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ABSTRACT 

Developing software from models is a growing practice and there 
exist many model-based tools (e.g., model editors, model 
interpreters) for supporting model-driven engineering. Even 
though these tools facilitate the automation of software 
engineering tasks and activities, such tools are typically 
engineered manually. In this paper, a simple technique is 
described that enables automatic generation of model traversals. 
Semantic rules can be inserted into a traversal algorithm to 
provide meaning to the modeling language. The combination of 
automated traversal generation with attached semantic rules can 
generate a model interpreter that can translate a model into some 
other representation. 

Categories and Subject Descriptors 
D.3.1 [Programming Languages]: Formal Definitions and 
Theory; D.3.4 [Programming Languages]: Processors 

General Terms 
Algorithms, Languages, Theory. 

Keywords 
Metamodeling, Semantics, Attribute Grammars, Domain-Specific 
Languages. 

1. INTRODUCTION 
With increasing frequency, scientists and engineers in diverse 
areas of focus, as well as end-users with specific domain 
expertise, are requiring computational processes to allow them to 

complete some task (e.g., avionics engineers who seek input on a 
modeled design from verification tools, or geneticists who need to 
describe computational queries to process a gene expression). A 
challenge emerges from the lack of knowledge of such users in 
terms of expressing their computational desire (i.e., such users 
typically are not familiar with programming languages). Model-
driven engineering (MDE) is an approach that provides higher 
levels of abstraction to allow such users to focus on the problem, 
rather than the specific solution or manner of realizing that 
solution through lower level technology platforms [1]. In 
particular, domain-specific modeling (DSM) is a modeling 
approach that provides languages that fit the domain of an end-
user by offering intentions, abstractions, and visualizations for 
domain concepts [2]. These languages can either be textual, which 
we will refer to as domain-specific languages (DSLs); or visual, 
which we will refer to as domain-specific modeling languages 
(DSMLs). Computer scientists may also benefit from the higher 
abstractions provided by DSMLs (e.g., describing the deployment 
of an application with a modeling language, compared to 
handcrafting thousands of lines of XML to represent the same 
intention). 

However, the potential for impact of DSM is reduced due to the 
imprecise nature in which such languages are defined. The large 
majority of such languages are defined in an ad hoc manner that 
lacks precision and a common reference definition for 
understanding the meaning of language concepts. In current 
practice, the meaning of a modeling language is often contained 
only in a model translator (we will use the term model interpreter 

in this paper to refer to such translators) that converts a model 
representation into some other form (e.g., source code). The 
current situation in MDE is not unlike the early period of 
computing when the definition of a programming language was 
delegated to “what the compiler says it means.” Such an approach 
not only promotes misunderstanding of the meaning of a 
language, but also limits opportunities for automating the 
generation of various language tools (much like the adoption of 
grammars provided a reference point for generation of compiler 
and other tools for programming languages).  
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The advantages of formal specification of programming language 
semantics are well-known [3, 4]. The meaning of a program can 
be precisely and unambiguously defined, which offers a unique 
possibility for automatic generation of compilers or interpreters. 
In our previous work [5, 6], we investigated how the attribute 
grammar specification formalism for programming languages can 
be used to generate many other language-based tools, such as: 
syntax-directed editors, visualizers, animators, debuggers, and 
testing tools. In most of these cases, the core language definition 
must be augmented with tool-specific information (e.g., mapping 
information in debuggers). In other cases, a fragment of a formal 
language definition (e.g., regular definitions for language 
knowledgeable editors) is enough for automatic tool generation. It 
is also possible to extract implicit information from the formal 
language definition (e.g., dependencies among attributes in 
semantic functions for a dependency graph viewer) to 
automatically generate the desired tool. This earlier work was 
particularly important in identifying generic (fixed) and specific 
(variable) parts from which language-based tools can be 
automatically generated [5]. The approach was applied to GPLs 
(general-purpose languages), as well as to domain-specific 
languages (DSLs) [7]. 

Unfortunately, the formal specification of the syntax and 
semantics of modeling languages have not matured deeply. While 
the syntax of modeling languages is commonly specified by 
metamodels, an appropriate and standard formalism for specifying 
(behavioral) semantics of modeling languages does not yet exist. 
This is an important research topic in MDE and several proposals 
have already emerged [8-10] that focus on the first 
aforementioned benefit (i.e., that the meaning of a model is 
precisely and unambiguously defined), while no proposal exists 
yet for automatic generation of model interpreters, debuggers, 
simulators and verification tools. 

In this paper, we describe our investigation into a formalism to 
specify the semantics of modeling languages from which different 
language-based tools (e.g., interpreter, code generator) can be 
automatically generated. Particularly, we introduce a technique 
for automatic generation of model interpreters. Building model-
based tools from scratch is time consuming and error prone, 
which makes maintenance very costly. From our experience and 
that reported by others from industry, building model interpreters 
for various DSMLs requires significant effort [11, 12]. Moreover, 
to be productive, a software developer needs other tools (e.g., 
simulator, verifier, debugger, etc.). The lack of appropriate tools 
may cause newly developed DSMLs to become obsolete. 

The next section outlines the literature in several categories that 
relate to the topic of the paper. The core of the paper is contained 
in Section 3, which introduces the specific ideas of our approach. 
A small case study is discussed in Section 4, followed by 
concluding comments in Section 5. 

2. RELATED WORK 
Some initial work on the generation of various tools for modeling 
languages exists. An important basis for the automatic generation 
of model-based tools is the way that the DSML semantics are 
defined. Different approaches for defining the semantics of 
DSMLs have been proposed; these differ in their applicability and 
potential to leverage automatic (or at least semi-automatic) 
language tool generation. 

A common way of defining the semantics is through translation 

semantics, where the abstract syntax of the main DSML is 
mapped into the abstract syntax of an existing formal language 
that has well-defined and understood semantics. An advantage of 
this approach is that the DSML can reuse existing tools of the 
language into which it is translated. A common critique of this 
approach is that since the semantics definition is not defined in 
the metamodel of the DSML, it is very demanding to correctly 
map the constructs of the DSML into the constructs of the target 
language. Another challenge of the translation semantics approach 
is the mapping of execution results (e.g., error messages, 
debugging traces) back into the DSML in a meaningful manner, 
such that the domain expert using the DSML can understand the 
result. One concrete approach that uses translation semantics is 
called semantic anchoring [8], which uses the well-known 
Abstract State Machines (ASM) formalism to define the 
semantics. This solution maps the abstract syntax of the DSML, 
which was defined in the GME (Generic Modeling Environment) 
metamodeling tool [13], into well-established semantic domains, 
called semantic units (e.g., timed automata, and discrete event 
systems) that have been defined in the ASML (Abstract State 
Machine Language) tool. The Moses toolsuite [14], which defines 
the syntactical aspects (e.g., vertex edge/types, syntactical 
predicates) of the language with a Graph Type Definition 
Language (GTDL), uses ASM for prototyping model interpreters 
to achieve the definition of semantics. Based on this kind of 
formal specification, the Moses toolsuite generates animation and 
debugging tools for visual models. The work presented in [10, 15] 
describes a translation semantics definition with Maude, which is 
a rewriting logic-based language. Based on such a semantics 
definition, simulation, reachability and model-checking analysis 
tools can be generated. Sadilek and Wachsmuth [16] present a 
semantics definition framework based on a transition system, 
where transitions can be defined with Prolog, Schema or ASM. 
The framework enables semi-automatic generation of visual 
interpreters and debuggers. 

Another approach is to weave behavior into the abstract syntax 
(i.e., the metamodel) by a meta-language (also called action 
language), which can be used to specify the bodies of operations 
that occur in the metamodel. This permits the model to be 
executable, because the semantics are defined inside the operation 
bodies. The significant drawback of this approach is the fact that 
some meta-languages are very similar to 3rd generation 
programming languages; therefore, they have to be used in an 
operative way. The advantage of this approach is the fact that this 
kind of semantics specification can be mastered by most users 
with a programming background. A well-known representative of 
this approach is the Kermeta tool [17], which extends an abstract 
metalayer with an imperative action language to weave a semantic 
definition within the metamodel. The built-in support for 
specification of operational semantics in Kermeta enables the 
automatic generation of simulation and testing tools. 

Semantics can also be specified through rewriting systems, where 
the system typically consists of rewrite rules. The existing 
approaches in this category often employ graph rewriting where 
the semantics can be specified in an operational fashion through 
the graphical definition given by graph grammars. Graph 
rewriting specification was employed in the AToM3 tool [18, 19], 
which uses (triple) graph grammars as rewriting rules. One of the 
interesting features of AToM3 is that the definition of rewriting 



rules is given through concrete syntax that makes semantic 
specification especially amenable for domain experts. AToM3 can 
use graph grammar definitions to generate visual model 
simulators and implement model optimizations and code 
generation. 

3. EXTENDED METAMODELS 
This section introduces a novel approach for specifying the 
semantics of modeling languages. The basic essence of our idea is 
to extend a metamodel with the semantic description. This is 
similar to the idea of attribute grammars [20] in the field of 
programming languages, where semantics are defined on top of 
syntax definitions. Our idea is a natural step for MDE engineers 
and a seamless integration with the current practice of defining the 
abstract syntax of modeling languages. The proposed approach 
consists of two parts: 1) the specification of the semantic 
information in the metamodel, and 2) an automatic synthesis of 
this information so that model-based tools can be generated. Both 
of these parts will be presented in the following subsections, with 
the emphasis on the algorithm that allows automatic traversal of 
models and the evaluation of the meaning of a specific model. 

3.1 Lessons learned from attribute grammars 
With attribute grammars, traversal algorithms can range from a 
simple and non-efficient tree traversal (where nodes are visited as 
long as non-evaluated attributes exist in a tree), to more 
sophisticated and efficient traversals (where nodes are visited in a 
more optimal way). The visiting order can be computed from the 
fact that an attribute depends on another attribute, which is 
attached to a different node; this node has to be visited and its 
attribute evaluated before the attribute that depends on it. Note 
that circular dependencies among attributes are not allowed. Such 
algorithms (e.g., for non-circular attribute grammars, ordered 
attribute grammars [21]) already exist for trees, but have not yet 
been developed for graphs, which are more challenging due to 
possible cycles in graph structures.  

3.2 Model semantics specification 
The semantics of the modeling language that extend the 
metamodel is given through semantic rules and semantic 
attributes. The semantics rules carry semantic information that 
specifies how semantic attributes are calculated when the 
semantics of a model is being computed. Semantic rules are 
specified through an action language, which is currently Java. The 
attributes are used to compute the meaning of the current model.  
Attribute occurrences in model elements are initially undefined 
and are then gradually defined and redefined by the traversal 
algorithm to obtain/compute the meaning of the whole model. 
Because the semantics of particular metamodel elements will be 
stored as attribute occurrences in a graph representing a particular 
model, which conforms to that metamodel, the meaning of the 
model will be obtained by evaluating attribute occurrences. The 
semantic description is still compositional because the meaning of 
subparts will be stored in attribute occurrences representing those 
subparts. Hence, the meaning of the entire model will be stored in 
attribute occurrences of the root element, as is the case of attribute 
grammars. In this manner, a model engineer is relieved from the 
error prone and effort demanding task of writing model 
interpreters/code generators, since with such a semantics 
specification an automatic generation is possible. Moreover, such 

description would also allow automatic generation of other 
model-based tools (e.g., debugger, simulator) in the same manner 
as we developed language-based tools in our previous efforts [5, 
22].  

3.3 Automatically deriving model traversals 
To achieve automatic generation of modeling tools, the key 
challenge is to develop a suitable traversal algorithm over models 
(graphs) for evaluating attribute occurrences. This traversal 
algorithm is dependent on the metamodel, which describes the 
structure of a modeling language (i.e., concepts in a domain and 
their relationships), and on the tool API, which provides access to 
the internal representation of models. Many metamodeling 
environments (e.g., GME-Generic Modeling Environment [13], 
GMF-Graphical Modeling Framework [23], and GEMS-Generic 
Eclipse Modeling System [24]) have different mechanisms to 
store metamodels and provide different APIs to query and 
navigate models. Because of this, a general traversal algorithm 
should consist of a fixed (tool-independent) and a variable (tool-
dependent) part. In this manner, our technique could be more 
easily adopted by existing and future tools. In the next 
subsections, an initial traversal algorithm for extended 
metamodels is defined within EMF (Eclipse Modeling 
Framework), which is central to modeling in the Eclipse platform. 

3.3.1 Discussion of the traversal algorithm 
The initial traversal algorithm is simple and will be gradually 
optimized, similar to the case in the now mature field of attribute 
grammars. The main requirements/challenges for the traversal of a 
model that should be observed by our algorithm are: (i) all model 
elements should be visited; (ii) the traversal should not fall into an 
endless loop, because of the cycles that occur in models; (iii) a 
clear beginning of a model should be determined, similar to a root 
in the case of trees; (iv) independent of the fact that models can be 
disconnected (i.e., some nodes of the model might not be 
connected to others), a traversal of the model and computation of 
the meaning should be possible. 

When reflecting on our experience in implementing model 
interpreters, we made several interesting observations. We used 
these observations in development of our model traversal 
generation algorithm. The traversal is automatically generated 
from the information found in the definition of the abstract syntax 
of the DSML (i.e., found in the metamodel). Because of this fact, 
each model that conforms to the metamodel can be traversed. The 
generated traversal satisfies all the requirements stated in the 
previous paragraph. Due to our experience with the EMF 
metamodeling environment, we initially proposed an algorithm 
that works on metamodels specified with ECore, which is an 
adapted version of the EMOF (Essential Meta-Object Facility) 
standard for the EMF environment and is widely used in industry 
and academia. In the future, we plan to extend our technique to 
other means (facilities/languages) for specifying metamodels. 

The major observation we made was that developers navigate 
through a model based on the nodes (we will refer to them as 
metaclasses) and connections (we will refer to them as 
relationships) between these nodes, which are specified in the 
metamodel. ECore only allows the following metarelationships 
between two metaclasses (or the same metaclass): unidirectional 
association, bidirectional association, composition and 



generalization. Based on these elements, which are used in the 
definition of a metamodel and the already mentioned 
observations, we defined the characteristics (found in a 
metamodel specified by ECore) that influence the model 
query/traversal and corresponding patterns of navigation. These 
characteristics, which are visualized in Figure 1, are described in 
the following paragraphs. 

(a) Root metaclass 

A very common characteristic of metamodels defined in ECore is 
the fact that there is one metaclass, which serves as a container for 
other metaclasses (i.e., other metaclasses are connected to this 
metaclass with a composition metarelationship). This metaclass 
can be considered as the root of the metamodel and the instance of 
it as the root of the model. The root defines the start of the 
traversal model. If we visualize such a metamodel via a model 
editor that was generated by the GMF (Graphical Modeling 
Framework) tool, then the root metaclass is visualized as the 
diagram on which the visual representations of the instances of 
the contained metaclass are displayed. 

(b) Unidirectional metarelationship 

The traversal on two metaclasses (or one self-related metaclass) 
that are connected by a unidirectional metarelationship is 
straightforward. The navigation will follow the path into which 
the arrow points. The multiplicity on the side of the arrow has to 
be considered, since it indicates if a list of instances (which can be 
limited or unlimited) or just an instance (which can be mandatory 
or optional) has to be traversed. 

(c) Bidirectional metarelationship 

Bidirectional metarelationships can be considered as an 
equivalent to two unidirectional metarelationships between two 
metaclasses (or the same metaclass) in both ways. Therefore, the 
traversal is executed in both directions. 

(d) Composition metarelationship 

When encountering composition metarelationships, the traversal 
will go from the metaclass that is attached to the filled diamond to 
the metaclass attached to the other end of the metarelationship. 
Multiplicities must also be considered. 

(e) Generalization metarelationship 

When dealing with generalization metarelationships, one has to be 
careful. We decided to traverse the generalization/specialization 
structure from the most general metaclass found at the top of the 
inheritance tree to the leaves of the inheritance tree. When dealing 
with a generalization metarelationship, we refer to the more 
general metaclass as the supermetaclass and the more concrete 
metaclass (i.e., the one that inherits from the other) as the 
submetaclass. The supermetaclass can be navigated/traversed from 
any other metaclass that is connected to the supermetaclass with a 
composition (being the contained), a unidirectional 
metarelationship (being the target), or a bidirectional 
metarelationship. When considering the actual model, it is 
necessary to find out if an instance of a supermetaclass is also an 
instance of any of the submetaclasses that inherit from it. If this is 
the case, then the submetaclass in the inheritance tree should also 
be considered for traversal. Because the traversal is carried out 
from the top of the inheritance tree, there is no need to traverse 
the inheritance tree bottom-up (i.e., starting from the leaves).  

(f) Root metaclass with a self-containing metarelationship 

Some metamodels have a root metaclass, which is connected to 
itself by a composition metarelationship. This characteristic is 
used to enable a hierarchical decomposition in models that 
conform to such a metamodel. Such models have a diagram, 
which has a hierarchy of subdiagrams of the same type, when 
visualized. The traversal of this characteristic requires a recursive 
algorithm, which stops when it finds the root of the model. The 
root of the model is the instance (class) that has no parent 
instances to which it is connected by a composition. 

 
(a) Root metaclass 

 
(b) Unidirectional 
metarelationship 

 
(c) Bidirectional 
metarelationship 

 
(d) Composition 
metarelationship 

 
(e) Generalization 
metarelationship 

 
(f) Root metaclass with self containing metarelationship 

Figure 1: Characteristics influencing model traversal 

To be able to take advantage of the identified characteristics, only 
metamodels that satisfy certain constraints should be used. These 
constraints are:  

− The model root must not be connected to itself with any kind 
of metarelationship, except a composition metarelationship. 

− Bidirectional metarelationships are not used (they are usually 
not used in metamodeling with ECore). Instead, two 
unidirectional metarelationships that are navigable in 
opposite ways are used, which makes the generation less 
complex. An alternative would be to convert bidirectional 
metarelationships to unidirectional metarelationships 
automatically before executing the algorithm. 



3.3.2 An algorithm for model traversal generation 
Based on the identified characteristics, it is possible to define an 
algorithm that automatically constructs a model traversal for any 
metamodel that satisfies the identified constraints. 

The generated traversal satisfies all the identified requirements 
mentioned in Section 3.3.1, although it may not be optimal. The 
outline of the algorithm for constructing such a traversal is given 
in Listing 1. 

modelRoot = findAbsoluteModelRoot(); 

visit(modelRoot); 

 

// recursive visiting function 

function visit(currentModelElement) 

 

// evaluate the current node 

evaluateInheritedAttributes(); 

 

// visit possible generalizations – top down 

if currentModelElement has subMetaclass 

subMetaclassOfCurrent 

  = getSubMetaclass(currentModelElement); 

visit(subMetaclassOfCurrent); 

end-if 

 

// visit possible generalizations – bottom up 

if currentModelElement has superMetaclass 

//no computation needed since the inheritance tree 

//is already traversed in a top down manner 

end-if 

 

// visit possible unidirectional relationships 

foreach unidirectionalRel in currentModelElement 

if unidirectionalRel.source == currentModelElement 

       evaluateInheritedAttributes(); 

foreach modelElement in unidirectionalRel.target 

visit(modelElement); 

end-foreach 

evaluateSynthesizedAttributes(); 

markPathAsVisited(); 

end-if 

end-foreach 

 

// visit possible composition relationships 

foreach compositionRel in currentModelElement 

if compositionRel.source == currentModelElement 

       evaluateInheritedAttributes(); 

foreach modelElement in compositionRel.target 

visit(modelElement); 

end-foreach  

evaluateSynthesizedAttributes(); 

markPathAsVisited(); 

end-if 

end-foreach 

evaluateSynthesizedAttributes(); 

 

end-function 

Listing 1: Outline of our model traversal generation algorithm 

4. EXAMPLE TRAVERSAL GENERATION 
To demonstrate the proposed semantic definition and automatic 
generation of a model interpreter, the widely known and well-
understood example of a finite state machine (FSM) modeling 
language is used. A metamodel of the FSM, which is annotated 
with the semantic information, can be found in Figure 2. 

From the metamodel (Figure 2), it can be observed that the 
structure is quite simple and that a state machine (abstracted by 
the ‘StateMachine’ metaclass) consists of two main model 
elements that have to be traversed, namely states (represented by 
the ‘AbstractState’ metaclass) and transitions (represented by the 
‘Transition’ metaclass). In the metamodel we can see that each of 
the metaclasses has its own semantic rule that is used to 
manipulate the values of semantic attributes and to compute the 
meaning of the whole model. Before the beginning of the 
traversal, the attributes ‘envs’ and ‘envt’ are initialized. Both 
attributes store actual states and transitions in the model. While 
visiting states and transitions, useful information (e.g., name of a 
state, source and destination of a transition) is stored and finally 
used in a compute function (not shown in the paper) that outputs 
the meaning of the model. 

 

Figure 2: A metamodel of a FSM annotated with the proposed 

semantic information (semantic attributes and semantic rules) 

According to our algorithm and additional computation 
(evaluation of semantic information), a model interpreter can be 
automatically generated. An excerpt of the pseudocode for the 
FSM example can be seen in Listing 2. This example 
demonstrates an automatic generation of a model interpreter. 

modelRoot = StateMachine(); 

modelRoot->TransitionList.envt=new EList(); 

modelRoot->AbstractState.envs=new EList(); 

 

foreach AbstractState in modelRoot->states 

if notVisited() 

      AbstractState.envs.insert(AbstractState.text); 

      markPathAsVisited(); 

end-if 

end-foreach 

 

foreach Transition in modelRoot->states 

if notVisited() 

      Transition.envt.insert(Transition.src,  

                             Transition.dst); 

      markPathAsVisited(); 

end-if 

end-foreach 

 

modelRoot.code = compute(AbstractSate.envs, 

                         Transition.envt); 

Listing 2: An excerpt of an automatically generated 

interpreter for the FSM example presented in Figure 2 



5. CONCLUSION 
Model-driven engineering offers a capability to use higher level 
models to define design intentions, which can then be generated 
to lower level representations (e.g., source code). However, the 
implementation of translators to perform the generation is often a 
manual process. This paper describes our algorithm for generating 
model traversals from metamodel definitions. Semantic rules and 
attribute evaluation can be performed during the traversal 
navigation to define the meaning of a particular model, based on 
the metamodel semantics. Future work includes the 
implementation of mature tool support in EMF-based modeling 
tools. 
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