
Automatic Generation of Model Traversals

from Metamodel Definitions

Tomaž Lukman
Jožef Stefan Institute

Jamova 39, 1000 Ljubljana Slovenia

tomaz.lukman@ijs.si

Marjan Mernik
University of Maribor

Smetanova 17, 2000 Maribor Slovenia

marjan.mernik@uni-mb.si

Zekai Demirezen, Barrett Bryant
University of Alabama at Birmingham

Dept. of Computer and Information Sciences
Birmingham, AL 35294-1170
{zekzek, bryant}@cis.uab.edu

Jeff Gray
University of Alabama

Department of Computer Science
Tuscaloosa, AL 35487-0290

gray@cs.ua.edu

ABSTRACT

Developing software from models is a growing practice and there
exist many model-based tools (e.g., model editors, model
interpreters) for supporting model-driven engineering. Even
though these tools facilitate the automation of software
engineering tasks and activities, such tools are typically
engineered manually. In this paper, a simple technique is
described that enables automatic generation of model traversals.
Semantic rules can be inserted into a traversal algorithm to
provide meaning to the modeling language. The combination of
automated traversal generation with attached semantic rules can
generate a model interpreter that can translate a model into some
other representation.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.4 [Programming Languages]: Processors

General Terms
Algorithms, Languages, Theory.

Keywords
Metamodeling, Semantics, Attribute Grammars, Domain-Specific
Languages.

1. INTRODUCTION
With increasing frequency, scientists and engineers in diverse
areas of focus, as well as end-users with specific domain
expertise, are requiring computational processes to allow them to

complete some task (e.g., avionics engineers who seek input on a
modeled design from verification tools, or geneticists who need to
describe computational queries to process a gene expression). A
challenge emerges from the lack of knowledge of such users in
terms of expressing their computational desire (i.e., such users
typically are not familiar with programming languages). Model-
driven engineering (MDE) is an approach that provides higher
levels of abstraction to allow such users to focus on the problem,
rather than the specific solution or manner of realizing that
solution through lower level technology platforms [1]. In
particular, domain-specific modeling (DSM) is a modeling
approach that provides languages that fit the domain of an end-
user by offering intentions, abstractions, and visualizations for
domain concepts [2]. These languages can either be textual, which
we will refer to as domain-specific languages (DSLs); or visual,
which we will refer to as domain-specific modeling languages
(DSMLs). Computer scientists may also benefit from the higher
abstractions provided by DSMLs (e.g., describing the deployment
of an application with a modeling language, compared to
handcrafting thousands of lines of XML to represent the same
intention).

However, the potential for impact of DSM is reduced due to the
imprecise nature in which such languages are defined. The large
majority of such languages are defined in an ad hoc manner that
lacks precision and a common reference definition for
understanding the meaning of language concepts. In current
practice, the meaning of a modeling language is often contained
only in a model translator (we will use the term model interpreter

in this paper to refer to such translators) that converts a model
representation into some other form (e.g., source code). The
current situation in MDE is not unlike the early period of
computing when the definition of a programming language was
delegated to “what the compiler says it means.” Such an approach
not only promotes misunderstanding of the meaning of a
language, but also limits opportunities for automating the
generation of various language tools (much like the adoption of
grammars provided a reference point for generation of compiler
and other tools for programming languages).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACMSE '10, April 15-17, 2010, Oxford, MS, USA.
Copyright (c) 2010 ACM 978-1-4503-0064-3/10/04... $10.00

The advantages of formal specification of programming language
semantics are well-known [3, 4]. The meaning of a program can
be precisely and unambiguously defined, which offers a unique
possibility for automatic generation of compilers or interpreters.
In our previous work [5, 6], we investigated how the attribute
grammar specification formalism for programming languages can
be used to generate many other language-based tools, such as:
syntax-directed editors, visualizers, animators, debuggers, and
testing tools. In most of these cases, the core language definition
must be augmented with tool-specific information (e.g., mapping
information in debuggers). In other cases, a fragment of a formal
language definition (e.g., regular definitions for language
knowledgeable editors) is enough for automatic tool generation. It
is also possible to extract implicit information from the formal
language definition (e.g., dependencies among attributes in
semantic functions for a dependency graph viewer) to
automatically generate the desired tool. This earlier work was
particularly important in identifying generic (fixed) and specific
(variable) parts from which language-based tools can be
automatically generated [5]. The approach was applied to GPLs
(general-purpose languages), as well as to domain-specific
languages (DSLs) [7].

Unfortunately, the formal specification of the syntax and
semantics of modeling languages have not matured deeply. While
the syntax of modeling languages is commonly specified by
metamodels, an appropriate and standard formalism for specifying
(behavioral) semantics of modeling languages does not yet exist.
This is an important research topic in MDE and several proposals
have already emerged [8-10] that focus on the first
aforementioned benefit (i.e., that the meaning of a model is
precisely and unambiguously defined), while no proposal exists
yet for automatic generation of model interpreters, debuggers,
simulators and verification tools.

In this paper, we describe our investigation into a formalism to
specify the semantics of modeling languages from which different
language-based tools (e.g., interpreter, code generator) can be
automatically generated. Particularly, we introduce a technique
for automatic generation of model interpreters. Building model-
based tools from scratch is time consuming and error prone,
which makes maintenance very costly. From our experience and
that reported by others from industry, building model interpreters
for various DSMLs requires significant effort [11, 12]. Moreover,
to be productive, a software developer needs other tools (e.g.,
simulator, verifier, debugger, etc.). The lack of appropriate tools
may cause newly developed DSMLs to become obsolete.

The next section outlines the literature in several categories that
relate to the topic of the paper. The core of the paper is contained
in Section 3, which introduces the specific ideas of our approach.
A small case study is discussed in Section 4, followed by
concluding comments in Section 5.

2. RELATED WORK
Some initial work on the generation of various tools for modeling
languages exists. An important basis for the automatic generation
of model-based tools is the way that the DSML semantics are
defined. Different approaches for defining the semantics of
DSMLs have been proposed; these differ in their applicability and
potential to leverage automatic (or at least semi-automatic)
language tool generation.

A common way of defining the semantics is through translation

semantics, where the abstract syntax of the main DSML is
mapped into the abstract syntax of an existing formal language
that has well-defined and understood semantics. An advantage of
this approach is that the DSML can reuse existing tools of the
language into which it is translated. A common critique of this
approach is that since the semantics definition is not defined in
the metamodel of the DSML, it is very demanding to correctly
map the constructs of the DSML into the constructs of the target
language. Another challenge of the translation semantics approach
is the mapping of execution results (e.g., error messages,
debugging traces) back into the DSML in a meaningful manner,
such that the domain expert using the DSML can understand the
result. One concrete approach that uses translation semantics is
called semantic anchoring [8], which uses the well-known
Abstract State Machines (ASM) formalism to define the
semantics. This solution maps the abstract syntax of the DSML,
which was defined in the GME (Generic Modeling Environment)
metamodeling tool [13], into well-established semantic domains,
called semantic units (e.g., timed automata, and discrete event
systems) that have been defined in the ASML (Abstract State
Machine Language) tool. The Moses toolsuite [14], which defines
the syntactical aspects (e.g., vertex edge/types, syntactical
predicates) of the language with a Graph Type Definition
Language (GTDL), uses ASM for prototyping model interpreters
to achieve the definition of semantics. Based on this kind of
formal specification, the Moses toolsuite generates animation and
debugging tools for visual models. The work presented in [10, 15]
describes a translation semantics definition with Maude, which is
a rewriting logic-based language. Based on such a semantics
definition, simulation, reachability and model-checking analysis
tools can be generated. Sadilek and Wachsmuth [16] present a
semantics definition framework based on a transition system,
where transitions can be defined with Prolog, Schema or ASM.
The framework enables semi-automatic generation of visual
interpreters and debuggers.

Another approach is to weave behavior into the abstract syntax
(i.e., the metamodel) by a meta-language (also called action
language), which can be used to specify the bodies of operations
that occur in the metamodel. This permits the model to be
executable, because the semantics are defined inside the operation
bodies. The significant drawback of this approach is the fact that
some meta-languages are very similar to 3rd generation
programming languages; therefore, they have to be used in an
operative way. The advantage of this approach is the fact that this
kind of semantics specification can be mastered by most users
with a programming background. A well-known representative of
this approach is the Kermeta tool [17], which extends an abstract
metalayer with an imperative action language to weave a semantic
definition within the metamodel. The built-in support for
specification of operational semantics in Kermeta enables the
automatic generation of simulation and testing tools.

Semantics can also be specified through rewriting systems, where
the system typically consists of rewrite rules. The existing
approaches in this category often employ graph rewriting where
the semantics can be specified in an operational fashion through
the graphical definition given by graph grammars. Graph
rewriting specification was employed in the AToM3 tool [18, 19],
which uses (triple) graph grammars as rewriting rules. One of the
interesting features of AToM3 is that the definition of rewriting

rules is given through concrete syntax that makes semantic
specification especially amenable for domain experts. AToM3 can
use graph grammar definitions to generate visual model
simulators and implement model optimizations and code
generation.

3. EXTENDED METAMODELS
This section introduces a novel approach for specifying the
semantics of modeling languages. The basic essence of our idea is
to extend a metamodel with the semantic description. This is
similar to the idea of attribute grammars [20] in the field of
programming languages, where semantics are defined on top of
syntax definitions. Our idea is a natural step for MDE engineers
and a seamless integration with the current practice of defining the
abstract syntax of modeling languages. The proposed approach
consists of two parts: 1) the specification of the semantic
information in the metamodel, and 2) an automatic synthesis of
this information so that model-based tools can be generated. Both
of these parts will be presented in the following subsections, with
the emphasis on the algorithm that allows automatic traversal of
models and the evaluation of the meaning of a specific model.

3.1 Lessons learned from attribute grammars
With attribute grammars, traversal algorithms can range from a
simple and non-efficient tree traversal (where nodes are visited as
long as non-evaluated attributes exist in a tree), to more
sophisticated and efficient traversals (where nodes are visited in a
more optimal way). The visiting order can be computed from the
fact that an attribute depends on another attribute, which is
attached to a different node; this node has to be visited and its
attribute evaluated before the attribute that depends on it. Note
that circular dependencies among attributes are not allowed. Such
algorithms (e.g., for non-circular attribute grammars, ordered
attribute grammars [21]) already exist for trees, but have not yet
been developed for graphs, which are more challenging due to
possible cycles in graph structures.

3.2 Model semantics specification
The semantics of the modeling language that extend the
metamodel is given through semantic rules and semantic
attributes. The semantics rules carry semantic information that
specifies how semantic attributes are calculated when the
semantics of a model is being computed. Semantic rules are
specified through an action language, which is currently Java. The
attributes are used to compute the meaning of the current model.
Attribute occurrences in model elements are initially undefined
and are then gradually defined and redefined by the traversal
algorithm to obtain/compute the meaning of the whole model.
Because the semantics of particular metamodel elements will be
stored as attribute occurrences in a graph representing a particular
model, which conforms to that metamodel, the meaning of the
model will be obtained by evaluating attribute occurrences. The
semantic description is still compositional because the meaning of
subparts will be stored in attribute occurrences representing those
subparts. Hence, the meaning of the entire model will be stored in
attribute occurrences of the root element, as is the case of attribute
grammars. In this manner, a model engineer is relieved from the
error prone and effort demanding task of writing model
interpreters/code generators, since with such a semantics
specification an automatic generation is possible. Moreover, such

description would also allow automatic generation of other
model-based tools (e.g., debugger, simulator) in the same manner
as we developed language-based tools in our previous efforts [5,
22].

3.3 Automatically deriving model traversals
To achieve automatic generation of modeling tools, the key
challenge is to develop a suitable traversal algorithm over models
(graphs) for evaluating attribute occurrences. This traversal
algorithm is dependent on the metamodel, which describes the
structure of a modeling language (i.e., concepts in a domain and
their relationships), and on the tool API, which provides access to
the internal representation of models. Many metamodeling
environments (e.g., GME-Generic Modeling Environment [13],
GMF-Graphical Modeling Framework [23], and GEMS-Generic
Eclipse Modeling System [24]) have different mechanisms to
store metamodels and provide different APIs to query and
navigate models. Because of this, a general traversal algorithm
should consist of a fixed (tool-independent) and a variable (tool-
dependent) part. In this manner, our technique could be more
easily adopted by existing and future tools. In the next
subsections, an initial traversal algorithm for extended
metamodels is defined within EMF (Eclipse Modeling
Framework), which is central to modeling in the Eclipse platform.

3.3.1 Discussion of the traversal algorithm
The initial traversal algorithm is simple and will be gradually
optimized, similar to the case in the now mature field of attribute
grammars. The main requirements/challenges for the traversal of a
model that should be observed by our algorithm are: (i) all model
elements should be visited; (ii) the traversal should not fall into an
endless loop, because of the cycles that occur in models; (iii) a
clear beginning of a model should be determined, similar to a root
in the case of trees; (iv) independent of the fact that models can be
disconnected (i.e., some nodes of the model might not be
connected to others), a traversal of the model and computation of
the meaning should be possible.

When reflecting on our experience in implementing model
interpreters, we made several interesting observations. We used
these observations in development of our model traversal
generation algorithm. The traversal is automatically generated
from the information found in the definition of the abstract syntax
of the DSML (i.e., found in the metamodel). Because of this fact,
each model that conforms to the metamodel can be traversed. The
generated traversal satisfies all the requirements stated in the
previous paragraph. Due to our experience with the EMF
metamodeling environment, we initially proposed an algorithm
that works on metamodels specified with ECore, which is an
adapted version of the EMOF (Essential Meta-Object Facility)
standard for the EMF environment and is widely used in industry
and academia. In the future, we plan to extend our technique to
other means (facilities/languages) for specifying metamodels.

The major observation we made was that developers navigate
through a model based on the nodes (we will refer to them as
metaclasses) and connections (we will refer to them as
relationships) between these nodes, which are specified in the
metamodel. ECore only allows the following metarelationships
between two metaclasses (or the same metaclass): unidirectional
association, bidirectional association, composition and

generalization. Based on these elements, which are used in the
definition of a metamodel and the already mentioned
observations, we defined the characteristics (found in a
metamodel specified by ECore) that influence the model
query/traversal and corresponding patterns of navigation. These
characteristics, which are visualized in Figure 1, are described in
the following paragraphs.

(a) Root metaclass

A very common characteristic of metamodels defined in ECore is
the fact that there is one metaclass, which serves as a container for
other metaclasses (i.e., other metaclasses are connected to this
metaclass with a composition metarelationship). This metaclass
can be considered as the root of the metamodel and the instance of
it as the root of the model. The root defines the start of the
traversal model. If we visualize such a metamodel via a model
editor that was generated by the GMF (Graphical Modeling
Framework) tool, then the root metaclass is visualized as the
diagram on which the visual representations of the instances of
the contained metaclass are displayed.

(b) Unidirectional metarelationship

The traversal on two metaclasses (or one self-related metaclass)
that are connected by a unidirectional metarelationship is
straightforward. The navigation will follow the path into which
the arrow points. The multiplicity on the side of the arrow has to
be considered, since it indicates if a list of instances (which can be
limited or unlimited) or just an instance (which can be mandatory
or optional) has to be traversed.

(c) Bidirectional metarelationship

Bidirectional metarelationships can be considered as an
equivalent to two unidirectional metarelationships between two
metaclasses (or the same metaclass) in both ways. Therefore, the
traversal is executed in both directions.

(d) Composition metarelationship

When encountering composition metarelationships, the traversal
will go from the metaclass that is attached to the filled diamond to
the metaclass attached to the other end of the metarelationship.
Multiplicities must also be considered.

(e) Generalization metarelationship

When dealing with generalization metarelationships, one has to be
careful. We decided to traverse the generalization/specialization
structure from the most general metaclass found at the top of the
inheritance tree to the leaves of the inheritance tree. When dealing
with a generalization metarelationship, we refer to the more
general metaclass as the supermetaclass and the more concrete
metaclass (i.e., the one that inherits from the other) as the
submetaclass. The supermetaclass can be navigated/traversed from
any other metaclass that is connected to the supermetaclass with a
composition (being the contained), a unidirectional
metarelationship (being the target), or a bidirectional
metarelationship. When considering the actual model, it is
necessary to find out if an instance of a supermetaclass is also an
instance of any of the submetaclasses that inherit from it. If this is
the case, then the submetaclass in the inheritance tree should also
be considered for traversal. Because the traversal is carried out
from the top of the inheritance tree, there is no need to traverse
the inheritance tree bottom-up (i.e., starting from the leaves).

(f) Root metaclass with a self-containing metarelationship

Some metamodels have a root metaclass, which is connected to
itself by a composition metarelationship. This characteristic is
used to enable a hierarchical decomposition in models that
conform to such a metamodel. Such models have a diagram,
which has a hierarchy of subdiagrams of the same type, when
visualized. The traversal of this characteristic requires a recursive
algorithm, which stops when it finds the root of the model. The
root of the model is the instance (class) that has no parent
instances to which it is connected by a composition.

(a) Root metaclass

(b) Unidirectional
metarelationship

(c) Bidirectional
metarelationship

(d) Composition
metarelationship

(e) Generalization
metarelationship

(f) Root metaclass with self containing metarelationship

Figure 1: Characteristics influencing model traversal

To be able to take advantage of the identified characteristics, only
metamodels that satisfy certain constraints should be used. These
constraints are:

− The model root must not be connected to itself with any kind
of metarelationship, except a composition metarelationship.

− Bidirectional metarelationships are not used (they are usually
not used in metamodeling with ECore). Instead, two
unidirectional metarelationships that are navigable in
opposite ways are used, which makes the generation less
complex. An alternative would be to convert bidirectional
metarelationships to unidirectional metarelationships
automatically before executing the algorithm.

3.3.2 An algorithm for model traversal generation
Based on the identified characteristics, it is possible to define an
algorithm that automatically constructs a model traversal for any
metamodel that satisfies the identified constraints.

The generated traversal satisfies all the identified requirements
mentioned in Section 3.3.1, although it may not be optimal. The
outline of the algorithm for constructing such a traversal is given
in Listing 1.

modelRoot = findAbsoluteModelRoot();

visit(modelRoot);

// recursive visiting function

function visit(currentModelElement)

// evaluate the current node

evaluateInheritedAttributes();

// visit possible generalizations – top down

if currentModelElement has subMetaclass

subMetaclassOfCurrent

 = getSubMetaclass(currentModelElement);

visit(subMetaclassOfCurrent);

end-if

// visit possible generalizations – bottom up

if currentModelElement has superMetaclass

//no computation needed since the inheritance tree

//is already traversed in a top down manner

end-if

// visit possible unidirectional relationships

foreach unidirectionalRel in currentModelElement

if unidirectionalRel.source == currentModelElement

 evaluateInheritedAttributes();

foreach modelElement in unidirectionalRel.target

visit(modelElement);

end-foreach

evaluateSynthesizedAttributes();

markPathAsVisited();

end-if

end-foreach

// visit possible composition relationships

foreach compositionRel in currentModelElement

if compositionRel.source == currentModelElement

 evaluateInheritedAttributes();

foreach modelElement in compositionRel.target

visit(modelElement);

end-foreach

evaluateSynthesizedAttributes();

markPathAsVisited();

end-if

end-foreach

evaluateSynthesizedAttributes();

end-function

Listing 1: Outline of our model traversal generation algorithm

4. EXAMPLE TRAVERSAL GENERATION
To demonstrate the proposed semantic definition and automatic
generation of a model interpreter, the widely known and well-
understood example of a finite state machine (FSM) modeling
language is used. A metamodel of the FSM, which is annotated
with the semantic information, can be found in Figure 2.

From the metamodel (Figure 2), it can be observed that the
structure is quite simple and that a state machine (abstracted by
the ‘StateMachine’ metaclass) consists of two main model
elements that have to be traversed, namely states (represented by
the ‘AbstractState’ metaclass) and transitions (represented by the
‘Transition’ metaclass). In the metamodel we can see that each of
the metaclasses has its own semantic rule that is used to
manipulate the values of semantic attributes and to compute the
meaning of the whole model. Before the beginning of the
traversal, the attributes ‘envs’ and ‘envt’ are initialized. Both
attributes store actual states and transitions in the model. While
visiting states and transitions, useful information (e.g., name of a
state, source and destination of a transition) is stored and finally
used in a compute function (not shown in the paper) that outputs
the meaning of the model.

Figure 2: A metamodel of a FSM annotated with the proposed

semantic information (semantic attributes and semantic rules)

According to our algorithm and additional computation
(evaluation of semantic information), a model interpreter can be
automatically generated. An excerpt of the pseudocode for the
FSM example can be seen in Listing 2. This example
demonstrates an automatic generation of a model interpreter.

modelRoot = StateMachine();

modelRoot->TransitionList.envt=new EList();

modelRoot->AbstractState.envs=new EList();

foreach AbstractState in modelRoot->states

if notVisited()

 AbstractState.envs.insert(AbstractState.text);

 markPathAsVisited();

end-if

end-foreach

foreach Transition in modelRoot->states

if notVisited()

 Transition.envt.insert(Transition.src,

 Transition.dst);

 markPathAsVisited();

end-if

end-foreach

modelRoot.code = compute(AbstractSate.envs,

 Transition.envt);

Listing 2: An excerpt of an automatically generated

interpreter for the FSM example presented in Figure 2

5. CONCLUSION
Model-driven engineering offers a capability to use higher level
models to define design intentions, which can then be generated
to lower level representations (e.g., source code). However, the
implementation of translators to perform the generation is often a
manual process. This paper describes our algorithm for generating
model traversals from metamodel definitions. Semantic rules and
attribute evaluation can be performed during the traversal
navigation to define the meaning of a particular model, based on
the metamodel semantics. Future work includes the
implementation of mature tool support in EMF-based modeling
tools.

6. ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER award
(0643725).

7. REFERENCES
[1] D. C. Schmidt. 2006. Guest Editor's Introduction: Model-

Driven Engineering. IEEE Computer. vol. 39, no. 2, pp. 25-
31.

[2] J. Sprinkle, M. Mernik, J.-P. Tolvanen and D. Spinellis.
2009. Guest Editors' Introduction: What Kinds of Nails Need
a Domain-Specific Hammer? IEEE Software. vol. 26, no. 4,
pp. 15-18.

[3] D. Harel and B. Rumpe. 2004. Meaningful Modeling: What's
the Semantics of "Semantics"? IEEE Computer. vol. 37, no.
10, pp. 64-72.

[4] H. R. Nielson and F. Nielson. 1992. Semantics with
Applications. A Formal Introduction. John Wiley & Sons.

[5] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J.
Gray and H. Wu. 2005. Automatic generation of language-
based tools using the LISA system. IEE Proceedings
Software. vol. 152, no. 2, pp. 54-69.

[6] M. Mernik, M. Lenic, E. Avdicausevic and V. Zumer. 2002.
LISA: An Interactive Environment for Programming
Language Development. Proceedings of the 11th
International Conference on Compiler Construction
(Grenoble, France, 2002). pp. 1-4.

[7] M. Mernik, J. Heering and A. M. Sloane. 2005. When and
how to develop domain-specific languages. ACM Computing
Surveys. vol. 37, no. 4, pp. 316-344.

[8] K. Chen, J. Sztipanovits, S. Abdelwalhed and E. Jackson.
2005. Semantic anchoring with model transformations.
Model Driven Architecture - Foundations and Applications
(Nuremberg, Germany, 2005). pp. 115-129.

[9] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bezivin and A.
Pierantonio. 2006. Extending AMMA for Supporting
Dynamic Semantics Specifications of DSLs. Technical
report. INRIA and LINA.

[10] J. E. Rivera and A. Vallecillo. 2007. Adding behavioral
semantics to models. Proceedings of the International
Enterprise Distributed Object Computing Conference
(EDOC 2007) (Annapolis, Maryland, USA, 2007). pp. 169-
180.

[11] J. Gray, J. P. Tolvanen, S. Kelly, A. Gokhale, S. Neema and
J. Sprinkle. 2007. Domain-Specific Modeling. Handbook of
Dynamic System Modeling. Boca Raton, Florida: CRC
Press.

[12] S. Kelly and R. Pohjonen. 2009. Worst Practices for
Domain-Specific Modeling. IEEE Software. vol. 26, no. 4,
pp. 22-29.

[13] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G.
Nordstrom, J. Sprinkle and G. Karsai. 2001. Composing
Domain-Specific Design Environments. IEEE Computer.
vol. 34, no. 11, pp. 44-51.

[14] Y. Jin, R. Esser and J. W. Janneck. 2004. A method for
describing the syntax and semantics of UML statecharts.
Software and Systems Modeling. vol. 3, no. 2, pp. 150-163.

[15] J. R. Romero, J. E. Rivera, F. Durán and A. Vallecillo. 2007.
Formal and tool support for model driven engineering with
Maude. Journal of Object Technology. vol. 6, no. 9, pp. 187-
207.

[16] D. A. Sadilek and G. Wachsmuth. 2009. Using
Grammarware Languages to Define Operational Semantics of
Modelled Languages. Objects, Components, Models and
Patterns (Zurich, Switzerland, 2009). pp. 348-356.

[17] P. A. Muller, F. Fleurey and J. M. Jézéquel. 2005. Weaving
executability into object-oriented meta-languages. Model
Driven Engineering Languages and Systems (Montego Bay,
Jamaica, 2005). pp. 264-264.

[18] J. de Lara and H. Vangheluwe. 2008. Translating model
simulators to analysis models. Fundamental Approaches to
Software Engineering (Budapest, Hungary, 2008). pp. 77-92.

[19] J. de Lara, H. Vangheluwe and M. Alfonseca. 2004. Meta-
modelling and graph grammars for multi-paradigm modelling
in AToM3. Software and Systems Modeling. vol. 3, no. 3, pp.
194-209.

[20] D. Knuth. 1968. Semantics of context-free languages. Theory
of Computing Systems. vol. 2, no. 2, pp. 127-145.

[21] J. Paakki. 1995. Attribute grammar paradigms - a high-level
methodology in language implementation. ACM Computing
Surveys. vol. 27, no. 2, pp. 196-255.

[22] H. Wu, J. Gray and M. Mernik. 2008. Grammar-driven
generation of domain-specific language debuggers. Software:
Practice and Experience. vol. 38, no. 10, pp. 1073-1103.

[23] R. C. Gronback. 2009. Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley
Professional.

[24] J. White, D. C. Schmidt and S. Mulligan. 2007. The Generic
Eclipse Modeling System. Model-Driven Development Tool
Implementer's Forum at the 45th International Conference on
Objects (Zurich, Switzerland, 2007).

