
A Domain-Specific Modeling Language for 
Scientific Data Composition and Interoperability 

Hyun Cho 
University of Alabama at Birmingham 

Department of Computer and Information Science 
Birmingham, AL, USA 35294 

robusta@uab.edu 

Jeff Gray 
University of Alabama 

Department of Computer Science 
Tuscaloosa, AL, USA 35487 

gray@cs.ua.edu 

 

ABSTRACT 
Domain-Specific Modeling Languages (DSMLs) can offer 
assistance to domain experts, who may not be computer scientists, 
by providing notations and semantic constructs that align with 
abstractions from a particular domain. In this paper, we describe 
our design and application of a DSML in the area of data 
composition and interoperability. In particular, we introduce our 
recent effort to design a DSML to assist with interoperability 
issues across scientific software applications (e.g., composing 
scientific data in different file structures and integrating scientific 
data with data gathering devices). Currently, several different 
scientific data file specifications have been proposed (e.g., CID, 
netCDF, and HDF). Each file specification is optimized to 
manage a specific data type efficiently. Thus, each file 
specification has evolved with slightly different notions and 
implementation technologies. These differences led to the need 
for an environment that provides interoperability among the 
different specification formats. In this paper, we introduce our 
framework, supported by a DSML, that provides functionality to 
visually model the data composition and integration concepts 
independent from a particular data file specification. 

Categories and Subject Descriptors 
D.2.12 [Interoperability]: Data mapping – abstract data types, 
polymorphism, control structures.  

General Terms 
Management, Design 

Keywords 
Domain-Specific Modeling Language (DSML), File Format, Data 
Composition, Data Integration, Verification, Metamodeling. 

1. Introduction 
According to [7], a Domain-Specific Modeling Language 
(DSML) uses a metamodel to “express the definition of a 
modeling language that represents the key abstractions and 
intentions of an expert in a particular domain.” DSMLs are more 
concise than General-Purpose Modeling Languages (GPMLs), 
such as UML, and can express the semantics of a specific domain 
very clearly with visual notations that map to concepts in the 
domain. In addition, model transformations can synthesize a 

model expressed in a DSML into other artifacts (e.g., source code 
or some other representation) using transformation and generative 
techniques [3]. Automated code generation from a model 
eliminates the tedious and mundane effort of manually converting 
a model into a source code implementation. Such automation can 
also minimize the probability of error injection often caused by 
manual adaptation. DSMLs have been used in many domains, 
such as multimedia [8][10], financial products [1], telephone 
switching systems [9][12], protocols [6][14], operating systems 
[15], and robot languages [4]. 

In this paper, we describe our effort to design and implement a 
DSML to manage scientific data files that are used to store a high 
volume of data (e.g., sensor-based networks with terabytes of data 
representing data types such as images, graphs, tables, and 
numbers). Scientific data files have several unique characteristics. 
For example, they often include metadata to describe the 
organization and type of contents represented in the file. Such file 
formats also have their own archiving and restoring mechanism to 
backup content efficiently. In addition, each scientific data 
specification provides an API that supports several different 
programming languages, which allows users to develop their own 
applications. Due to these different characteristics, managing 
scientific data files presents several challenges: 1) visualizing the 
contents of the file, 2) transforming the contents from one file 
format to another, 3) managing the evolution of APIs while 
supporting backward compatibility, and 4) maintaining the 
stability of user applications during API evolution. 

To resolve these issues, we designed a DSML and a supporting 
framework that provides functions to model data composition and 
integration visually and independently from the data file 
specification format. The rest of the paper is organized as follows. 
Section 2 introduces several different scientific file formats and 
Section 3 presents the applications of a DSML for scientific data 
management. Section 4 summarizes the results of applying this 
approach. 

2. Scientific Data File Formats 
Many research areas (e.g., earth science, biology, physics, and 
medicine) need to integrate research data from various sources 
and different types (e.g., graphic and/or numerical data). Such 
integrated data is used to analyze the causes and effects of a 
certain phenomena or to provide an experimental proof. With the 
advent of low-cost high-end devices (e.g., high resolution imaging 
devices and fast data collecting devices), and the popularization of 
those devices, the growth rate of data production has experienced 
phenomenal increase in need and capacity. Thus, the existing file 
formats are no longer appropriate to organize, archive, and 
manipulate data in the face of enormous growth of scientific data 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ACMSE ‘10, April 15–17, 2010, Oxford, MS, U.S.A. 
Copyright © 2010 ACM 978-1-4503-0064-3/10/04... $10.00 



in size and complexity. To tackle these issues, many file formats 
have been proposed. For example, CIF (Crystallographic 
Information Framework) [16] was proposed in 1991 and has 
evolved under the support of the IUCr Working party. CIF is a 
free-format archive file format and designed for the electronic 
exchange of crystallographic data between individual laboratories, 
journals and databases. NetCDF (Network Common Data Form) 
[17], which is maintained by University Corporation for 
Atmospheric Research, originally was designed to manage real-
time weather data but now it has been extended to support the 
creation, access, and sharing of array-oriented scientific data in a 
machine-independent manner. Recently, the HDF group proposed 
another file format, called HDF (Hierarchical Data Format) [18], 
to manage scientific data in a more generic way by supporting an 
unlimited variety of data types, providing flexible and efficient 
I/O, and allowing high volume and complex data.  

However, these scientific file formats, which organize, archive, 
and manipulate high volume and complex data, have several 
common characteristics, as follows: 

 Self-descriptive: Unlike usual file formats, such as image 
files (e.g., *.jpeg, *.bmp), data files (e.g., *.dat), and 
executable files (e.g., *.exe, *.com), the popular scientific 
data file formats contain metadata to inform what kind of 
data types are stored in the file and how they are organized. 

 Directly accessible: The volume of scientific data files are 
usually high and scientific files can contain complex and 
different data types, such as images, tables, and array-
oriented data. Thus, unlike traditional file formats, scientific 
file formats allow arbitrary access to data directly. 

 Concurrently accessible: Most scientific file formats are 
designed in a thread-safe manner so that multiple processes 
can read and modify contents of the file simultaneously. 
This concurrency is essential for high performance 
computing for increased performance in accessing content. 

 Archivable: Scientific file formats are designed to support a 
high volume of data and to maintain complex and 
heterogeneous data. Most scientific data file formats provide 
their own archiving scheme to perform backup and restore 
capabilities. 

In addition, to encourage the use of a specific scientific file format, 
software packages are often freely available. Some tools assist in 
manipulating and displaying the contents of a file and other tools 
help to compute complex mathematical data. However, such tools 
also present a new set of challenges: 

 Representing the organization of the file structure: Even 
though software exists to manage and support each scientific 
file format, most tools provide a textual user interface or 
execute under a command-line environment. In addition, 
users need to have a somewhat deep understanding of the 
file specification to use these tools efficiently. Moreover, 
users need to know how the API works in order to design 
and implement their own applications using the format. 

 Managing the evolution of APIs: Most scientific file 
formats provide an API that supports several programming 
languages (e.g., C/C++, FORTRAN, and Java). However, 
changes to an API are inevitable, because APIs need to 
accommodate new requirements in the improved 

understanding of the constraints of data, or to interface with 
new types of data gathering devices that provide high 
performance and better resolution. If these changes are 
introduced to the file specification, some APIs need to be 
redesigned and re-implemented in accordance with the 
revisions of the file specification. To automate API 
evolution, some researchers introduced control-flow analysis 
and temporal logic-based matching techniques [2][5][13]. 
But these approaches work based on source code or test 
cases rather than the specification of a file format. Thus, a 
systematic method is needed to verify which APIs are 
modified with the changes of the file specification, because 
the file specification and APIs are managed under different 
languages and tools. 

 Maintain stability of existing applications: Because APIs 
often evolve, each user application may also need to be 
changed. This change leads to the need to test the 
correctness of a user application repeatedly to guarantee that 
the application is compatible over new APIs and libraries. 
Thus, maintaining the stability of a user application amid 
evolution of the file format API requires an investment of 
additional effort. 

 Limited support for data integration: Because each 
scientific file format has different characteristics and uses 
different technologies, exchanging data between different 
scientific file formats may not be possible by mapping 
contents one-by-one. Users may need to develop a complex 
data conversion tool, which requires understanding of both 
source and target file specifications and APIs. Moreover, 
users need to develop new applications or modify existing 
applications to integrate data with emerging data gathering 
devices. 

In the following section, we describe the advantage of using a 
DSML and how a DSML can resolve the issues just mentioned. 

3. A DSML for File Format Interoperability 
DSMLs provide a concise set of visual notations that denote a 
specific set of domain abstractions, which fits well to the specific 
problem space while also assisting with the communication 
between stakeholders. In addition, DSMLs can help with the 
implementation of a new application by adopting generative 
programming concepts (i.e., describing the essence of the problem 
in the DSML and then generating lower level executable code 
from a model). Using a DSML requires the definition of several 
models that are inter-related across three different layers: the 
model, metamodel, and meta-metamodel [11]. Each model defines 
a representation structure and a global typing system that is used 
by the layer beneath it. For example, each model should conform 
to the structure and types of the metamodel. These different model 
layers provide several important key advantages of using a DSML 
over a GPML (e.g., UML), such that domain experts can define 
and build a modeling tool for their own purpose that fits a specific 
domain of expertise. 

3.1 Building Domain-Specific Models 
A key advantage of a DSML over a GPML is that DSMLs can 
have flexibility to define notations that satisfy a specific problem 
space. This advantage helps engineers shorten their learning time 
to use the tool and helps to prevent miscommunications between 
stakeholders.  



 

Figure 1. Metamodel for HDF 

A DSML for enabling interoperability across scientific data files 
can be built with the following three steps: domain analysis, 
metamodel definition, and DSML tool construction. Domain 
analysis is the very first step and compulsory activity to 
understand the requirements needed by end-users. To build a 
DSML for scientific data file management, domain analysis needs 
to focus on analyzing the data structures (e.g., what type of data 
will be maintained, and how is the data organized). In metamodel 
definition, constructs identified during the domain analysis are 
modeled as a metamodel, which is then used to define the 
language and tool support. The metamodel shown in Figure 1 
models the fact that HDF5 supports primitive data types (e.g., 
integer, double, and string) as well as compound data types that 
are similar to a struct in C and composed from primitive data 
types. Each data type in HDF5 is stored in a Dataset and each 
Dataset can exist either in an independent set or under the nested 
groups. Properties of each Dataset and Group are specified using 
an attribute and property. From this metamodel, a modeling 
environment for this DSML can be generated automatically. The 
idea has been implemented using an Eclipse plug-in, the Generic 
Eclipse Modeling System (GEMS) [1], which supports the 
automatic generation of a visual DSML through a meta-
programmable modeling environment. 

3.2 Scientific Data Interoperability 
Figure 2 presents an overview of our framework for scientific data 
composition and integration. The framework has been designed 
with a layered architecture and is divided into three layers; 
Physical layer, API layer, and DSML layer. 

The Physical layer maintains physical scientific data files and 
scientific devices that gather or present actual scientific data. The 
API layer interconnects the DSML layer with the Physical layer 
using APIs and libraries. The API layer provides APIs that can be 
used to develop new applications, which can create, modify, view, 
and share scientific data. Additionally, the API layer includes an 
API abstraction layer, which represents the collection of 
abstracted APIs that are defined from a generalization of all 
common scientific data APIs. For example, in netCDF a call to a 
specific API function can be used to create and open a file (e.g., 
the function int nc_create (const char* path, int 
cmode, int *ncidp)). Similarly, HDF5 provides a function for 
this same purpose, but as a constructor (e.g., H5File (const 

char *name, unsigned int flags)). Because both file 
specifications have evolved with different background and 
technologies, APIs cannot be matched to each other for the same 
functionality. Therefore, the API abstraction layer provides the 
same functionality independently from the specific scientific file 
API. As a result, file creation and opening are redefined as 
createFile(const char *path, FileCreationProperty 
fileCreationProperty) in the API abstraction layer. 

 

Figure 2. Framework for Scientific Data File Management 

The API abstraction layer can help to evolve a DSML and user 
applications from the evolution of APIs. The DSML layer, which 
plays an important role in the framework, consists of two parts: 
Metamodel and File Content Manager (FCM). The FCM 
maintains the metamodel of each scientific file. As mentioned in 
Section 3.1, each metamodel defines constructs for the scientific 
file specification. Unlike other metamodels, the Communication 
metamodel is used to define a DSML that informs the 
communication method used in the data gathering devices. The 
Communication metamodel may include information, such as 
category of device, data gathering or representation method, and 
communication protocols. FCM is mainly responsible for creating 
the graphical model for composing and integrating data. FCM is 
comprised of three sub-modules: Content Composer (CC), 
Content Verifier (CV), and Content Mapper (CM). CC and CM 
provide integrated graphical data composition and an integration 
environment. The main functionality of CC is to design the 



structure of the scientific data file using the graphical notations 
that are defined in the metamodel. CM will also provide a 
graphical user interface so that users can specify how to integrate 
data either with another scientific data file or with data gathering 
devices. After the file structure is composed with CC, the CV 
verifies the correctness of the file structure. First, CV verifies that 
the model conforms to its metamodel and then it verifies the 
model against the API to determine whether the model can be 
mapped with appropriate APIs. If the model passes the 
verification process, CV can generate code that can access the 
content directly. CV is also useful for checking the mismatched 
evolution between a metamodel and its APIs. For example, if 
APIs are not evolved in accordance with the evolution of a 
metamodel, the CV can return exceptions because there is no 
APIs to match the newly evolved metamodel. CV can be used to 
regenerate the file structure model by reading the metadata of the 
physical scientific data file. This function is especially helpful 
when composing data integration rules. Finally, CM builds the 
content mapping rules when transforming contents from one file 
format to another. 

4. Results and Future Works 
Currently, the framework for data composition and integration is 
designed and the feasibility of our approach has been verified with 
primitive data types of each file specification. As shown in Figure 
2, the framework has been designed with the layered architecture, 
which consists of the DSML layer, API layer, and Physical layer. 
From our experience with this project, we found that: 

 The abilities of a DSML, especially abstraction and 
graphical representation, can help to build a graphical tool to 
compose and support interoperability across scientific file 
structures. 

 Adoption of the layered architecture in the framework can 
help to keep the independence of each layer separate from 
the other layers.  

 Both the API abstraction layer and the layered architecture 
are essential to develop and maintain user applications 
independently from the evolution of specific scientific file 
APIs.  

We are currently working on the creation of metamodels that 
include full specification of each scientific file. We also are 
categorizing APIs in accordance to their intended use (e.g., file 
creation and data read/write) for the API abstraction layer. 
Additional future work includes more support for managing the 
evolution of APIs and integrating data obtained from data 
gathering devices. 

ACKNOWLEDGEMENT 
This work was supported by an NSF CAREER award (0643725). 

REFERENCES 
[1] Arnold, B.R.T., van Deursen, A., and Res, M. 1995. “An 

algebraic specification of a language describing financial 
products,” In ICSE Workshop on Formal Methods 
Application in Software Engineering, pp. 6-13, Seattle, WA, 
April 1995. 

[2] Bartolomei, T. T., Czarnecki, K., Lämmel, R., and van der 
Storm, T. 2009. “Study of an API migration for two XML 

APIs,” In Proceedings of Software Language Engineering, 
pp. 46-65, Denver, CO, October 2009. 

[3] Barstow, D. R. 1985. “Domain-specific automatic 
programming,” IEEE Transactions on Software Engineering 
vol. 11, issue 11, pp.1321-1336, November 1985. 

[4] Bjarnason, E., “Applab: a laboratory for application 
languages,” In Nordic Workshop on Programming 
Environment Research, pp. 99-104, Aalborg, Denmark, May 
1996. 

[5] Brunel, J., Doligez, D., Hansen, R. R., Lawall, J. L., and 
Muller, G. 2009. “A foundation for flow-based program 
matching: using temporal logic and model checking,” In 
POPL '09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming 
Languages, pp. 114-126, Savannah, GA, January 2009. 

[6] Chandra, S. and Larus, J., “Experience with a language for 
writing coherence protocols,” In Proceedings of the 
Conference on Domain-Specific Languages, pp. 51-66, Santa 
Barbara, CA, October 1997. 

[7] Gray, J., Tolvanen, J-P., Kelly, S., Gokhale, A., Neema, S., 
and Sprinkle, J., “Domain-Specific Modeling,” Handbook of 
Dynamic System Modeling, (Paul Fishwick, ed.), CRC Press, 
ISBN: 1584885653, 2007, Chapter 7, pp. 7-1 through 7-20. 

[8] Elliott, C. 1997. “Modeling interactive 3D and multimedia 
animation with an embedded language,” In Proceedings of 
the Conference on Domain-Specific Languages, pp. 285-296, 
Santa Barbara, CA, October 1997. 

[9] Gupta, N. K., Jagadeesan, L. J., Koutsofios, E. E., and Weiss, 
D. M., 1997. “Auditdraw: Generating audits the fast way,” In 
Proceedings of the Third IEEE Symposium on Requirements 
Engineering, pp. 188-197, Annapolis, MD, January 1997. 

[10] Kamin, S. N. and Hyatt, D. 1997. “A special-purpose 
language for picture-drawing,” In Proceedings of the 
Conference on Domain-Specific Languages, pp. 297-312, 
Santa Barbara, CA, October 1997. 

[11] Kurtev, I., Bézivin, J., Jouault, F., and Valduriez, P. 2006. 
“Model-based DSL frameworks,” In Companion to the 21st 
ACM SIGPLAN Symposium on Object-Oriented 
Programming Systems, Languages, and Applications, pp. 
602-616, Portland, OR, October 2006. 

[12] Ladd, D. A. and Ramming, J. C. 1994. “Two Application 
languages in software production,” In Proceedings of the 
USENIX 1994 Very High Level Languages Symposium, Santa 
Fe, NM, October 1994. 

[13] Padioleau, Y., Lawall, J., Hansen, R. R., and Muller, G. 2008. 
“Documenting and automating collateral evolutions in linux 
device drivers,” SIGOPS Operating System Review, 
42(4):247-260. 

[14] Thibault, S., Consel, C., Muller, G. 1998. “Safe and efficient 
active network programming,” Proceedings of the 17th IEEE 
Symposium on Reliable Distributed Systems, pp. 135-143, 
West Lafayette. IN, October 1998. 

[15] C. Pu, A. Black, C. Cowan, J. Walpole, and C. Consel. 1997. 
“Microlanguages for operating system specialization,” In 
Proceedings of the Workshop on Domain-Specific Languages, 
pp. 49-57, Paris, France, January 1997. 

[16] http://www.iucr.org/resources/cif/spec 
[17] http://www.unidata.ucar.edu/software/netcdf/ 
[18] http://www.hdfgroup.org/ 
[19] Generic Eclipse Modeling System (GEMS), 

http://www.eclipse.org/gmt/gems/ 


