. 2 An instance of a FSM

To the best of our knowledge, MARS provides

a first solution to the problem of recovering

metamodels from instance models. It accomplishes

this by application of grammar inference algorithms

from the machine learning and programming

languages community to the modeling domain. An

overview of MARS is shown in Figure 3, which is

an extension to the architecture initially presented in

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

[7]. MARS has three primary steps (see steps 1, 2

and 3 in Figure 3) with an extension step labeled TI,

which will be described in the next section. MARS

takes as input a set of models exported as XML files,

a capability provided by most modeling tools.

However, there is a mismatch between the XML

representation of a model and the syntax expected

by the grammar inference tools. To overcome the

mismatch in representation, MARS uses the

Extensible Stylesheet Language Transformation

Language XSLT [11] (step 1 in Figure 3) to map the

XML files to a textual domain-specific language

(DSL) [12] called the Model Representation

Language (MRL), which describes the domain

models in a form that can be used by a grammar

inference engine. An MRL program is a textual

representation of the various metamodel elements

(e.g., models, atoms and connections). As an

example, the MRL representation of the FSM

instance model in Figure 2 would be as follows:

model StateDiagram {

 StartState;

 EndState;

 connection

 Transition : StartState EndState;

}

atom StartState { fields ; }

atom EndState { fields ; }

Fig. 3 Overview of MARS

(modified extension adapted from [7])

The MRL representations of the instance models are

input to the metamodel inference process, which is

performed within the language description

environment LISA [13] (step 2 in Figure 3). The

result of the inference process is a context-free

grammar that is generated concurrently with the

XML file containing the metamodel that can be used

to load the instance models into the modeling tool

(step 3 in Figure 3). For the FSM metamodel

example in Figure 1, the inferred metamodel is

shown in Figure 4.

If we compare the original metamodel in Figure

1 and the inferred metamodel Figure 4 we can

observe that the inferred metamodel is almost

exactly the same as the original metamodel except

the names of the two StateInheritance FCOs in the

original metamodel have been inferred as generic

names FCO1 and FCO2. This presents no real

consequence with respect to the essential capabilities

as seen from an end-user’s perspective. The

generalization hierarchy and all the metamodel

elements are inferred accurately.

Fig. 4 The inferred metamodel for FSM.

The corresponding inferred grammar is shown

below with the nonterminals in upper case letters,

terminals in lower case letters and epsilon as ε.

1. STATEDIAGRAM 'model' StateDiagram

 { PARTS0 }

2. PARTS0 MODELATOM0 FIELDS0

 CONNECTIONS0

3. MODELATOM0 STARTSTATES

 ENDSTATES STATES

4. STARTSTATES STARTSTATE

5. ENDSTATES ENDSTATE ENDSTATES

 | ENDSTATE

6. STATES STATE STATES | ε

7. FIELDS0 ε

8. CONNECTIONS0 'connection'

 TRANSITION TRANSITION →

 transition : SRC0 → DST0 ;

 TRANSITION | transition : SRC0 →

 DST0 ;

9. SRC0 'fco' FCO1

10. FCO1 STARTSTATE | STATE

11. DST0 'fco' FCO2

12. FCO2 ENDSTATE | STATE

13. STARTSTATE 'atom' StartState

 { FIELDS1 }

14. FIELDS1 ε

15. ENDSTATE 'atom' EndState { FIELDS2 }

16. FIELDS2 ε

17. STATE 'atom' State { FIELDS3 }

18. FIELDS3 ε

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

10

The quality of the inferred metamodel depends

on the total number of instance models used as well

as the level of detail available in the instance

models. If the set of supplied instance models do not

make use of all the constitutent elements of the

original metamodel or exhibit all the variations in

cardinalities of the connections between the

elements, then those particular elements and

cardinalities cannot be inferred. For example, if the

only input to MARS was the instance model in

Figure 2, then it would not be possible to infer the

most accurate FSM metamodel. The reason for this

is that the instance model does not make use of the

state element nor contains enough information to

infer cadinalities of the connections accurately. We

refer the reader to [7] for further details on MARS,

its core algorithm, and detailed discussion on the

metamodel inference results of the domain examples

used in this paper.

Because the type information of fields is not

available in the instance models, MARS infers all

the fields as generic field types. As previously

mentioned, model compilers may contain type

information that can allow MARS to infer more

complete and accurate metamodels. Recovering this

type information would require the ability to parse

and analyze the model compiler source (e.g., a

complex C++ program). In the next section, we

address this key problem by discussing the use of a

program transformation tool. The Design

Maintenance System (DMS) [14], to parse the model

compiler code and ascertain the appropriate type

information for attributes defined in the metamodel.

3. TYPE INFERENCE USING DMS

The previous section gave an overview of MARS

and showed that the system is capable of inferring

a metamodel from domain models represented by

XML. However, for each attribute of the model

elements, it is not possible to infer the element type

from the representative XML of the model instances.

For example, consider the Network metamodel in

Figure 5, which contains networking concepts (e.g.,

routers, hosts, and ports) as well as the valid

connections among all entities (Note: This example

metamodel is taken from the tutorial that is part of

the GME installation). Figure 6 shows an instance of

this metamodel where there is an attribute called

Port_IFSpeed in a Port atom that is named S0

(located in inetgw). The value of this attribute is 128,

but, the representative type could be integer, string,

or even an enumerated type. In order to narrow

down the selection scope of the possible types,

additional model artifacts need to be mined. This

section introduces a technique that infers model

types from existing model compilers associated with

the mined instance models.

DMS is a program transformation engine and re-

engineering toolkit [14]. The core component of

DMS is a term rewriting engine that provides

powerful pattern matching and source translation

capabilities. DMS was chosen for this task because

of its scalability for parsing and transforming large

source files in several dozen languages (e.g., C++,

Java, COBOL, Pascal). DMS defines a specific

language called PARLANSE, as well as a set of

APIs (e.g., Abstract Syntax Tree API, Symbol Table

API) for writing DMS tools to perform sophisticated

program analysis and transformation tasks. Another

consideration for the choice of DMS comes from our

past success in using it to parse millions of lines of

C++ code [15].

Table 1 illustrates a fragment of a GME model

compiler implemented in C++ for processing the

routers in the Network domain diagram. The

ProcessRouter method takes an instance of Router

as an argument, displays the router attribute

Router_Family, navigates each port inside and prints

out the port attributes Port_IFType, Port_IFSpeed,

and Port_IPAddress. The method GetAttribute is

used to retrieve the attribute value according to the

attribute name (Router_Family in Line 8) in the

model and store it in a variable (fam in Line 8). The

attribute name should be exactly the same as the

name shown in the corresponding model because the

model compiler is referencing metamodel concepts.

Consequently, the type of the variable that is used in

the model compiler to represent the attribute

corresponds to the actual attribute type in the model

(i.e., the attribute Router_Family can be inferred as

type string based on the variable fam that is declared

as a CString in Line 3 of the model compiler code

fragment).

Fig. 5 A metamodel for Network diagrams

The general idea of implementing a type

inference system is to set up a symbol table for the

model compiler source code. A symbol table stores

all of the variables along with appropriate attributes

(e.g., scope of validity, type, and value). Figure 7

describes a simplified symbol table for the

ProcessRouter method in Table 1. This symbol table

contains three symbol spaces that represent three

different lexical scopes: method body, block

(corresponds to Lines 4 to 7 in Table 1), and a while

block (corresponds to Lines 12 to 18 in Table 1).

Each symbol space contains the variable names as

well as their declaration types that are valid within

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

the current lexical scope. By using the DMS Symbol

Table API, a symbol table can be created easily

during the parsing process.

Fig. 6 An instance of a Network

1 void CComponent::ProcessRouter(CBuilderModel *r) {
2 ASSERT(r->GetKindName() == "Router");

3 CString fam;
4 {

5 int fam;
6 ……

7 }
8 r->GetAttribute("Router_Family", fam);

9 int ifspeed;
10 const CBuilderAtomList *ports = r->GetAtoms("Port");
11 POSITION pos = ports->GetHeadPosition();

12 while(pos) {

13 CBuilderAtom *port = ports->GetNext(pos);

14 CString iftype, ipaddr;
15 port->GetAttribute("Port_IFType", iftype);

16 port->GetAttribute("Port_IFSpeed", ifspeed);

17 port->GetAttribute("Port_IPAddress", ipaddr);

18 ……. } }

Tab. 1 An excerpt from the model compiler for

processing routers in the Network domain

Fig. 7 Symbol table for the Process Router method

After the symbol table is constructed, it can be

used to discover the variables that represent the

model attributes. DMS offers the facilities to

manipulate an Abstract Syntax Tree (AST) by

invoking interface functions. Part of the

PARLANSE implementation shown in Table 2

searches the attribute variables in the model

compiler source code. The AST:ScanNodes function

traverses each node in the syntax tree. If the current

visited node has a literal string value GetAttribute

(Lines 7 and 8), the analysis determines the

corresponding sub-tree expr_list from which the

attribute_string (i.e., the real attribute name in the

model) and attribute_id (i.e., the variable that is used

to represent the attribute) can be extracted. After

such an attribute name and variable pair is found,

PARLANSE will look up this variable in the symbol

table and return its corresponding type. As a result, a

file of attribute name and type-pair listings (see

Attribute Types icon in Figure 3) will be generated to

serve as an input for step 3 of MARS.

1 (AST:ScanNodes syntax_tree
2 (lambda (function boolean AST:Node) function

3 (value (local (;; [attribute_string (reference string)]

4 [attribute_id (reference string)]
5 [expr_list AST:Node]

6);;

7 (ifthen (== (AST:GetNodeType ?) _identifier)
8 (ifthen (== (@ (AST:GetString ?)) 'GetAttribute')

9 (;;(= expr_list (AST:GetThirdChild

(AST:GetParent
10 (AST:GetParent (AST:GetParent

(AST:GetParent ?))))))

11 (AST:ScanNodes expr_list
12 (lambda (function boolean AST:Node) function

13 (value (local (;;);;

14 (;;(ifthen (== (AST:GetNodeType ?)
_STRING_LITERAL)

15 (= attribute_string (AST:GetString ?))
16)ifthen

17 (ifthen (== (AST:GetNodeType ?) _identifier)

18 (;; (= attribute_id (AST:GetString ?))
 …… }

Tab. 2 PARLANSE code fragment to determine

attribute types

4. EXPERIMENTAL STUDY

In this section, we discuss the results of applying the

type recovery technique to diverse domains. Due to

space constraints, we only show the results of

applying the technique to the Petri Net [16]

modeling language and the Network modeling

language introduced in Section 3. The original

metamodel for the Petri Net domain is shown in

Figure 8 and consists of the elements Place and

Transition, as well as the connections between them.

A Place can also hold a certain number of tokens

(attribute numberOfTokens) and the petriElements

have Name and Description attributes.

Figure 9 shows the inferred metamodel for the

Petri Net domain which was inferred from a single

instance model that was rich in information content

(i.e., it uses all the elements and connections of the

original metamodel). The only difference between

the original and the inferred metamodels is that the

petriElements FCO generalization hierarchy in the

original metamodel is missing from the inferred

metamodel. This is because generalization

information is not available in instance models.

Consequently, the attributes of the petriElements

FCO (Name and Description) are inferred as

attributes for Place and Transition in the inferred

metamodel. The inferred metamodel for the Network

domain (Figure 10) is almost the same as the

original metamodel in Figure 5 except that the

NetInterface and GenNet generalization names are

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

12

inferred as FCO1 and FCO2, respectively. This is

because the names of the generalizations are not

contained in instances.

Fig. 8 Original Metamodel for the Petri Net Domain

Fig. 9 Inferred metamodel for the Petri Net domain

Fig. 10 Inferred metamodel for the

Network domain

Results of the type inference experiments for the

Petri Net and Network domains are detailed in Table

3 and Table 4, respectively. The types Integer and

String are inferred as Int and CString because these

are the corresponding equivalent types used by the

GME model compiler. Apart from this, the only

other difference is that the Enum type in Table 4 is

inferred as a CString type. The reason for this is that

GME persistently stores enumeration values as

strings. The primary purpose of an enumeration type

in a metamodel is to constrain the possible values of

a string representation. However, this cannot be

solely determined from an instance model and must

involve human input. Future work will extend the

type inference technique such that a user is asked to

categorize a string type as a true string or as an

enumeration type.

Attribute Name Original Type Inferred Type

numberOfTokens Integer Int

Name String CString

Description String CString

Tab. 3 Original and inferred types for the

Petri Net domain

Attribute Name Original Type Inferred Type

Family Enum CString

IFType Enum CString

Workload Enum CString

IPAddress String CString

Number Integer Int

Netmask String CString

AddressFirst String CString

AddressLast String CString

NetworkAddress String CString

RoomLocation String CString

Tab. 4 Original and Inferred types for the Network

domain

5. RELATED WORK

The type inference technique described in this paper

is different than type inference for functional

programming languages, which aims to increase

programmer productivity by freeing the programmer

from the task of adding type annotations while

maintaining type safety. This is accomplished by

algorithms that use inference rules and are partially

or fully able to infer the type of a variable or an

expression lacking an explicit type annotation [17].

By comparison, type inference for MARS infers (or

recovers) types of model fields from a repository of

model compiler source code using a program

transformation engine instead of inference rules.

Our approach is more related to work on

Document Type Definition (DTD) [18] and XML

Schema [19] extraction. A DTD uses regular

expressions to define the internal structure of an

XML document. XML Schema is a grammar-based

XML schema language that affords increased syntax

and expressive power than DTDs and along with

a host of other XML schema languages has been

proposed to replace DTDs. The Microsoft XSD

Inference tool [20] infers an XML Schema from

well formed XML instance documents. The tool

uses inference rules to infer data types as follows:

the most restrictive unsigned type is inferred for

attribute values when they are first encountered. If

a new value is encountered that does not match the

currently inferred type, a type promotion mechanism

promotes the inferred type to a new type that applies

to both the currently inferred type and the new

value. In [21], XML Schemas are modeled as

Extended Context-Free Grammars (ECFGs) and

a schema extraction algorithm based on grammar

inference principles is used to infer XML Schemas.

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

The technique initially marks all simple elements in

the instances as a generic data type Any to simplify

the inference process. After the ECFG is inferred,

the simple elements are revisited and an XML

Schema language data type coverage subsumption

graph is used to contrain the types for each element.

The XTRACT [22] system uses a regular grammar

inference induction engine to infer DTDs from XML

documents. The method first induces equivalent

regular expressions from DTD patterns and then

uses the Minimum Description Length (MDL) [23]

to choose the best DTD from a group of candidate

DTDs. XTRACT does not attempt to infer element

types.

The work reported in [23] describes a method for

extracting a logical structure from HTML files. This

approach, like MARS, can be seen as a special case

of grammar inference. After logical structure has

been extracted, an equivalent XML file is generated.

This is accomplished using three phases: visual

grouping, element identification, and logical

grouping. An important step in the element

identification process is use of a document model,

which is a kind of ontology for particular document

types (e.g., personal home pages). A document

model is manually prepared beforehand by careful

examination of the general characteristics of such

kind of documents. The main difference between

MARS and this logical structure extraction

technique, besides the application domain (model

engineering vs. web documents), is the use of

document models (defined as a grammar) for

representing the knowledge of a document type. In

MARS, a metamodel and the skeleton of the

hierarchical structure do not exist and need to be

inferred solely from examples of usage (models).

Unlike MARS, this technique does not produce a

grammar (in a form of XML schema) of the

generated XML document.

6. CONCLUSION

MARS is a semi-automatic grammar inference based

technique that addresses the metamodel drift

problem [7]. The main contribution of this paper is

the application of DMS, a powerful program

transformation engine, to address the problem of

type inference in MARS. More specifically, DMS is

used to parse model compilers to recover the type

information of metamodel fields. An experimental

study is conducted on various metamodel domains

and it is shown that the proposed type inference

technique is successfully able to infer all but enum

types. To overcome this limitation, the use of human

intervention to disambiguate between string and

enum types is proposed.

Several of the listings in this paper are fragments

of the complete representation. All of the extended

listings (e.g., XSLT rules, DMS transformations,

sample metamodels and instance models, grammars,

and model compilers) are available at the MARS

website, which can be found at:

http://www.cis.uab.edu/softcom/GenParse/mars.htm

ACKNOWLEDGEMENT

This work was supported in part by an NSF

CAREER award (CCF-0643725).

REFERENCES

[1] J. Gray, J-P. Tolvanen, S. Kelly, A. Gokhale, S.

Neema and J. Sprinkle. Domain-specific

modeling, Handbook on Dynamic System

Modeling, CRC Press, Boca Raton, FL, 2007,

Chapter 7.

[2] R. Lämmel and C. Verhoef. Cracking the 500

language problem. IEEE Software, 18(6):78-88,

2001.

[3] D. Schmidt. Model-driven engineering. IEEE

Computer, 39(2):25-31, 2006.

[4] J. Sprinkle and G. Karsai. A domain-specific

visual language for domain model evolution.

Journal of Visual Languages and Computing,

15(3-4):291-307, 2004.

[5] GME Users Mailing List,

http://list.isis.vanderbilt.edu/pipermail/gme-

users/2005-March/000697.html [14 February

2006]

[6] GME Users Mailing List,

http://list.isis.vanderbilt.edu/pipermail/gme-

users/2005-March/000697.html [14 February

2006]

[7] F. Javed, M. Mernik, J. Gray, and B. R. Bryant.

MARS: A MetaModel Recovery System Using

Grammar Inference. Accepted for publication

in Information and Software Technology,

http://www.cis.uab.edu/softcom/GenParse/mars

.htm, 2007.

[8] C. de la Higuera. A bibliographical study of

grammatical inference. Pattern Recognition,

38(9):1332–1348, 2005.

[9] A. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi,

G. Nordstrom, J. Sprinkle and G. Karsai.

Composing domain-specific design

environments. IEEE Computer, 34(11):44-51,

2001.

[10] J. Warmer and A. Kleppe. The Object

Constraint Language, Addison-Wesley,

Reading MA, 2003.

[11] J. Clark, XSL Transformations (XSLT)

(Version 1). W3C Technical Report, November

1999, http://www.w3.org/TR/1999/REC-xslt-

19991116 [14 February 2006].

[12] M. Mernik, J. Heering, and A. Sloane. When

and how to develop domain-specific languages.

ACM Computing Surveys, 37(4):316-344,

December 2005.

[13] M. Mernik, M. Lenič, E. Avdičaušević and V.

 Acta Electrotechnica et Informatica No. X, Vol. X, 2007

14

Žumer. LISA: An interactive environment for

programming language development. The 11th

International Conference on Compiler

Construction, pp. 1-4, Springer: Heidelberg,

Germany, 2002.

[14] I. Baxter, C. Pidgeon, and M. Mehlich. DMS:

Program Transformation for Practical Scalable

Software Evolution. The International

Conference on Software Engineering (ICSE),

pp. 625-634, Edinburgh, Scotland, May 2004.

[15] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H.

Wu, R. Sudarsan, A. Gokhale, S. Neema, F.

Shi, and T. Bapty. Model-Driven program

transformation of a large avionics framework.

Generative Programming and Component

Engineering (GPCE), pp. 361-378, Vancouver,

Canada, October 2004.

[16] J. Peterson. Petri nets. ACM Computer Surveys,

9 (3):223-252, 1977.

[17] B. C. Pierce. Types and Programming

Languages, MIT Press, 2002.

[18] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E.

Maler, F. Yergeau. Extensible Markup

Language (XML) 1.0 (Third Edition). W3C

Technical Report, February 2004,

http://www.w3.org/TR/2004/REC-xml-

20040204 [14 February 2006]

[19] J. Siméon, P. Wadler. The essence of XML.

Proceedings of the 30
th

 ACM SIGPLAN

Symposium on Principles of Programming

Languages, pp. 1-13, ACM Press, New York

NY, 2003.

[20] Microsoft XML Schema Definition Tool:

http://msdn2.microsoft.com/en-

us/library/x6c1kb0s(VS.80).aspx

[21] B. Chidlovskii. Schema extraction from XML

data: A grammatical inference approach.

Proceedings of the 8
th

 International Workshop

on Knowledge Representation meets Databases

(KRDB 2001), CEUR Workshop Proceedings,

Rome, Italy, 2001.

[22] M. N. Garofalakis, A. Gionis, R. Rastogi, S.

Seshadri, K. Shim. XTRACT: Learning

document type descriptors from XML

document collections. Data Mining and

Knowledge Discovery, 7(1): 23-56, 2003.

[23] M.-H. Lee, Y.-S. Kim, and K.-H. Lee. Logical

structure analysis: From HTML to XML.

Computer Standards & Interfaces, 29:109-124,

2007.

BIOGRAPHY

Faizan Javed is a Ph.D. candidate in the Department

of Computer and Information Sciences at the

University of Alabama at Birmingham. His research

interests include grammatical inference algorithms

and applications, software engineering and model-

driven engineering. Faizan received an M.S. in

computer science with a specialization in

Bioinformatics from UAB. He is a student member

of the ACM and the IEEE.

Marjan Mernik received the M.Sc. and Ph.D.

degrees in computer science from the University of

Maribor in 1994 and 1998 respectively. He is

currently an associate professor at the University of

Maribor, Faculty of Electrical Engineering and

Computer Science. He is also an adjunct associate

professor at the University of Alabama at

Birmingham, Department of Computer and

Information Sciences. His research interests include

programming languages, compilers, grammar-based

systems, grammatical inference, and evolutionary

computations. He is a member of the IEEE, ACM

and EAPLS.

Jeff Gray is an Assistant Professor in the

Department of Computer and Information Sciences

at the University of Alabama at Birmingham (UAB).

He received the Ph.D. in May 2002 from the

Electrical Engineering and Computer Science

department at Vanderbilt University. His research

interests include model-driven engineering,

generative programming, and aspect-oriented

software development. Jeff is a member of the ACM

and Senior Member of IEEE.

Jing Zhang is a research scientist at Motorola Labs,

where she is responsible for conducting research on

Autonomic Network Management. Jing is also a

part-time PhD student in the Department of

Computer and Information Sciences at the

University of Alabama at Birmingham (UAB). Her

PhD research is focused on techniques that combine

model transformation and program transformation in

order to assist in evolving large software systems.

Jing obtained an M.S. in Computer Science from

UAB.

Barrett R. Bryant is a Professor and Associate Chair

of Computer and Information Sciences at the

University of Alabama at Birmingham. He joined

UAB after completing his Ph. D. in computer

science at Northwestern University. His primary

research areas are the theory and implementation of

programming languages, formal specification and

modeling, and component-based software

engineering. Barrett is a member of ACM, IEEE

(Senior Member), EAPLS, and the Alabama

Academy of Science. He is an ACM Distinguished

Lecturer and Chair of the ACM Special Interest

Group on Applied Computing (SIGAPP).

Suman Roychoudhury is a Ph.D. candidate in the

Computer and Information Sciences (CIS)

Department at the University of Alabama at

Birmingham (UAB). His research interests include

aspect-oriented software development and program

transformation techniques as applied to evolving

large legacy systems.

