
Phoenix-Based Clone Detection Using Suffix Trees

Robert Tairas and Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294 USA

{tairasr, gray}@cis.uab.edu

ABSTRACT
A code clone represents a sequence of statements that are
duplicated in multiple locations of a program. Clones often arise
in source code as a result of multiple cut/paste operations on the
source, or due to the emergence of crosscutting concerns.
Programs containing code clones can manifest problems during
the maintenance phase. When a fault is found or an update is
needed on the original copy of a code section, all similar clones
must also be found so that they can be fixed or updated
accordingly. The ability to detect clones becomes a necessity
when performing maintenance tasks. However, if done manually,
clone detection can be a slow and tedious activity that is also error
prone. A tool that can automatically detect clones offers a
significant advantage during software evolution. With such an
automated detection tool, clones can be found and updated in less
time. Moreover, restructuring or refactoring of these clones can
yield better performance and modularity in the program.
This paper describes an investigation into an automatic clone
detection technique developed as a plug-in for Microsoft’s new
Phoenix framework. Our investigation finds function-level clones
in a program using abstract syntax trees (ASTs) and suffix trees.
An AST provides the structural representation of the code after
the lexical analysis process. The AST nodes are used to generate a
suffix tree, which allows analysis on the nodes to be performed
rapidly. We use the same methods that have been successfully
applied to find duplicate sections in biological sequences to
search for matches on the suffix tree that is generated, which in
turn reveal matches in the code.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – restructuring, reverse engineering, and
reengineering

General Terms
Algorithms, Management, Performance, Design, Reliability,
Experimentation, Languages, Theory.

Keywords
Clone Detection, Code Clones, Suffix Trees, Software Analysis

1. INTRODUCTION
When a section of code is duplicated in more than one location in
a program, that section of code and all of its duplicates are
considered code clones. Clones are typically generated because a
programmer copies a section of code and pastes it into another
part of the same program. This may be done because the copied
section of code performs some functionality correctly. Rather than
rewriting the code from scratch, it is much simpler to copy this
code and use it in another part of the program. This practice often
results in maintenance problems at later stages of development.

Another reason for the existence of code clones relates to the
aspect-oriented programming [9] notion of a dominant
decomposition, where one functionality (or concern) dominates
another [12]. The two concerns crosscut each other and the code
for the “weak” functionality must be scattered throughout the
program. This produces clones of the same functionality in
various parts of the program.

Research has shown that a considerable percentage of code in
large-scale computer programs are clones [2]. During the
maintenance stage it would be beneficial to determine if code
clones occur in a program. If a section of code is known to be
cloned, then when that section needs to be updated, its clones will
have been identified and can be updated as well. With the
knowledge of the clones, restructuring or refactoring of these
clones could be done to enhance the quality of the program. In
terms of aspect-oriented programming, the code that is dominated
by other concerns could be extracted and made into an aspect,
which may enhance the maintainability of the program [3].

Code clones can be discovered manually by scavenging through
the program source and identifying duplicates one by one.
Depending on the size of the program, this manual process can
become tedious and labor intensive. An automatic clone detection
tool can be beneficial by reducing the time and effort needed to
find clones. Various studies have undertaken the development of
clone detection tools by examining different levels of program
representation. These studies have used text-based, token-based,
AST-based, program dependence graph-based, metrics-based, and
information retrieval-based representations [3].

The clone detection tool described in this paper utilizes an
abstract syntax tree (AST) representation of the program. An
advantage of evaluating the AST representation of a program is
that the AST generalizes the parse tree by simplifying the
structure of the tree, without losing the overall definition of the
program. This reduces the amount of data that will need to be
evaluated to find code clones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 1-59593-315-8/06/0004…$5.00.

The individual nodes of the AST are of particular interest. The
nodes are extracted from the AST and a suffix tree is generated
from these nodes. Suffix trees have been successfully used in
biological sequence matching [4][8]. The method of using suffix
trees to find duplicate biological sequences is applied to the
search for duplicate node sequences of the AST. Exact matching
code clones can be detected using this method.

In the clone detection tool comparison experiment at the First
International Workshop on Detection of Software Clones1, clones
were separated into three categories:

• Exact copies, with no differences between them
• Parameterized copies, where variable and function calls can

have different names and/or types have changed
• Modified copies, where some modification is done, such as

adding or deleting lines of code

The clone detection tool described in this paper focuses on the
first two categories of clones with a slight modification of the
second category. For the second category, variables and function
calls in exact matching functions can be named differently, but
the types of these must be the same. Future work related to the
last category of clones is discussed later.

Our tool is developed as a plug-in for Microsoft’s Phoenix
framework [11], which supports the development of compilers
and software analysis tools. It is the basis of all future Microsoft
compiler technologies. Although initially offered to academia to
aid in their research, the Phoenix framework is intended to be an
industrial-strength framework for production-level development.

The following section discusses an algorithm for finding exact
matching function-level clones. Section 3 shows how the clone
detector is implemented in the Microsoft Phoenix framework.
Section 4 reports on two case studies using the clone detection
tool. Section 5 compares related work to the approach used in this
paper. Section 6 concludes the paper and discusses future work.

2. EXACT MATCHING ALGORITHM
2.1 The Original Suffix Tree
As its name suggests, a suffix tree is a tree of suffixes. A suffix
tree of a string is generated from the suffixes of that string. For
each suffix of a string, a path is made from the root to a leaf. This
is done by evaluating each character in the suffix and generating
new edges when no existing edges that represent the character in
the suffix tree exists [6]. This is the characteristic of the suffix
tree that is useful in string matching, because duplicate patterns in
the suffixes will be represented by a single edge in the tree. A
string abcdabe$ is represented by the suffix tree in Figure 1.

The pattern ab is represented by a single edge. Two suffixes pass
through this edge (i.e., they both start with the substring ab).
These two suffixes are abcdabe$ and abe$. The split at the end of
this edge continues the two suffixes where the next character
differs between the two suffixes. The last character, $, is a special
terminating character that identifies the end of the string. By
looking at the suffixes that pass through the edge that represents
the pattern ab, the location of this string pattern can be
determined.

1 http://www.informatik.uni-stuttgart.de/ifi/ps/clones/

Figure 1. Suffix tree of abcdabe$.

The use of suffix trees to search for duplicate patterns is not
limited to just one string. Searching for duplicate patterns in
multiple strings is also possible. The suffix tree used to search for
duplicate patterns in multiple strings is generated from the
concatenation of the strings. For example, to generate the suffix
tree of two identical strings abgf and abgf, the two strings are
concatenated into one string abgf$abgf#, with $ and # as the
special characters that determine where each string terminates.
This new string is evaluated as a single string and the same
process used in the previous example is used on this string to
generate the suffix tree. The result is the suffix tree in Figure 2.
Duplicate patterns can be identified in this suffix tree and with
some additional processing, the individual strings that contain
these patterns can be determined.

Figure 2. Suffix tree of abgf$abgf#.

The edge labeled “abgf” represents two suffixes of the
concatenated string that start at the beginning positions of each
individual string. That is, the first suffix is the whole string
abgf$abgf#, which starts at the beginning position of the first
individual string. The second suffix is the substring abgf#, which
starts at the beginning position of the second individual string.
This edge is split at the end into two edges because the next
characters in the suffixes are different. The differing characters
are the terminating characters of the two individual strings, $ and
#. The existence of this type of edge determines that the two
individual strings are exact duplicates of each other.

2.2 Suffix Tree Alteration
Our approach applies the evaluation of suffix trees (as described
in the previous subsection) to search for functions in a program
that are exact duplicates of each other. The first step is to replace
the string with a representation of the functions in a program. This
is where the nodes of an AST are used. Figure 3 displays the AST
that represents function #1 in Figure 4.

$
e$

dabe$
cdabe$

e$ cdabe$

b
e$

cdabe$

ab

$abgf#

$abgf#

$abgf#

$abgf#

#

#

#
gf

abgf
bgf

f$abgf#

#

Figure 3. Abstract syntax tree nodes

In Figure 3, the AST is flattened and the nodes are connected
together to produce the sequence [FUNCDEFN] [COMPOUND]
[DECLARATION] [CONSTANT] [DECLARATION] [PLUS]
[SYMBOL] [CONSTANT] [RETURN] [SYMBOL]. This
sequence of node names will become the string whose suffixes
will be used to generate the suffix tree.

To represent all the functions in a program, the AST node
sequences of each function is concatenated together to produce
one long sequence. Special terminating nodes are inserted
between each function representation in the sequence of nodes. A
suffix tree is generated from this sequence and by using the
method of searching for certain edges in the suffix tree described
earlier, functions that are duplicates of each other can be
determined.

Function #1:

Function #2:

Function #3:

Figure 4. Example functions

2.3 Potential False Positives
It is not sufficient to determine if two functions exactly match
based only on the suffix trees of AST node names. Several
situations can lead to false positives (i.e., clones reported as exact
matches, but upon further observation are not).

It is possible that the same sequence of AST node names can
represent a function that is not exactly the same. For example,
observe function #1 in Figure 4. The AST node sequence, which
consists of the node names, will be identical to the sequence for
function #2. The two functions would be considered exact
duplicates. However, the constant values that are assigned to
variable x in the two functions are different (i.e., one is set to 1
and the other is set to 3).

Another problem that can arise occurs when the variable locations
differ from one function to another even if their node sequences
are the same. Function #3 in Figure 4 demonstrates this situation.
The statement y = x + 5 in function #1 will have the same node
sequence as the statement y = y + 5 in function #3 (i.e., the
similar sequence is [DECLARATION] [PLUS] [SYMBOL]
[CONSTANT]). However, the lines are not exact matches,
because the line in function #3 does not contain an x variable.

If the suffix tree method of finding duplicates is used, all three
functions would be reported incorrectly as duplicates. In order to
account for these situations, an additional step is added after
duplicates are reported from the suffix tree. This step will observe
the types and values of the nodes of the AST and the positions of
the variables in the function. These additional steps are discussed
further in Section 3.

2.4 Sketch of Clone Detection Algorithm
The following algorithm represents the approach used in our
clone detection tool.
/* Generate node sequence */
For each node in the AST:
 Add the node to the sequence of nodes
 If node is the end of a function
 definition:
 Add a terminating node to the
 sequence of nodes

/* Generate suffix tree */
For each suffix of the sequence of nodes:
 Generate a path from the root to a leaf
 combining the path with existing edges
 when the edges represent the same sequence
 of nodes

/* Look for duplicate functions */
For each leaf that represents a suffix that starts
with a function definition node:
 Traverse the path up to the root
 If the last edge before the root
 represents all the nodes of the
 function and more than one terminating
 nodes are found where the edge splits:
 Group the functions associated with
 these terminating nodes together

/* Additional check on duplicate groups */
For each group of duplicate functions:
 Check whether constant values and variable
 positioning match each other

3. IMPLEMENTATION DETAILS
3.1 Microsoft Phoenix
The clone detection tool described in this paper is implemented as
a plug-in for the Microsoft Phoenix framework. Although this
framework has been offered to academia to aid in the research of
compilers and software analysis tools, it is also targeted for
developers of production-level compilers and tools. Phoenix is a
joint project between the Visual C++, Microsoft Research, and
.NET Common Language Runtime groups at Microsoft and is
poised to be the basis for the next generation of Microsoft
compilers [11].

Phoenix is primarily a framework for the backend of a compiler,
where optimization and code generation tasks are performed in a
customized manner. In Phoenix, the compiler tasks are divided

int main() {
 int x = 1;
 int y = x + 5;
 return y;

}

int main() {
 int x = 3;
 int y = x + 5;
 return y;

}

int main() {
 int x = 1;
 int y = y + 5;
 return y;

}

FUNCDEFN

COMPOUND

DECLARATION CONSTANT

DECLARATION SYMBOL CONSTANTPLUS

RETURN SYMBOL

into phases that are executed sequentially according to a specified
list. By separating tasks into phases, Phoenix allows
customization in any part of the sequence. Custom analysis tools
can be developed and included as a specific phase in the process.
A new phase is inserted into Phoenix by way of a library (DLL)
module that is a plug-in for the compiler. Our clone detection tool
is written as a custom phase that is plugged into Phoenix. Figure 5
is a graphical representation of the process.

In Figure 5, an example program called example.c is consumed
by the C/C++ Frontend, which is included in Phoenix. This
produces example.ast, which contains the AST of the source code
in example.c. This AST file is then consumed by the Phoenix
Backend. In addition to the AST file, a plug-in called clones.dll is
included. This plug-in represents our clone detector. The output
from the Phoenix Backend is a report of clones found in
example.c.

Figure 5. Clone detection plug-in for Phoenix

3.2 Detecting Code Clones
A major part of the clone detection tool is the implementation of a
mechanism to generate and evaluate suffix trees. The method used
to generate the suffix tree follows a naïve approach. This
approach takes O(m2) time to build a suffix tree, where m is the
length of the string or sequence. Linear-time construction of
suffix trees can be done using either Ukkonen’s or Weiner’s
method [6]. Building suffix trees with these methods requires
more complex procedures. However, they could be implemented
if it is desired to reduce the processing time of suffix tree
construction.

The program representation in the form of an AST is obtained
from an object provided by the Phoenix compiler. The AST
consists of Node objects that contain information about the node
such as name, type, and value. The names of the nodes are used to
generate the suffix tree. The type and value of the node is used in
the second step of the process when the clone detector examines
groups of reported clones to find exact matching clones.

While traversing the AST, any encounter with a “function
definition” node is noted. When the end of the function definition
is reached in the sequence of nodes, a special terminating node is
inserted into the sequence. This terminating node is a custom
node that is not part of the node collection provided by Phoenix.

A suffix tree is generated from the sequence of nodes (including
terminating nodes). Because each suffix of the sequence is
evaluated, there will be a path from the root to a leaf for each
suffix. The suffixes whose first nodes are the starting nodes of the
functions are of particular interest. The paths that represent these

suffixes are traversed from the leaves to the root. Paths that
converge (at the top of the tree) into a single edge that represents
all the nodes of one or more functions are considered duplicates.
These clones are stored together to be evaluated further.

The next step of the process constructs a separate suffix tree of
the nodes for each group of duplicate functions reported in the
first step. The difference in the construction of the suffix tree
compared to the first construction is that not only are the node
names compared, but also their type, value, and variable position.
Nodes are considered identical if their types are the same, their
values are the same, and the variable represented by the node is at
the same position in the functions. These checks are applied on
the nodes where applicable. The result of these two steps is a list
of functions that are exact duplicates of each other.

4. CASE STUDY EXAMPLE
Our clone detection implementation was experimentally applied
on two C programs varying in size. The first program was Abyss2,
which is a small web server written in approximately 1500 LOC.
The second program was Weltab3, which is an election results
program written in approximately 11K LOC. Weltab was used as
part of the evaluation of clone detection software at the First
International Workshop on the Detection of Software Clones.

In the evaluation of Abyss, the clone detector found five groups
of duplicate functions. However, only two are related to Abyss,
while the rest are duplicate functions in predefined header files.
The first group related to Abyss consists of the functions
ConfGetToken (in conf.c) and GetToken (in http.c). These two
functions represent 23 lines of code that are exact matches of each
other. The second group consists of the functions ThreadRun (in
thread.c) and ThreadStop (in thread.c). These two functions
represent 5 lines of code that call different functions in their
return values, but have similar return types.

In the evaluation of Weltab, the clone detector found six groups
of duplicate functions. Two are related to duplicate functions in
predefined header files. The remaining four groups are functions
scattered in different files where only their “main” functions
differ. The following lists the groups of clones excluding the ones
found in the predefined header files.

Group No. 1: Function canvw in files canv.c, cnv1.c, and
cnv1a.c

Group No. 2: Function lhead in files lans.c and lansxx.c and
function rshead in files r01tmp.c, r101tmp.c,
r11tmp.c, r26tmp.c, r51tmp.c, rsum.c, and
rsumxx.c

Group No. 3: Function rsprtpag in files r01tmp.c, r101tmp.c,
r11tmp.c, r26tmp.c, r51tmp.c, and rsum.c

Group No. 4: Function askchange in files vedt.c, vfix.c, and
xfix.c

Initially, the second category of clones was not allowed to have
different types. By relaxing this requirement on the second step of
the detection process, three additional clone groups were found.

2 http://abyss.sourceforge.net/
3 http://www.iste.uni-stuttgart.de/ps/clones/

example.c

clones.cs

example.ast

Report

C/C++
Frontend

C#

clones.dll Phoenix
Backend

These groups contained pairs of duplicate functions that dealt
with the conversion of two types of values: int and long int.
The pairs were all found in baselib.c and are functions cvci and
cvcil, functions cvic and cvicl, and functions cvicz and cviczl.

5. RELATED WORK
Several clone detection methods have used the AST
representation of a program to find clones [2][5][7][10].
Generally, a clone detection tool uses an AST that is generated by
a pre-existing parser. The advantage of Phoenix is that it provides
a framework where customized software analysis tools (e.g.,
clone detection) can be added or plugged in. Because Phoenix
serves as a platform for compiler development, AST generation is
already part of the frontend.

Baker describes one of the earliest applications of suffix trees to
the clone detection process [1]. However, instead of AST nodes, a
token-like structure produced after the lexical analysis is used to
find duplicates. An AST abstracts much of these tokens, while
preserving the structure of the program. The combination of ASTs
and suffix trees to find code clones is unique to our approach.

The utilization of biological sequence matching algorithms is
evident in [7] and [10]. Both use string alignment algorithms that
incorporate dynamic programming methods. This method is
useful in the detection of near exact clones. Although suffix trees
are not effective in the detection of near exact clones, they play a
role in a hybrid dynamic programming method that reduces the
time to perform dynamic programming calculations. The use of
suffix trees in this hybrid dynamic programming method is
discussed as future work in the next section.

6. CONCLUSION
We have introduced a clone detection technique that finds exact
matching functions by performing searches on suffix trees
generated from a program’s AST representation. The
implementation of this technique plugs into Microsoft Phoenix’s
backend process. Further enhancements can expand the types of
clones that can be found. The remainder of the conclusion
describes several areas for future work.

Suffix trees are not effective when searching for near exact
matches. Algorithms that offer better results for near exact
matches include the Smith-Waterman algorithm (local sequence
alignment), as used in [7]. This algorithm utilizes a dynamic
programming table to determine the most optimal alignment
between two strings. The calculations of a dynamic programming
table consists of computing the values of each cell in an n x m
table, where n and m are the respective lengths of the two strings
that are being compared. Depending on the length of the strings,
the computation time of the table values can be exponential. A
method called k-difference inexact matching can reduce the
amount of calculation needed on the dynamic programming table
[6]. This is done by using a hybrid dynamic programming process
that utilizes suffix trees. In effect, suffix trees become part of the
method to find near exact matches. The continuation of the work
from this paper is to develop an implementation of the k-
difference inexact matching method to search for near exact
functions.

This paper focused on clones at the function-level. Code clones
can occur at several different levels of granularity (e.g., from the

statement level to the program level). Statement-level clones can
reveal operations that suggest a crosscutting concern, which could
be made into an aspect. Clones at the program level can represent
entire programs that are clones of one another. The detection of
program-level clones may be useful to check for duplicate
submissions of homework in a programming class, such as the
approach adopted by the popular web-based program MOSS (A
Measure of Software Similarity)4. A more robust clone detector
that can perform evaluations on multiple levels of granularity
would enhance the benefit of a clone detection tool.

Currently, our clone detection tool recognizes AST nodes for the
C language. We want to expand the coverage of the tool to other
languages, such as C++ and C#. This requires the tool to have
knowledge of the AST nodes for additional languages. Another
approach is to develop a language-independent technique to clone
detection, which would reduce the challenge of updating the tool
for each new language to be supported.

Detecting code clones can be done by evaluating suffix trees
generated from the nodes of an abstract syntax tree. Development
in Microsoft’s Phoenix provides a supportive framework for the
clone detection tool. Further development of the tool will allow it
to detect more types of clones, both in terms of structure and in
terms of granularity, in addition to expanding its language base.

A project website (http://www.cis.uab.edu/tairasr/clones) for our
clone detector contains general information and a video
demonstration.

7. ACKNOWLEDGEMENTS
We thank Dr. Alan Sprague for his feedback regarding the use of
biological sequence algorithms in code clone detection.

8. REFERENCES
[1] Baker, B. On Finding Duplication and Near-Duplication in

Large Software Systems. In Proceedings of the Second IEEE
Working Conference on Reverse Engineering, Toronto,
Canada, July 1995, pp. 86-95.

[2] Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L.
Clone Detection using Abstract Syntax Trees. In
Proceedings of the International Conference on Software
Maintenance, Bethesda, MD, November 1998, pp. 368-377.

[3] Bruntink, M., van Deursen, A., van Engelen, R., and
Tourwé, T. On the Use of Clone Detection for Identifying
Crosscutting Concern Code, IEEE Transactions on Software
Engineering, vol. 31, no. 10, October 2005, pp. 804-818.

[4] Delcher, A., Phillippy, A., Carlton, J., and Salzberg, S. Fast
algorithms for large-scale genome alignment and
comparison. Nucleic Acids Research, vol. 30, no. 11, June
2002, pp. 2478-2483.

[5] Evans, W. and Fraser, C. Clone Detection via Structural
Abstraction. Technical Report MSR-TR-2005-104,
Microsoft Research, Redmond, WA, 2005.

[6] Gusfield, D. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York, NY, 1997.

4 http://www.cs.berkeley.edu/~moss/general/moss.html

[7] Greenan, K. Method-Level Code Clone Detection on
Transformed Abstract Syntax Trees using Sequence
Matching Algorithms. Student Report, University of
California - Santa Cruz, Winter 2005, available at
http://www.cs.ucsc.edu/~ejw/courses/290gw05/greenan-
report.pdf.

[8] Höhl, M., Kurtz, S., and Ohlebusch, E. Efficient multiple
genome alignment. In Proceedings of the Tenth International
Conference on Intelligent Systems for Molecular Biology.
Supplement of Bioinformatics, Edmonton, Canada, August
2002, pp. 312-320.

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J-M., and Irwin, J. Aspect-oriented

programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming. Springer-
Verlag LNCS 1241, Jyväskylä, Finland, June 1997, pp. 220-
242.

[10] Kontogiannis, K. Pattern Matching for Clone and Concept
Detection. Automated Software Engineering, vol. 3, nos. 1-2,
July 1996, pp. 77-180.

[11] Microsoft Phoenix, http://research.microsoft.com/phoenix
[12] Tarr, P., Ossher, H., Harrison, W., and Sutton, Jr., S. N

degrees of separation: multi-dimensional separation of
concerns. In Proceedings of 21st International Conference
on Software Engineering, Los Angeles, CA, May 1999, pp.
107-119.

