
Using Metaprogramming to Implement a Test Framework
Hyun Cho
robusta@uab.edu

Software Composition and Modeling Laboratory

S o f t C o m

Metaprogramming and reflection are used to implement a common test framework that can help to reduce the burden for test preparation in unit and system testing. The framework focuses on generating

Using Metaprogramming to Implement a Test Framework @

Advisor: Dr. Jeff Gray Department of Computer and Information Sciences
University of Alabama at Birmingham

p g g f p f p f p p y g f f g g
instrumented Java bytecode based on several sources of input (e.g., source code or bytecode, and information provided by each test case).

Challenges in Testing Architecture Overview of Test Framework

•Parser
 Input processor and its implementation relies

•Transformer
 Generate instrumented binary codes which produce

Programmer

 Input processor and its implementation relies
on metaprogramming.

 Used to extract information such as classes,
methods and attributes from the input source.

 The type of Parser is automatically determined
by considering the file type (e.g., .java for
source code and .class for bytecode).

 Selectively extract information so that it helps

• Instrumentation of source code may need to be
performed manually, which takes much time and is
error-prone.
 Automate instrumentation using metaprogramming.

• Different tools and methods are often used for unit and
system testing. Thus, an organization must duplicate
their investment of time and effort to maintain different

Source Code

Test Case Design

 Generate instrumented binary codes, which produce
run-tine information by loading each class file,
retrieving its bytecode, and attaching metaobjects.

 Responsible for checking the potential conflicts
among the selected test options, e.g., coverage and
trace vs. performance.

 Two types of metaprograms are used to transform;
Compile time and Load timeog a e  Selectively extract information so that it helps

engineers to understand the system under test
by limiting or expanding information per their
needs.

•Test Case Designer
 Represents a test case and the number of test

their investment of time and effort to maintain different
types of testing tools and training their engineers.
 Provide unified Test Framework.

• Test cases may be designed poorly (e.g., not complete
or sufficient to test all behaviors). This negatively
impacts the testing process and the quality of the
tested software.

Test Case Design

Test Execution

Compile-time and Load-time
• A compile-time metaprogram, like OpenJava[1],

transforms source code through metaobjects.
• A load-time metaprogram, such as Javassist[2] and

JMangler[3], directly manipulates Java bytecode to
generate instrumented test codes.

 Represents a test case and the number of test
cases can be governed after analyzing a test
report.

 Design a test case by entering values for
arguments and the expected results of a test
execution of a specific method.

 Generate test case specification as a form of
XML

 Employ functional test on unit test and system test.

• This project constructs a test framework based on
metaprogramming to automate code instrumentation
and to provide a unified test framework for unit/system
testing.

Binary Code

Quality
Engineer

•Test Manager
 Processes the test cases and controls the whole test

execution by referring to the test case specification.

•External Compiler
 Used when source codes are provided as input.

XML.

Test FrameworkMetaprogramming Conclusion and Future work

• Metaprogramming can assist in the construction of a test
framework (e.g., unit test and system test).

• The Parser and Transformer play key roles in this framework as
a potential solution to the challenges addressed.

• Both compile-time and load-time metaprograms provide
additional functionality transparently.

Inputs (Source Code or Class File) Test Framework Test Report

Generate
Report

Analyze inputs and
generate Test Case

template

Report Test
Execution Result

Map class name to
test suite name

Map the argument to
the argument list

• The Transformer generates instrumented test code by attaching
metaobjects so that instrumentation takes less time and helps to
produce quality instrumented code.

• Future work
 Effectively used on small applications but additional

evaluation is needed by applying the test framework to a

public class Calculator {

public int add(int x, int y) {
return x + y;

}

public int sub(int x, int y) {
return x - y;

}

public int mul(int x, int y) {
return x * y;

}

Report

• Reification is the ability of a system to provide a
concrete representation of its internal state.

• Reflection[4] represents a program’s own execution
state according to the reified meta objects in the meta
space.

• Metaprograms are programs that modify other

large open source application, such as JBoss or other system
software written in Java.

 Need to explore ways to reduce the amount of manual effort
involved in specifying parameters in the Test Case Designer.

References
[1] Tatsubori, M., Chiba, S., Killijian, M., and Itano, K., “OpenJava: A Class-Based Macro

System for Java,” Reflection and Software Engineering, Denver, CO, November 1999,

public double div(double x, double y) {
return x/y;

}

} Generate
Test Case

Map method name
to test case name

•Preliminary test case information is generated • XML is used to store test suites and test cases.
• Metaprograms are programs that modify other

programs (often itself). There are two forms:
• Introspection: query the structure and state of a

program.
• Intercession: ability to modify the structure or

behavior of a program.

System for Java, Reflection and Software Engineering, Denver, CO, November 1999,
pp. 117-133.

[2] Chiba, S., “Load-time Structural Reflection in Java,” European Conference on Object-
Oriented Programming, Cannes, France, June 2000, pp. 313-336.

[3] Kniesel, G., Costanza, P., and Austermann, M., “JMangler: A Framework for Load-
Time Transformation of Java Class Files,” International Workshop on Source Code
[Analysis and Manipulation, Florence, Italy, November 2001, pp. 100-110.

[4] Forman, I. and Forman, N., Java Reflection in Action, Manning Publication, 2004.
[5] http://www.junit.org/

by parsing input codes.

•JUnit[5] is adopted to manage Test Suites and
Test Cases for easy management and
execution of test cases.

•Test result is also maintained using XML and
provided in both graphical and table form.

