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SUMMARY 

Domain-Specific Modeling (DSM) allows domain experts to concentrate on the essential characteristics of a problem space 

without being overwhelmed by the complexities that may occur in the solution space. DSM is focused on the creation of a 

metamodel for a specific domain, from which instances pertaining to specific configurations of that domain can be 

constructed. However, as the metamodel undergoes evolutionary changes, repositories of instance models (also called 

domain models) can become orphaned from their defining metamodel. Within the context of model-driven engineering 

(MDE), we have developed the Metamodel Recovery System (MARS) which addresses the problem of “metamodel drift” and 

recovers the design knowledge in a repository of legacy models. MARS is a semi-automatic system that uses grammar 

inference techniques to recover a metamodel by mining instance models. In addition to the instance models, there are other 

artifacts that can be investigated in the modeling repository. In this paper we describe an extension to MARS in the form of a 

type inference capability that is accomplished by the use of a program transformation engine that mines the model compiler 

code and recovers the type information of fields (or attributes) of metamodel entities. 

 

Keywords: Domain-specific modeling, grammar inference, program transformation. 

 

 

1. INDRODUCTION 

 

Many software artifacts created during the software 

lifecycle (e.g., models and source code) may be 

stored in a repository and depend on a language 

schema definition that provides the context for 

syntactic structure. For example, in the 

programming language domain a context-free 

grammar (or grammar) defines the syntactic 

constructs of a programming language. Similarly in 

the Domain-Specific Modeling (DSM) paradigm, 

a model is defined by a metamodel. DSM allows 

a higher level of abstraction than general purpose 

languages (GPLs) while simultaneously narrowing 

the design space to a single domain of discourse 

with visual models [1]. DSM involves the 

construction of a metamodel that defines the key 

elements of a domain, and instances of the 

metamodel, called instance models (or models),  

represent specific configurations of the domain. To 

address new feature requests (e.g., adaptation of 

a metamodel to accomodate new stakeholder 

concerns or evolution of a language to provide new 

language features) the repository artifacts might 

need to be transformed to the new schema definition. 

If this is not done, the respository may be replete 

with archaic artifacts. 

In the programming languages paradigm, the 

existence of over 500 general purpose and 

proprietary programming languages in commercial 

and public domains motivates the need to have 

expeditious and reliable software renovation tools.  

A strong case for applying a grammar-centric 

solution to solve software renovation problems in 

the programming language domain is made in [2]. 

These renovation tools can be used to solve re-

engineering problems like recovering source 

implementations or translating them to a different 

dialect.  

A rise in the use of modeling tools in industry 

and research [3] has resulted in an increase in the 

number of renovation problems in the modeling 

community. As a metamodel evolves, each new 

version captures some change in the modeling 

language and the instance models that are dependent 

on the metamodel definition need to be updated. An 

initial solution to this metamodel schema evolution 

problem using graph rewriting techniques is 

discussed in [4]. However, this schema evolution 

approach is not applicable when both the 

metamodels and the intermediate transformation 

steps do not exist, or are not accessible. Two 

example situations are: 1) losing a metamodel 

definition due to a hard-drive crash, and 2) 

encountering versioning conflicts when trying to 
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load instance models based on obsolete metamodels. 

We use the term metamodel drift to refer to the 

phenomenon of frequent metamodel evolution which 

can result in previous model instances being 

orphaned from the new definition. A growing 

number of both commercial and research 

organizations have reported occurances of lost and 

evolved metamodels [5, 6]. When the metamodel is 

no longer available for an instance model, the 

instance model will fail to load into the modeling 

tool (this is similar in concept to a change in a 

language grammar that invalidates prior programs 

and the associated compiler). However, if a 

metamodel can be inferred from a set of instance 

models the design knowledge contained in the 

instance models can be recovered.  

We have developed MARS [7], a semi-

automatic grammar-driven system which uses 

grammar inference techniques to recover 

metamodels from instance models. Grammar 

inference [8] is the process of learning syntax from 

examples where the examples are sets of strings 

defined on a specific alphabet. MARS is able to 

accurately infer metamodel elements, 

generalizations, aggregations and connections. 

A current limitation of MARS is its inability to infer 

attribute types (or fields) of model elements from the 

model instances. For example, a string value 

associated with an attribute in an instance model 

could correspond to a string or an enumeration 

value. However, in addition to the instance models 

there are other artifacts (such as model compilers) 

that can be mined in the modeling repository. Model 

compilers can traverse the internal representation of 

a model and perform analysis and translation tasks 

like generating new artifacts (e.g., source code). 

A model compiler may contain type information that 

cannot be inferred from the instance models. The 

key challenge with mining information from a model 

compiler is the difficulty of parsing the model 

compiler source (e.g., a complex C++ program) and 

performing the appropriate analysis to determine the 

type information.  

In this paper we demonstrate the use of a 

program transformation engine to parse the model 

compiler code and recover the type information of 

metamodel entities. We illustrate the technique on 

domain models from [7], where the focus was on 

inferring metamodels from models, and show how 

this new extension enables MARS to correctly infer 

attribute types of model elements. The rest of the 

paper is organized as follows: Section 2 gives an 

overview of MARS and applies the technique on an 

example domain. Section 3 elaborates on the 

program transformation technique for data type 

inference, and Section 4 is an experimental study of 

the new technique. Related work is covered in 

Section 5 and the paper concludes with a summary 

discussion and future work in Section 6. 

 

 

2. THE METAMODEL RECOVERY SYSTEM 

 

Figure 1 shows a metamodel for a Finite State 

Machine (FSM), originally presented in [7], which 

also will be the example used in this section. The 

metamodel specifies FSM concepts (e.g., start state, 

end state, and state) as well as the valid connections 

among all entities. An instance of this metamodel 

that shows a simple FSM composed of a start state, 

an end state and a connection between them  is 

shown in Figure 2. The metamodel also contains two 

First Class Objects (FCOs). An FCO element 

facilitates better inheritance relationship design 

amongst model entities by providing an intermediate 

level of generalization. There are no fields 

(attributes) in this metamodel. 

Although MARS uses the Generic Modeling 

Environment (GME) [9], its underlying principles 

can be applied to other modeling tools such as 

MetaCase’s metaEdit+ (http://www.metacase.com) 

and Microsoft’s DSL tools 
(http://msdn.microsoft.com/vstudio/dsltools/), 

amongst others. In the GME, a metamodel is 

described with UML class diagrams and constraints 

are specified in the Object Constraint Language 

(OCL) [10]. GME also provides an API for 

traversing a model and from the API its possible to 

create model compilers. 

 

 
 

Fig. 1  A metamodel for creating finite state 

machines. 

 

 
 

Fig. 2  An instance of a FSM 

 

To the best of our knowledge, MARS provides 

a first solution to the problem of recovering 

metamodels from instance models. It accomplishes 

this by application of grammar inference algorithms 

from the machine learning and programming 

languages community to the modeling domain. An 

overview of MARS is shown in Figure 3, which is 

an extension to the architecture initially presented in 
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[7]. MARS has three primary steps (see steps 1, 2 

and 3 in Figure 3) with an extension step labeled TI, 

which will be described in the next section. MARS 

takes as input a set of models exported as XML files, 

a capability provided by most modeling tools. 

However, there is a mismatch between the XML 

representation of a model and the syntax expected 

by the grammar inference tools. To overcome the 

mismatch in representation, MARS uses the 

Extensible Stylesheet Language Transformation 

Language XSLT [11]  (step 1 in Figure 3) to map the 

XML files to a textual domain-specific language 

(DSL) [12] called the Model Representation 

Language (MRL), which describes the domain 

models in a form that can be used by a grammar 

inference engine. An MRL program is a textual 

representation of the various metamodel elements 

(e.g., models, atoms and connections). As an 

example, the MRL representation of the FSM 

instance model in Figure 2 would be as follows:  

 

model StateDiagram {  

   StartState;  

   EndState; 

   connection  

   Transition : StartState  EndState;  

}  

 

atom StartState {  fields ;  } 

  

atom EndState {  fields ;  } 

 

 
 

Fig. 3  Overview of MARS 

(modified extension adapted from [7]) 

 

The MRL representations of the instance models are 

input to the metamodel inference process, which is 

performed within the language description 

environment LISA [13] (step 2 in Figure 3). The 

result of the inference process is a context-free 

grammar that is generated concurrently with the 

XML file containing the metamodel that can be used 

to load the instance models into the modeling tool 

(step 3 in Figure 3). For the FSM metamodel 

example in Figure 1, the inferred metamodel is 

shown in Figure 4. 

If we compare the original metamodel in Figure 

1 and the inferred metamodel Figure 4 we can 

observe that the inferred metamodel is almost 

exactly the same as the original metamodel except 

the names of the two StateInheritance FCOs in the 

original metamodel have been inferred as generic 

names FCO1 and FCO2. This presents no real 

consequence with respect to the essential capabilities 

as seen from an end-user’s perspective. The 

generalization hierarchy and all the metamodel 

elements are inferred accurately. 

 

 
 

Fig.  4 The inferred metamodel for FSM. 

 

The corresponding inferred grammar is shown 

below with the nonterminals in upper case letters, 

terminals in lower case letters and epsilon as ε. 

 

1.  STATEDIAGRAM  'model' StateDiagram 

   { PARTS0 } 

2.  PARTS0  MODELATOM0 FIELDS0  

            CONNECTIONS0 

3.  MODELATOM0  STARTSTATES  

                         ENDSTATES STATES  

4.  STARTSTATES  STARTSTATE 

5.  ENDSTATES  ENDSTATE ENDSTATES 

         | ENDSTATE 

6.  STATES  STATE STATES | ε 

7.  FIELDS0   ε  

8.  CONNECTIONS0  'connection'   

 TRANSITION TRANSITION →  

 transition : SRC0 →  DST0 ; 

 TRANSITION | transition : SRC0 →  

 DST0 ;  

9.  SRC0  'fco' FCO1 

10.  FCO1  STARTSTATE | STATE 

11.  DST0  'fco' FCO2 

12.  FCO2  ENDSTATE | STATE 

13.  STARTSTATE  'atom' StartState  

                         { FIELDS1 } 

14.  FIELDS1  ε 

15.  ENDSTATE  'atom' EndState { FIELDS2 } 

16.  FIELDS2  ε  

17.  STATE  'atom' State { FIELDS3 } 

18.  FIELDS3  ε 
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The quality of the inferred metamodel depends 

on the total number of instance models used as well 

as the level of detail available in the instance 

models. If the set of supplied instance models do not 

make use of all the constitutent elements of the 

original metamodel or exhibit all the variations in 

cardinalities of the connections between the 

elements, then those particular elements and 

cardinalities cannot be inferred. For example, if the 

only input to MARS was the instance model in 

Figure 2, then it would not be possible to infer the 

most accurate FSM metamodel. The reason for this 

is that the instance model does not make use of the 

state element nor contains enough information to 

infer cadinalities of the connections accurately. We 

refer the reader to [7] for further details on MARS, 

its core algorithm, and detailed discussion on the 

metamodel inference results of the domain examples 

used in this paper. 

Because the type information of fields is not 

available in the instance models, MARS infers all 

the fields as generic field types. As previously 

mentioned, model compilers may contain type 

information that can allow MARS to infer more 

complete and accurate metamodels. Recovering this 

type information would require the ability to parse 

and analyze the model compiler source (e.g., a 

complex C++ program). In the next section, we 

address this key problem by discussing the use of a 

program transformation tool. The Design 

Maintenance System (DMS) [14], to parse the model 

compiler code and ascertain the appropriate type 

information for attributes defined in the metamodel.  

 

3. TYPE INFERENCE USING DMS 

 

The previous section gave an overview of MARS 

and showed that the system is capable of inferring 

a metamodel from domain models represented by 

XML. However, for each attribute of the model 

elements, it is not possible to infer the element type 

from the representative XML of the model instances. 

For example, consider the Network metamodel in 

Figure 5, which contains networking concepts (e.g., 

routers, hosts, and ports) as well as the valid 

connections among all entities (Note: This example 

metamodel is taken from the tutorial that is part of 

the GME installation). Figure 6 shows an instance of 

this metamodel where there is an attribute called 

Port_IFSpeed in a Port atom that is named S0 

(located in inetgw). The value of this attribute is 128, 

but, the representative type could be integer, string, 

or even an enumerated type. In order to narrow 

down the selection scope of the possible types, 

additional model artifacts need to be mined. This 

section introduces a technique that infers model 

types from existing model compilers associated with 

the mined instance models. 

DMS is a program transformation engine and re-

engineering toolkit [14]. The core component of 

DMS is a term rewriting engine that provides 

powerful pattern matching and source translation 

capabilities. DMS was chosen for this task because 

of its scalability for parsing and transforming large 

source files in several dozen languages (e.g., C++, 

Java, COBOL, Pascal). DMS defines a specific 

language called PARLANSE, as well as a set of 

APIs (e.g., Abstract Syntax Tree API, Symbol Table 

API) for writing DMS tools to perform sophisticated 

program analysis and transformation tasks. Another 

consideration for the choice of DMS comes from our 

past success in using it to parse millions of lines of 

C++ code [15].  

Table 1 illustrates a fragment of a GME model 

compiler implemented in C++ for processing the 

routers in the Network domain diagram. The 

ProcessRouter method takes an instance of Router 

as an argument, displays the router attribute 

Router_Family, navigates each port inside and prints 

out the port attributes Port_IFType, Port_IFSpeed, 

and Port_IPAddress. The method GetAttribute is 

used to retrieve the attribute value according to the 

attribute name (Router_Family in Line 8) in the 

model and store it in a variable (fam in Line 8). The 

attribute name should be exactly the same as the 

name shown in the corresponding model because the 

model compiler is referencing metamodel concepts. 

Consequently, the type of the variable that is used in 

the model compiler to represent the attribute 

corresponds to the actual attribute type in the model 

(i.e., the attribute Router_Family can be inferred as 

type string based on the variable fam that is declared 

as a CString in Line 3 of the model compiler code 

fragment). 

 

 
 

Fig. 5  A metamodel for Network diagrams 

 

The general idea of implementing a type 

inference system is to set up a symbol table for the 

model compiler source code. A symbol table stores 

all of the variables along with appropriate attributes 

(e.g., scope of validity, type, and value). Figure 7 

describes a simplified symbol table for the 

ProcessRouter method in Table 1. This symbol table 

contains three symbol spaces that represent three 

different lexical scopes: method body, block 

(corresponds to Lines 4 to 7 in Table 1), and a while 

block (corresponds to Lines 12 to 18 in Table 1). 

Each symbol space contains the variable names as 

well as their declaration types that are valid within 
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the current lexical scope. By using the DMS Symbol 

Table API, a symbol table can be created easily 

during the parsing process. 

 

 
 

Fig. 6  An instance of a Network 

 
1 void CComponent::ProcessRouter(CBuilderModel *r) {  
2    ASSERT(r->GetKindName() == "Router"); 

3    CString fam;  
4    {   

5       int fam;   
6       …… 

7    } 
8    r->GetAttribute("Router_Family", fam);   

9    int ifspeed;      
10    const CBuilderAtomList *ports = r->GetAtoms("Port");  
11    POSITION pos = ports->GetHeadPosition();  

12    while(pos) {  

13       CBuilderAtom *port = ports->GetNext(pos);  

14       CString iftype, ipaddr;  
15       port->GetAttribute("Port_IFType", iftype);  

16       port->GetAttribute("Port_IFSpeed", ifspeed); 

17       port->GetAttribute("Port_IPAddress", ipaddr);  

18            ……. } } 

 

Tab. 1 An excerpt from the model compiler for 

processing routers in the Network domain 

 

 
 

Fig. 7  Symbol table for the Process Router method 

 

After the symbol table is constructed, it can be 

used to discover the variables that represent the 

model attributes. DMS offers the facilities to 

manipulate an Abstract Syntax Tree (AST) by 

invoking interface functions. Part of the 

PARLANSE implementation shown in Table 2 

searches the attribute variables in the model 

compiler source code. The AST:ScanNodes function 

traverses each node in the syntax tree. If the current 

visited node has a literal string value GetAttribute 

(Lines 7 and 8), the analysis determines the 

corresponding sub-tree expr_list from which the 

attribute_string (i.e., the real attribute name in the 

model) and attribute_id (i.e., the variable that is used 

to represent the attribute) can be extracted. After 

such an attribute name and variable pair is found, 

PARLANSE will look up this variable in the symbol 

table and return its corresponding type. As a result, a 

file of attribute name and type-pair listings (see 

Attribute Types icon in Figure 3) will be generated to 

serve as an input for step 3 of MARS. 

 
1 (AST:ScanNodes syntax_tree  
2    (lambda (function boolean AST:Node ) function 

3       (value (local (;; [attribute_string (reference string)] 

4                         [attribute_id (reference string)]               
5                         [expr_list AST:Node] 

6                     );; 

7         (ifthen (== (AST:GetNodeType ?) _identifier) 
8           (ifthen (== (@ (AST:GetString ?)) 'GetAttribute') 

9              (;;(= expr_list (AST:GetThirdChild 

(AST:GetParent 
10                (AST:GetParent (AST:GetParent 

(AST:GetParent ?))))))            

11    (AST:ScanNodes expr_list 
12      (lambda (function boolean AST:Node ) function 

13         (value (local (;; );; 

14           (;;(ifthen (== (AST:GetNodeType ?) 
_STRING_LITERAL) 

15             (= attribute_string (AST:GetString ?)) 
16               )ifthen 

17               (ifthen (== (AST:GetNodeType ?) _identifier) 

18                (;; (= attribute_id (AST:GetString ?))  
                                    …… } 

 

Tab. 2  PARLANSE code fragment to determine 

attribute types 

 

4. EXPERIMENTAL STUDY 

 

In this section, we discuss the results of applying the 

type recovery technique to diverse domains. Due to 

space constraints, we only show the results of 

applying the technique to the Petri Net [16] 

modeling language and the Network modeling 

language introduced in Section 3. The original 

metamodel for the Petri Net domain is shown in 

Figure 8 and consists of the elements Place and 

Transition, as well as the connections between them. 

A Place can also hold a certain number of tokens 

(attribute numberOfTokens) and the petriElements 

have Name and Description attributes. 

Figure 9 shows the inferred metamodel for the 

Petri Net domain which was inferred from a single 

instance model that was rich in information content 

(i.e., it uses all the elements and connections of the 

original metamodel). The only difference between 

the original and the inferred metamodels is that the 

petriElements FCO generalization hierarchy in the 

original metamodel is missing from the inferred 

metamodel. This is because generalization 

information is not available in instance models. 

Consequently, the attributes of the petriElements 

FCO (Name and Description) are inferred as 

attributes for Place and Transition in the inferred 

metamodel. The inferred metamodel for the Network 

domain (Figure 10) is almost the same as the 

original metamodel in Figure 5 except that the 

NetInterface and GenNet generalization names are 
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inferred as FCO1 and FCO2, respectively. This is 

because the names of the generalizations are not 

contained in instances. 

 

 
 

Fig.  8 Original Metamodel for the Petri Net Domain 

 

 
 

Fig. 9 Inferred metamodel for the Petri Net domain 

 

 
 

Fig. 10  Inferred metamodel for the  

Network domain 

 

Results of the type inference experiments for the 

Petri Net and Network domains are detailed in Table 

3 and Table 4, respectively. The types Integer and 

String are inferred as Int and CString because these 

are the corresponding equivalent types used by the 

GME model compiler. Apart from this, the only 

other difference is that the Enum type in Table 4 is 

inferred as a CString type. The reason for this is that 

GME persistently stores enumeration values as 

strings. The primary purpose of an enumeration type 

in a metamodel is to constrain the possible values of 

a string representation. However, this cannot be 

solely determined from an instance model and must 

involve human input. Future work will extend the 

type inference technique such that a user is asked to 

categorize a string type as a true string or as an 

enumeration type. 

 

 

Attribute Name Original Type Inferred Type 

numberOfTokens Integer Int 

Name String CString 

Description String CString 

 

Tab. 3  Original and inferred types for the  

Petri Net domain 

 

Attribute Name Original Type Inferred Type 

Family Enum CString 

IFType Enum CString 

Workload Enum CString 

IPAddress String CString 

Number Integer Int 

Netmask String CString 

AddressFirst String CString 

AddressLast String CString 

NetworkAddress String CString 

RoomLocation String CString 

 

Tab. 4 Original and Inferred types for the Network 

domain 

 

5. RELATED WORK 

 

The type inference technique described in this paper 

is different than type inference for functional 

programming languages, which aims to increase 

programmer productivity by freeing the programmer 

from the task of adding type annotations while 

maintaining type safety. This is accomplished by 

algorithms that use inference rules and are partially 

or fully able to infer the type of a variable or an 

expression lacking an explicit type annotation [17]. 

By comparison, type inference for MARS infers (or 

recovers) types of model fields from a repository of 

model compiler source code using a program 

transformation engine instead of inference rules. 

Our approach is more related to work on 

Document Type Definition (DTD) [18] and XML 

Schema [19] extraction. A DTD uses regular 

expressions to define the internal structure of an 

XML document. XML Schema is a grammar-based 

XML schema language that affords increased syntax 

and expressive power  than DTDs and along with 

a host of other XML schema languages has been 

proposed to replace DTDs. The Microsoft XSD 

Inference tool [20] infers an XML Schema from 

well formed XML instance documents. The tool 

uses inference rules to infer data types as follows: 

the most restrictive unsigned type is inferred for 

attribute values when they are first encountered. If 

a new value is encountered that does not match the 

currently inferred type, a type promotion mechanism 

promotes the inferred type to a new type that applies 

to both the currently inferred type and the new 

value. In [21], XML Schemas are modeled as 

Extended Context-Free Grammars (ECFGs) and 

a schema extraction algorithm based on grammar 

inference principles is used to infer XML Schemas. 
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The technique initially marks all simple elements in 

the instances as a generic data type Any to simplify 

the inference process. After the ECFG is inferred, 

the simple elements are revisited and an XML 

Schema language data type coverage subsumption 

graph is used to contrain the types for each element. 

The XTRACT [22] system uses a regular grammar 

inference induction engine to infer DTDs from XML 

documents. The method first induces equivalent 

regular expressions from DTD patterns and then 

uses the Minimum Description Length (MDL) [23] 

to choose the best DTD from a group of candidate 

DTDs. XTRACT does not attempt to infer element 

types. 

The work reported in [23] describes a method for 

extracting a logical structure from HTML files. This 

approach, like MARS, can be seen as a special case 

of grammar inference. After logical structure has 

been extracted, an equivalent XML file is generated. 

This is accomplished using three phases: visual 

grouping, element identification, and logical 

grouping. An important step in the element 

identification process is use of a document model, 

which is a kind of ontology for particular document 

types (e.g., personal home pages). A document 

model is manually prepared beforehand by careful 

examination of the general characteristics of such 

kind of documents. The main difference between 

MARS and this logical structure extraction 

technique, besides the application domain (model 

engineering vs. web documents), is the use of 

document models (defined as a grammar) for 

representing the knowledge of a document type. In 

MARS, a metamodel and the skeleton of the 

hierarchical structure do not exist and need to be 

inferred solely from examples of usage (models). 

Unlike MARS, this technique does not produce a 

grammar (in a form of XML schema) of the 

generated XML document. 

 

 

6. CONCLUSION 

 

MARS is a semi-automatic grammar inference based 

technique that addresses the metamodel drift 

problem [7]. The main contribution of this paper is 

the application of DMS, a powerful program 

transformation engine, to address the problem of 

type inference in MARS. More specifically, DMS is 

used to parse model compilers to recover the type 

information of metamodel fields. An experimental 

study is conducted on various metamodel domains 

and it is shown that the proposed type inference 

technique is successfully able to infer all but enum 

types. To overcome this limitation, the use of human 

intervention to disambiguate between string and 

enum types is proposed.  

Several of the listings in this paper are fragments 

of the complete representation. All of the extended 

listings (e.g., XSLT rules, DMS transformations, 

sample metamodels and instance models, grammars, 

and model compilers) are available at the MARS 

website, which can be found at:  

http://www.cis.uab.edu/softcom/GenParse/mars.htm 
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