
Generative Approaches for Application Tailoring
of Mobile Devices

Victoria Davis and Jeff Gray
Dept. of Computer and Info. Sciences
University of Alabama at Birmingham
Birmingham, AL USA 35294-1170

Phone: (205)-934-2213

{davisvm,gray}@cis.uab.edu

Joel Jones
Department of Computer Science

University of Alabama
Tuscaloosa, AL USA 35487-0290

Phone: (205)-348-6363

jones@cs.ua.edu

ABSTRACT
The popularity of mobile devices has propelled the development
of many useful location-aware applications. However, the
heterogeneity of mobile devices necessitates that the software be
customized and tailored for each device. The research described
in this paper demonstrates the possibilities of generative
programming applied to application tailoring. This is done in
order to assist in porting software to specific devices without
manually rewriting code. The Java 2 Micro Edition (J2ME) is an
integral part of the application tailoring solution. Many mobile
devices are capable of using J2ME, but require the code to be
packaged specifically to run in each different mobile
environment. J2ME applications alone are not sufficient for
porting the code to different mobile devices.

The first solution that will be presented uses a specifically
structured VoiceXML file as input to an XSL transformation. The
transformation produces J2ME source code. Java servlets are used
to compile the resulting code and package it with respect to a
specific device. This first solution works well for users who have
programming experience and are comfortable with editing XML
files. However, a different solution is needed to enable users with
limited programming experience to specify the essential
properties of the mobile application.

A second solution to application tailorability uses a metamodeling
tool (we use the Generic Modeling Environment – GME) to create
a domain-specific modeling language. This environment allows
an end-user to capture the essence of a design in a notation that is
familiar to the users. From the specified models, an application
can be generated directly from a model interpreter. The modeling
approach provides a higher-level of abstraction, which removes
the user from the accidental complexities regarding the details of
the mobile application implementation. A case study is presented
that enables a restaurateur to create an online menu for use on
several different mobile devices.

1. INTRODUCTION
This paper describes two approaches for providing application
tailoring. Application tailoring solutions are needed due to the
increase in availability and the popularity of mobile devices.
According to CTIA there are 171.2 million wireless subscribers in
the United States [4]. The increase in mobile devices drives a
desire for more applications to run on the devices. According to
Adrian Friday, “For a PDA to become accepted as a viable
alternative to existing personal organization tools, it must be
equally convenient and reliable.”[1] These devices become more
convenient when software applications with rich functionality are
developed for them. In addition to a PDA, the same can be said
for other mobile devices, such as cellular phones, notebook
computers and Blackberry’s. Two important differences among
wireless devices are the screen size and the operating
environment. These two differences require the application to be
tailored specifically for each device.

The differences that exist between the screen size and the
operating environment create the need for different artifacts that
are used to package the application for each device. Artifacts are
files that are necessary to deploy the application on different
devices. A notebook computer, which has a large screen size, can
use HTML files that have a rich visualization of the provided
content. Due to the smaller screen display of other mobile devices
HTML applications are not suitable. A different version of the
application will have to be written to target other mobile devices,
each device having their own packaging requirements. The same
application for a PDA might require the application to be
packaged in .PRC files that are uploaded to the device. Similarly,
a cell phone would require a .JAD/.JAR file to be sent to the
device, and a Blackberry might need the same application
packaged in a .COD/.JAR file.

Model-driven application tailoring provides a solution that
addresses these issues by creating domain-specific models and
abstracting away the complexities associated with each device.
End-users with limited programming skills will have the ability to
create their own applications for the devices. The additional
applications that can be created by the end-users can increase the
convenience of the mobile devices. This case study will use the
domain of a restaurateur who wants to make an online menu
available to his potential customers who use various mobile
devices (see Figure 1, which shows a menu for Ice Cream that is
available across multiple devices).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA. Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Online menu tailored for many clients
One commonality among the many devices is the capability of
running the Java 2 Platform Micro Edition (J2ME), which is
targeted to consumer electronics and embedded devices [5]. J2ME
solves part of the application tailoring solution by addressing the
needs of the operating system and screen sizes. The Java HQ
runtime environment is available for mobile devices, such as
PDAs. The screen size issue is solved by using J2ME’s high-level
APIs, which allow a device to choose how to display objects such
as buttons and text onto the screen. There is also a low-level API
that is available, but it requires a programmer to be responsible
for everything that is displayed on the screen. High-level APIs
remove the screen size programming dilemma from the
programmer and places the responsibility on the mobile device.

However, J2ME is not the entire solution. Many devices are
capable of using J2ME, but a device that is labeled as J2ME
compatible does not necessarily mean that it is able to run J2ME
programs packaged as .class files. Most devices require J2ME
programs to be packaged for their own environment outside of the
mobile client. The fact that J2ME is not sufficient alone can cause
frustration for potential developers targeting mobile devices.

The next sections will describe the two application tailoring case
studies that are based on techniques from generative programming
[12]. Section 2 describes a generative approach that synthesizes
applications from specifications contained in an XML file.
Section 3 presents an alternative that is based on model-driven
principles using the GME metamodeling tool. Summary and
concluding remarks are contained in Section 4.

2. TAILORABILITY THROUGH XML
The first approach utilizes VoiceXML (VXML) [6] as input to an
XSL translation. This section summarizes these two technologies
and provides an example of how they were used in the application
tailorability problem. This case study demonstrates how a
restaurateur with prior knowledge of XML can create a VXML
document for an online menu application. From the VXML
specification, a complete mobile application is then generated.
The mobile client will be presented with a list of application
options. The options are an HTML page containing the menu, or a
downloadable Palm application. The end-user (the restaurateur) is
responsible for creating the XML configuration file based on a
particular structure for the restaurant menu. Java servlets handle
application tailoring. Many of the accidental complexities
associated with application tailoring are abstracted away from the
restaurateur. In the XML-based approach, application tailoring
occurs at runtime.

2.1 VoiceXML
VoiceXML is the notation used for the first solution of the case
study. VXML is intended to enable users to interact with the web
through voice commands. It is also used for applications
providing automatic answering services. VXML provides a
consistent structure that has been standardized by the World Wide
Web Consortium [6]. The case study is not a voice application,
but the structure of VXML is used as the foundation for the input
file that specifies the details of the mobile application.

In the VXML file, the restaurateur defines the structure of the
restaurant menu through XML tags. The tags represent a query
and response for specific menu items. In the generation to Java,
the VXML <prompt> tags become questions to be presented to
the mobile client. The response of the client is captured in a list of
VXML <item> tags. Menu items can be added or deleted as
necessary by adding or removing <field> tags. One VoiceXML
document provides a single input for many translations. Listing 1
shows the structure of a menu item in VXML.

<field name = “container”>
 <prompt>Do you want a cup or cone.</prompt>
 <prompt>Say cup or cone.</prompt>
 <grammar type="application/srgs+xml" root="r2” version="1.0">

 <rule id="r2" scope="public">
 <one-of>
 <item>cone</item>
 <item>cup</item>
 </one-of>
 </rule>
 </grammar>
 <field>You said <value expr="container" /></field>
</field>

Listing 1. VoiceXML to request ice cream container

2.2 XSLT Transformation of VoiceXML
To translate VXML to J2ME, an Extensible Stylesheet Language
Transformation (XSLT) can be applied to the VXML document.
XSLT is a transformation language that consists of a set of rules
for transforming a source tree into a result tree [7]. The XML Path
Language (XPath) [8] provides access to the XML tree structure
to navigate and access the data in the XML file. XSLT allows
output to be directed to a plain text file, which in this study is
J2ME source code. Listing 2 shows a portion of XSLT that
transforms the <field> tag of the VXML document into J2ME
code. Each time a <field> tag is found in the tree, the
corresponding XSLT code will generate the J2ME code. The
generated code (see the last four lines of Listing 2) is
parameterized by the information matched in the XML <field>.
Several XSLT translations have to be written to produce the other
artifacts necessary for packaging and tailoring the application.
The artifacts needed for a cellular phone application are the
Manifest file (MF), and the Java Application Descriptor (JAD)
file. The Java 2 Platform Micro Edition Wireless Toolkit creates
these files automatically if the toolkit is used. It is necessary to
compile and package the application from the command line for
this solution.

<!--Each menu item is taken from the first prompt in each <field>-->
<xsl:for-each select="field">
 <xsl:text> menu.append("</xsl:text>
 <xsl:value-of select="prompt[1]" />
 <xsl:text>", null);
</xsl:text>
</xsl:for-each>
<xsl:text> menu.addCommand(orderCommand);
</xsl:text>
<xsl:text> menu.addCommand(exitCommand);
</xsl:text>
<xsl:text> menu.setCommandListener(this);
</xsl:text>
<xsl:text> mainMenu();
} >}
</xsl:text>

Listing 2. XSLT translation of <field> nodes to J2ME

2.3 Servlets
The Apache Tomcat server [9] is used in our implementation of
this case study. Specifically, the Xalan-Java XSLT translation
engine and the Xerces-Java XML parser were the key parts of
Tomcat that were used [10]. Java servlets deployed on Tomcat
provided the necessary infrastructure for the application tailoring
experiment.

menu.append("Do you want a cup or cone.", null);
menu.append("Select a flavor of Ice cream.", null);
menu.addCommand(exitCommand);
menu.setCommandListener(this);
mainMenu();

Listing 3. Generated J2ME code
An HTML page must be created to present the mobile client with
the generated application options. When an option is selected
from the HTML page, it sends a request to the first of three
servlets necessary for application tailoring. The first servlet takes
in the request for a particular application. It passes control to a
second servlet which is responsible for that particular translation
request. The second servlet performs the majority of the tailoring
for this solution. The servlet accesses the command line of the
operating system and creates the directories that are needed for
the tailoring process. This second servlet invokes the translation
engine (Xalan) and applies the XSLT translations. Listing 3
shows a partial result of the translated J2ME code.
Three translations are necessary for translating VXML to all the
files necessary for application tailoring. The translations needed
are: one for J2ME, one for the MF file and the last for the JAD
file. After all of the translations have completed, the servlet
accesses the command line again to finish the tailoring process.
To produce an application for a mobile phone, the servlet must
compile, pre-verify, and generate a Java Archive (JAR) file of the
J2ME code. At this point there has been enough tailoring to
deploy the application to a mobile phone. However, to produce a
Palm application, additional steps must be taken. The servlet must
start the Mobile Information Device Profile (MIDP) for the Palm
OS [11] converter. This application can run from the command
line to convert the JAD file to the Palm OS Resource Collection
file (PRC). Once those steps have completed, the application is
ready to be deployed on a Palm device. Control is then passed to a
third servlet. The third servlet sends the application in a TCP
stream to the client.
If the first servlet gets a request for an HTML file, control is
passed to a different second servlet. This alternative servlet is
similar to the servlet that handles a Palm request, but does not
have to perform all of the same steps for packaging. The same
VXML document serves as the input for the HTML translation,

but a different XLST translation would be applied. This XSLT
document will output HTML code. Control would then be passed
to a third servlet to deliver a link to the generated HTML file to
the mobile client.

The benefit of this approach is that the essence of the application
is captured in the VXML file, which can be used to generate the
lower-level implementation and configuration. To evolve and
change the application requires modifications to the VXML file,
rather than code. A single change to the VXML file has the
capability to affect multiple artifacts for various devices.

3. MODEL-DRIVEN TAILORABILITY
The second approach applied to the case study uses a
metamodeling tool called the Generic Modeling Environment
(GME) [2]. The GME is used to create a domain-specific
modeling language and environment. The end-user will be
responsible for building a model of the menu in a customized
modeling environment provided by the GME. From a model, a
model interpreter can be used to generate all of the artifacts
needed for application tailoring. After the interpreter has been
invoked the generated tailored applications are ready to be made
available to the mobile client. The metamodeling approach
provides a higher-level of abstraction than the VoiceXML
approach. In the GME model, application tailoring occurs at
design time.

3.1 A Metamodel for Application Tailoring
A metamodel specifies a visual modeling language for a specific
domain. In this section, a metamodel is described that represents
all the concepts needed to build the restaurateur online menu.
Using the GME, three elements are needed to produce the
metamodel for this domain. They are a model, an atom and a
connection. The model element is used to represent a welcome
message and also a menu item. The atoms represent the choices
contained within the menu item model. The connection entity
specifies the relationship between the models and the atoms.

Figure 2. The restaurant metamodel in GME

Once these elements are created and placed in the metamodel,
additional information can be added to them by attaching attribute
information. The attributes are needed because they contain
information that is vital to describing particular details about the
element. The welcome message has an attribute that allows for a
custom welcome message to be displayed. The menu item has a
field attribute to describe the name of the menu item. Custom
icons are created that represent the elements of the metamodel.
They are added to give the modeling environment a look that is
representative of the particular domain. Once the metamodel has
been constructed it must be interpreted to produce the modeling
environment for the restaurateur domain. The GME provides
existing capabilities to generate a modeling environment from the
metamodel. Figure 2 shows the metamodel for this case study.

3.2 Applying the Restaurant Metamodel
The restaurateur is not responsible for creating the metamodel or
the translations. The restaurateur constructs instances of the
metamodel to configure the online menu. All the elements needed
for the online menu are visible on the screen and can be added to
the model by dragging and dropping them on to the screen. The
first thing the restaurateur must do is add a welcome message to
the model. Then, for each food item that needs to be on the online
menu, a menu item element must be added to the model. When a
menu item has been placed into the model it can be opened by
double clicking on the menu element, which will open another
window where objects that describe the menu item are located.
These objects can be placed into the menu element and named.
Figure 3 shows the items contained within the “IceCream” menu
item. Figure 4 shows how the model of an online menu would be
displayed in the GME. Such models can be constructed by those
who have little or no knowledge of programming languages and
the details of mobile application development.

Figure 3. Contents of a menu item

Figure 4. The domain-specific model in GME

3.3 A Model-Driven Tailorability Interpreter
The GME provides several ways to access the data from the
model. One of these is the Builder Object Network (BON), which
provides access to the internal representation of the model
through C++ objects. An interpreter in the GME can be written in
C++. The model-driven application tailoring solution using the
GME is similar to the approach adopted in Section 2, except that
application tailoring in GME is contained in the interpreter, and
not handled by servlets.

The interpreter traverses the model and generates all of the
required artifacts necessary for the application to run on the
specific device. In this study, the specific device is a Palm
handheld. The interpreter generates the J2ME code as well as the
MF file and the JAD file. Listing 4 shows the C++ code that
generates a portion of the J2ME code. The method iterates over
all menu selection elements in the model (e.g., “Ice Cream” and
“Shake,” as shown in Figure 4), and generates the J2ME code to
add an item to the application menu. In addition to traversing the
model and generating the required artifacts (e.g., Java code), the
model interpreter also interacts with the file system and builds the
necessary directories needed to package the application.
The end-user runs the interpreter once the model has been
constructed to represent the essence of the application that is to be
sent to the mobile clients. The interpreter must contain
transformation code for every artifact needed in the tailoring
process. The interpreter then runs batch files that it generates.
These batch files compile, pre-verify and create the JAR file for
the application. Then it executes the MIDP for the Palm
converter. This is accomplished by accessing the command line
from inside the C++ code of the interpreter. Once this is finished
the application is ready to be deployed to the Palm handheld.
Tailoring is the result of running the interpreter to produce the
applications necessary for the different mobile devices. An
interpreter must be written for each target device. In contrast to
the run-time tailoring provided by the XML-XSLT approach,
application tailoring in the GME is done at design and compile
time.

//=====Processes the MenuSelections for the Main Screen of Menu Choices
void CComponent::ProcessMenuSelectionScreen(CBuilderModel * r) {
 ASSERT(r->GetKindName() == "MenuSelections");
 CString message;
 r->GetAttribute("Name", message);
 outf << " menuitem.append(\"" << message << "\", null);" << endl;
}

Listing 4. C++ code to generate J2ME
It should be emphasized that the metamodel and the associated
interpreter are not built by the end-user. These are constructed by
modelling experts who use GME to build a domain-specific
modelling environment. The end-user works in this environment
to create models of their specific application, such as those found
in Figure 3 and Figure 4.

4. CONCLUSIONS
The results of the case study show that it is possible to tailor
applications for specific devices without involving low-level
changes to source code. Through generative programming, a
single higher-level specification can be synthesized into multiple
lower-level implementation artifacts. For example, configuration
information captured in an XML file or a graphical model can be
used to generate multiple files to configure a Palm application
(e.g., the required Java, JAD, and MF files). The files are
generated automatically by the translator, rather than coded
explicitly. Application tailoring is abstracted away from the end-
user and is removed from the mobile client. Many of the
accidental complexities that arise when building different mobile
applications are taken care of when generative approaches are
used. Simple things that get overlooked, such as directories that
need to be created and file names that don’t interfere with each
other, are a few of the details that are abstracted away.
The case study demonstrated two approaches showing the power
of abstraction in removing accidental complexities of the
implementation. In the example of the VoiceXML and XSLT
approach, the VoiceXML file contained 32 lines of specification,
but generated over 200 lines of Java code. The second approach,
based on the GME model, generated the same Palm application,
plus additional batch files for command line processing (over 250
lines of Java code). Generative programming approaches
eliminate the need to rewrite the code manually, which can
improve productivity by allowing the essence of a problem to be
the primary focus. Additionally, programmer errors caused by
manual rewriting of low-level code can be reduced through
generative techniques by putting the burden on the automated
translators.
Both of the approaches presented in the paper give the end-user
(who may have limited programming skills) the ability to create
their own mobile applications. The XML approach provides a
run-time application tailoring solution by running the tailoring on
a server. This allows a tailoring solution to be created when it is
requested by a mobile client. It requires the end-user to be
familiar with XML, but offers fresh content every time a change
is made to the VXML file. The details of tailoring are spread out
over a variety of mediums, such as the servlets, XML, XSLT.

From our evaluation, the domain-specific modeling approach
provided by GME offers a higher-level of abstraction than the
XML/XSLT approach. With domain-specific modeling, the end-
user does not have to understand VXML. In the modeling domain
presented in Section 3, the restaurateur can build a restaurant
menu with graphical elements that represent concepts that are
more familiar to the domain (i.e., graphical icons that represent
the items of a menu, rather than the XML tags that need to be
modified in VXML).

5. ACKNOWLEDGMENTS
Portions of this research were funded from an NSF REU grant
(CNS-0244156) entitled, “Pervasive and Mobile Computing.”
Victoria Davis is now with Computer Technology Solutions, Inc.,
of Birmingham, Alabama.

6. REFERENCES

[1] Adrian John Friday, “Infrastructure Support for Adaptive

Mobile Applications,” PhD dissertation, Computing
Department, Lancaster University, England, September,
1996, page 32.

[2] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei,
Greg Nordstrom, Jonathan Sprinkle, and Gabor Karsai,
“Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

[3] Greg Nordstrom, Janos Sztipanovits, Gabor Karsai, and
Akos Ledeczi, “Metamodeling - Rapid design and evolution
of domain-specific modeling environments,” IEEE
Engineering of Computer Based Systems (ECBS), Nashville,
TN, April 1999, pp. 68-74.

[4] CTIA – The Wireless Association, CTIA 10 Nov 2004
http://www.ctia.org.

[5] Java 2 Platform, Micro Edition (J2ME) overview, Sun
Microsystems 10 Nov 2004, http://java.sun.com/j2me/.

[6] W3C “Voice Browser” Activity, W3C, 10 Nov 2004,
http://www.w3c.org/Voice/.

[7] The Extensible Stylesheet Language Family (XSL), W3C, 10
Nov 2004, http://www.w3c.org/Style/XSL/.

[8] XML Path Language (XPATH), W3C, 10 Nov 2004,
http://www.w3c.org/TR/xpath/.

[9] The Jakarta Site - The Apache Jakarta Tomcat, The Apahce
Jakarta Project , 10 Nov 2004, http://jakarta.apache.org/

[10] Xalan-Java Overview, The Apache XML Project, 10 Nov
2004 http://xml.apache.org/xalan-j/overview.html

[11] MIDP for Palm OS, Sun Microsystems, 11 Nov 2004,
http://java.sun.com/products/midp4palm/

[12] Krzysztof Czarnecki and Ulrich Eisenecker, Generative
Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

